Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Total Environ ; 918: 170496, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38296090

ABSTRACT

Most of the polycyclic aromatic hydrocarbons (PAHs) in petroleum are alkylated (alkyl PAHs), still the metabolism of these alkyl PAHs to the expected acid products (polycyclic aromatic acids; PAAs) has yet to be demonstrated in oil-exposed fish. Should these compounds be discovered in fish as they have in ragworm, rodents, and humans, they could present an indicative biomarker for assessing oil pollution. In this study, the ability to biotransform alkyl PAHs to PAAs was examined on Atlantic haddock (Melanogrammus aeglefinus). Exposure to phenanthrene, 1-methyphenanthrene or 1,4-dimethylphenanthrene was performed via intraperitoneal injection. An Ion Mobility Quadrupole Time-Of-Flight Mass Spectrometer (IMS-Q-TOF MS) was used in exploratory analysis of extracted bile samples. Acquisition of four-dimensional information by coupling liquid chromatography with the IMS-Q-TOF MS and in-silico prediction for feature prioritization in the data processing workflow allowed several tentative identifications with high degree of confidence. This work presents the first detection of PAAs in fish and suggests the importance of investigating alkyl PAHs in ecotoxicological studies of oil-polluted fish environments.


Subject(s)
Gadiformes , Petroleum Pollution , Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Humans , Fishes/metabolism , Gadiformes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Petroleum/toxicity , Petroleum/analysis , Petroleum Pollution/analysis
2.
Mar Pollut Bull ; 190: 114843, 2023 May.
Article in English | MEDLINE | ID: mdl-36965263

ABSTRACT

Atlantic haddock (Melanogrammus aeglefinus) embryos bind dispersed crude oil droplets to the eggshell and are consequently highly susceptible to toxicity from spilled oil. We established thresholds for developmental toxicity and identified any potential long-term or latent adverse effects that could impair the growth and survival of individuals. Embryos were exposed to oil for eight days (10, 80 and 300 µg oil/L, equivalent to 0.1, 0.8 and 3.0 µg TPAH/L). Acute and delayed mortality were observed at embryonic, larval, and juvenile stages with IC50 = 2.2, 0.39, and 0.27 µg TPAH/L, respectively. Exposure to 0.1 µg TPAH/L had no negative effect on growth or survival. However, yolk sac larvae showed significant reduction in the outgrowth (ballooning) of the cardiac ventricle in the absence of other extracardiac morphological defects. Due to this propensity for latent sublethal developmental toxicity, we recommend an effect threshold of 0.1 µg TPAH/L for risk assessment models.


Subject(s)
Gadiformes , Hydrocarbons, Aromatic , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Humans , Animals , Petroleum/toxicity , Petroleum/analysis , Gadiformes/metabolism , Larva/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 859(Pt 1): 160080, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36375555

ABSTRACT

Crude oil causes severe abnormalities in developing fish. Photomodification of constituents in crude oil increases its toxicity several fold. We report on the effect of crude oil, in combination with ultraviolet (UV) radiation, on Atlantic haddock (Melanogrammus aeglefinus) embryos. Accumulation of crude oil on the eggshell makes haddock embryos particularly susceptible to exposure. At high latitudes, they can be exposed to UV radiation many hours a day. Haddock embryos were exposed to crude oil (5-300 µg oil/L nominal loading concentrations) for three days in the presence and absence of UV radiation (290-400 nm). UV radiation partly degraded the eggs' outer membrane resulting in less accumulation of oil droplets in the treatment with highest oil concentration (300 µg oil/L). The co-exposure treatments resulted in acute toxicity, manifested by massive tissue necrosis and subsequent mortality, reducing LC50 at hatching stage by 60 % to 0.24 µg totPAH/L compared to 0.62 µg totPAH/L in crude oil only. In the treatment with nominal low oil concentrations (5-30 µg oil/L), only co-exposure to UV led to sublethal morphological heart defects. Including phototoxicity as a parameter in risk assessments of accidental oil spills is recommended.


Subject(s)
Gadiformes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Petroleum/analysis , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Petroleum Pollution/adverse effects , Gadiformes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis
4.
Chemosphere ; 255: 126941, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32388259

ABSTRACT

With the aim of evaluating health risk to hake consumers, mercury and selenium were measured in muscle, liver, gonads, kidney, and gills of 62 specimens of Merluccius productus from northern Gulf of California. Means ± confidence interval (95% confidence level) concentrations (mg kg-1 wet weight) of Hg in tissues were: gonads (1.01 ± 0.25) > muscle (0.44 ± 0.06) > gills (0.29 ± 0.04) > kidneys (0.20 ± 0.07) > liver (0.02 ± 0.004). No significant differences between sexes were found for Hg. The distribution of mean concentrations of Se (mg kg-1 wet weight) were: kidneys (4.61 ± 1.27) > liver (1.66 ± 0.22) > gonads (1.66 ± 0.75) > gills (0.86 ± 0.04) > muscle (0.40 ± 0.09). Se in gonads showed a significant difference between sex (females > males). Positive significant correlations with total length (p < 0.05) and total weight (p < 0.05) were found in the same tissue for both morphological variables: Hg in muscle, Se in muscle and Se in liver. An excess of Se over Hg (molar ratio Se:Hg > 1) was found in all tissues. The Hazard Quotient health risk index was evaluated for humans that consume muscle and gonads. The recommended Hg safe intake for adults and children were 110.0 and 33.0 g week-1, respectively for muscle; for gonads weekly consumption portions of 35.0 and 14.0 g for adults and children represent no Hg risk. There was no risk of exposure to Se.


Subject(s)
Environmental Monitoring , Gadiformes/metabolism , Mercury/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bioaccumulation , California , Child , Dietary Exposure/statistics & numerical data , Female , Fishes , Gonads , Humans , Male , Mercury/analysis , Muscles/metabolism , Perciformes , Risk Assessment , Selenium/analysis , Water Pollutants, Chemical/analysis
5.
Food Chem ; 309: 125683, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31670135

ABSTRACT

The ability of compounds of natural origin (black, white, red, and green tea extracts, phytic acid) to inhibit TMAO-demethylase enzyme was assayed. Black tea and phytic acid exerted the highest inhibiting activities, similar to the already known inhibitor sodium citrate. Hake minces incorporating these three compounds were prepared and stored frozen (150 days, -12 °C). TMAO-demethylase enzyme was partially inhibited (lower enzyme activity, reduction of formaldehyde accumulation). The study of physicochemical properties of the minces (salt-soluble proteins, water holding capacity, structural water associated with myofibrils) pointed to evident protein aggregation and loss of functionality when phytic acid was added, whereas black tea and sodium citrate did not have a negative effect. Consequently, the salt-ground mince with phytic acid showed worse viscoelastic properties than the others. In conclusion, black tea polyphenols and sodium citrate can be used as additives to inhibit TMAO-demethylase enzyme during frozen storage of fish minces.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Food Preservation/methods , Gadiformes/metabolism , Polyphenols/pharmacology , Seafood/analysis , Aldehyde-Lyases/metabolism , Animals , Freezing , Methylamines/metabolism , Tea/chemistry
6.
Ecotoxicol Environ Saf ; 180: 53-62, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31071648

ABSTRACT

The increasing human presence in the Arctic shelf seas, with the expansion of oil and gas industries and maritime shipping, poses a risk for Arctic marine organisms such as the key species polar cod (Boreogadus saida). The impact of dietary crude oil on growth and metabolism of polar cod was investigated in the early spring (March-April) when individuals are expected to be in a vulnerable physiological state with poor energy stores. Adult polar cod were exposed dietarily to three doses of Kobbe crude oil during an eight weeks period and followed by two weeks of depuration. Significant dose-responses in exposure biomarkers (hepatic ethoxyresorufine-O-deethylase [EROD] activity and 1-OH phenanthrene metabolites in bile) indicated that polycyclic aromatic hydrocarbons (PAHs) were bioavailable. Condition indices (i.e. Fulton's condition factor, hepatosomatic index), growth, whole body respiration, and total lipid content in the liver were monitored over the course of the experiment. The majority of females were immature, while a few had spawned during the season and showed low hepatic lipid content during the experiment. In contrast, males were all, except for one immature individual, in a post-spawning stage and had larger hepatic energy stores than females. Most specimens, independent of sex, showed a loss in weight, that was exacerbated by exposure to crude oil and low hepatic liver lipids. Furthermore, females exposed to crude oil showed a significant elevation of oxygen consumption compared to controls, although not dose-dependent. This study highlights the importance of the energy status of individuals for their response to a crude oil exposure.


Subject(s)
Gadiformes/growth & development , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Bile/chemistry , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Female , Gadiformes/metabolism , Liver/drug effects , Liver/metabolism , Male , Models, Theoretical , Petroleum/metabolism , Water Pollutants, Chemical/metabolism
7.
Mar Drugs ; 16(6)2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29874805

ABSTRACT

Improved process technologies have allowed fishing vessels to utilize residuals from cod fillet production (head, backbone, skin, cuttings, and entrails) and convert this to high-quality protein powders for human consumption. In this double-blind pilot study, 42 healthy overweight or obese adults were randomized to three experimental groups consuming tablets corresponding to 6 g/day of proteins from cod residuals as presscake meal (Cod-PC), presscake and stickwater meal (Cod-PCW), or placebo tablets (control) for eight weeks. The primary outcome of this study was changes in metabolites related to glucose regulation in overweight or obese healthy adults after intake of proteins from cod residuals. Cod-PC supplementation decreased postprandial serum nonesterified fatty acids (NEFA) concentration and increased gene expressions of diglyceride acyltransferase 1 and 2 in subcutaneous adipose tissue compared with controls. Fasting insulin increased while fasting NEFA and 120-min postprandial glucose decreased within the Cod-PC group, but these changes did not differ from the other groups. In conclusion, supplementation with Cod-PC beneficially affected postprandial serum NEFA concentration compared with the other groups in overweight or obese adults. Supplementation with Cod-PCW, which contains a higher fraction of water-soluble protein compared to Cod-PC, did not affect serum markers of glucose regulation.


Subject(s)
Fatty Acids, Nonesterified/blood , Gadiformes/metabolism , Overweight/blood , Proteins/administration & dosage , Adult , Animals , Blood Glucose/drug effects , Dietary Supplements , Double-Blind Method , Female , Humans , Lipid Metabolism/drug effects , Male , Middle Aged , Obesity/blood , Pilot Projects , Postprandial Period/drug effects , Triglycerides/blood
8.
Molecules ; 22(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048366

ABSTRACT

Phospholipids containing PUFAs are important vehicles for their delivering to the targeted tissues. In our research project we established enzymatic methods for the enrichment of natural egg-yolk PC with n-3 PUFAs. Instead of synthetic PUFA ethyl esters, the new strategy was developed using polyunsaturated fatty acids enriched fraction (PUFA-EF) from cod liver oil as the natural acyl donors. PUFA-EF was produced by urea-complexation and contained 86.9% PUFA including 8.5% stearidonic acid (SDA; 18:4(n-3)), 26.7% EPA, and 45.2% DHA. The transesterification of PC with PUFA was catalyzed by lipases. After screening of enzymes the effect of reaction medium; molar ratio of substrates and etc. was investigated. The highest incorporation of PUFA was 45.6%; including 36.8% DHA and 5.8% EPA at the following reaction conditions: hexane; 55 °C; PUFA-EF/PC acyl ratio of 10; 48 h of reaction time and lipase B from Candida antarctica as a biocatalyst (20% of enzyme load).


Subject(s)
Cod Liver Oil/chemistry , Egg Yolk/chemistry , Fatty Acids, Omega-3/chemistry , Fungal Proteins/metabolism , Lipase/metabolism , Phosphatidylcholines/chemistry , Animals , Candida/enzymology , Catalysis , Esterification , Gadiformes/metabolism , Molecular Structure
9.
Aquat Toxicol ; 180: 196-208, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723571

ABSTRACT

Increasing human activities in the Arctic raise the risk of petroleum pollution, thus posing an elevated risk for Arctic organisms to be chronically exposed to petroleum compounds. The endocrine disrupting properties of some of these compounds (i.e. polycyclic aromatic hydrocarbons [PAHs]) present in crude oil may have negative effects on the long and energy intensive reproductive development of polar cod (Boreogadus saida), an Arctic keystone species. In the present study, selected reproductive parameters were examined in feral polar cod exposed to crude oil via a natural diet (0.11, 0.57 and 1.14µg crude oil/g fish/day [corresponding to low, medium and high treatments, respectively]) for 31 weeks prior to spawning. Fish maturing in the current reproductive period made up 92% of the experimental population while 5% were immature and 3% were identified as resting fish. Phase I metabolism of PAHs, indicated by ethoxyresorufin-O-deethylase (EROD) activity, showed a dose-dependent increase in high and medium crude oil treatments at week 6 and 22, respectively. Decreasing EROD activity and increasing PAH bile metabolite concentrations over the experimental period may be explained by reproductive maturity stage. Significant alterations in sperm motility were observed in crude oil exposed males compared to the controls. The investigated somatic indices (gonad and hepatic), germ cell development and plasma steroid levels (estradiol-17ß [females], testosterone [males and females] and 11-ketotestosterone [males]) were not significantly altered by chronic dietary exposure to crude oil. The environmentally realistic doses polar cod were chronically exposed to in this study were likely not high enough to induce adverse effects in this ecologically important fish species. This study elucidated many baseline aspects of polar cod reproductive physiology and emphasized the influence of maturation state on biomarkers of PAH biotransformation (EROD and PAH bile metabolites).


Subject(s)
Gadiformes/metabolism , Petroleum/analysis , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Bile/chemistry , Bile/drug effects , Bile/metabolism , Biomarkers/blood , Cytochrome P-450 CYP1A1/metabolism , Environmental Exposure , Estradiol/blood , Female , Gonads/pathology , Male , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Sperm Motility/drug effects , Testosterone/blood
10.
J Agric Food Chem ; 63(42): 9349-56, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26434500

ABSTRACT

The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.


Subject(s)
Arsenic/metabolism , Cestoda/metabolism , Cestode Infections/veterinary , Fish Diseases/parasitology , Gadiformes/parasitology , Mercury/metabolism , Selenium/metabolism , Animals , Arsenic/analysis , Cestode Infections/metabolism , Cestode Infections/parasitology , Fish Diseases/metabolism , Gadiformes/metabolism , Intestinal Mucosa/metabolism , Intestines/parasitology , Mediterranean Sea , Mercury/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Selenium/analysis , Spain , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
11.
Environ Sci Pollut Res Int ; 21(24): 13779-88, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24532208

ABSTRACT

In this study, impact of dispersed oil on cardiac mitochondrial function was assessed in a key species of Arctic marine ecosystem, the polar cod Boreogadus saida. Mature polar cod were exposed during 48 h to dispersed oil (mechanically and chemically) and dispersants alone. The increase observed in ethoxyresorufin-O-deethylase activity and polycyclic aromatic hydrocarbon metabolites in bile indicated no difference in contamination level between fish exposed to chemical or mechanical dispersion of oil. Oil induced alterations of O2 consumption of permeabilised cardiac fibres showing inhibitions of complexes I and IV of the respiratory chain. Oil did not induce any modification of mitochondrial proton leak. Dispersants did not induce alteration of mitochondrial activity and did not increase oil toxicity. These data suggest that oil exposure may limit the fitness of polar cod and consequently could lead to major disruption in the energy flow of polar ecosystem.


Subject(s)
Fish Proteins/metabolism , Fuel Oils/adverse effects , Gadiformes/metabolism , Mitochondria/metabolism , Myocardium/metabolism , Petroleum/metabolism , Animals , Arctic Regions , Bile/metabolism , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/metabolism , Fuel Oils/analysis , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
12.
J Med Food ; 15(3): 299-306, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22181072

ABSTRACT

Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.


Subject(s)
Cardiovascular Diseases/prevention & control , Cholesterol, Dietary/adverse effects , Fish Proteins/therapeutic use , Hypercholesterolemia/prevention & control , Hypolipidemic Agents/therapeutic use , Lipid Metabolism , Protein Hydrolysates/therapeutic use , Animals , Bile Acids and Salts/analysis , Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol, Dietary/metabolism , Feces/chemistry , Fish Proteins/isolation & purification , Fish Proteins/metabolism , Gadiformes/metabolism , Gene Expression Regulation, Enzymologic , Hypertriglyceridemia/prevention & control , Hypolipidemic Agents/isolation & purification , Hypolipidemic Agents/metabolism , Liver/enzymology , Liver/metabolism , Male , Papain/metabolism , Protein Hydrolysates/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Seafood/analysis
13.
Food Chem ; 134(3): 1297-306, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-25005946

ABSTRACT

The antioxidative properties of Pacific hake hydrolysates and their peptidic fractions varying in molecular size were assessed. Hydrolysates produced by different proteases (Alcalase, bromelain, Flavourzyme, Protamex, Protease A"Amano"2, Protease N"Amano"K, Protin SD NY10, Umamizyme-K, Validase BNP-L, Validase FPexo) generally possessed good metal ion chelating (33-73% at 3mg/ml), DPPH radical scavenging (18-30% at 1mg/ml), ferric ion reducing power (abs700nm 0.36-0.86 at 3 mg/ml) and ABTS radical scavenging (47-85% at 0.067 mg/ml) activity, as well as a good capability to suppress lipid peroxidation in a linoleic acid model system. Peptide size (<1.4 kDa) was important for ABTS radical scavenging activity, whereas specific peptide composition (which depended on the particular protease used) was the governing factor for effective lipid peroxidation. Validase BNP-L was the most promising enzyme for producing Pacific hake hydrolysates with good antioxidative activity in various assays and similar effectiveness as the synthetic antioxidant BHT to inhibit lipid peroxidation.


Subject(s)
Antioxidants/pharmacology , Free Radicals/metabolism , Gadiformes/metabolism , Lipid Peroxidation/drug effects , Peptide Fragments/pharmacology , Peptide Hydrolases/metabolism , Protein Hydrolysates/pharmacology , Animals , Free Radical Scavengers/pharmacology , Gadiformes/growth & development , Oxidation-Reduction , Peptide Fragments/chemistry , Protein Hydrolysates/chemistry
14.
Mar Pollut Bull ; 60(3): 390-5, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20003991

ABSTRACT

The withdrawing Arctic ice edge will facilitate future sea transport and exploration activities in the area, which calls for the establishment of relevant cold water monitoring species. The present study presents first results of field baseline levels for core oil pollution biomarkers in Polar cod (Boreogadussaida) sampled from pristine, Arctic waters. Furthermore, biomarker response levels were characterized in controlled laboratory exposure experiments running over 2 weeks. Fish exposed to a simulated petrogenic spill (1ppm dispersed, crude oil) exhibited elevated hepatic EROD activity, bile PAH-metabolites, and hepatic DNA-adducts, whereas male individuals exposed to simulated produced water (30ppb nonylphenol) exhibited a strong induction of plasma vitellogenin. In conclusion, the results demonstrated low and robust biomarker baseline levels that were clearly different from exposure responses. In combination with its high abundance and circumpolar distribution, the Polar cod seems well qualified for oil pollution monitoring in Arctic waters.


Subject(s)
Environmental Monitoring/methods , Gadiformes/metabolism , Petroleum/metabolism , Water Pollutants, Chemical/metabolism , Animals , Arctic Regions , Biomarkers/metabolism , Cold Temperature , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/metabolism , Gadiformes/blood , Liver/metabolism , Male , Petroleum/analysis , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Vitellogenins/blood , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Aquat Toxicol ; 97(3): 234-42, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20004486

ABSTRACT

In order to mimic the biological effects of an oil spill in Arctic waters, we examined several types of biomarkers (genes, enzymes, metabolites, and DNA damage) in polar cod Boreogadus saida experimentally exposed to the water soluble fractions of crude oil. During 4 weeks of exposure, induction of the studied biomarkers exceeded baseline levels. The mRNA expression of the cytochrome P4501A1 (cyp1a1) gene was the most promising biomarker, with glutathione S-transferase (gst) as a suitable complement. The delayed ethoxyresorufin O-deethylase (EROD) and GST activities and their persistence following 2 weeks of depuration may allow detection of previous exposures in field samples. The composition of PAH metabolites in the bile indicated the bioavailability of different PAH size-classes. Although mRNA expressions of antioxidant defense genes were induced at start of the exposure, with the strongest responses from catalase and cytosolic superoxide dismutase, they were poor for oil monitoring purposes due to their very short response times. Significant DNA damage demonstrated genotoxicity even at low PAH concentrations (<15microgL(-1)) and was correlated with benzo(a)pyrene and pyrene metabolites in the bile.


Subject(s)
DNA Damage/drug effects , Gadiformes/metabolism , Gene Expression Regulation/drug effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers , Dose-Response Relationship, Drug , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Water , Water Pollutants, Chemical/chemistry
16.
Aquat Toxicol ; 94(4): 309-19, 2009 Oct 04.
Article in English | MEDLINE | ID: mdl-19709761

ABSTRACT

With expanding oil and gas activities into the Arctic region, there is a need to evaluate the induction capacity of polycyclic aromatic hydrocarbon (PAH) biomarkers on Arctic marine organisms and to test analytical methods that have been optimized for their temperate counterparts. Polar cod Boreogadus saida were injected intraperitoneally with cod liver oil (solvent control), 6.6+/-3.7, 85+/-48 or 378+/-190 microg kg(-1) wet weight of benzo(a)pyrene (B(a)P), or not injected (control), and liver and bile were sampled at 0 and 16 h and 1, 2, 4 and 7d. The mRNA expression of cytochrome P4501A1 (cyp1a1) and glutathione S-transferase (gst) genes showed a dose-dependent induction in the first 16 h following the injection and a return to basal levels after 4d. The aryl hydrocarbon receptor 2, however, showed no change in mRNA expression. The protein quantification of cytochrome P4501A (CYP1A), through Western blot analysis and the enzyme-linked immunosorbent assay (ELISA), presented similar but weaker and time-delayed responses (4-7d) compared to the gene (16 h to 2d). Ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities increased significantly at day 7 following the gene induction and increase in protein levels. Overall, these biomarkers showed dose-dependent but weak responses to B(a)P and low levels of bile metabolites. The mRNA expressions of oxidative stress genes, superoxide dismutases (sod(Cu/Zn) and sod(Mn)), catalase (cat) and glutathione peroxidase (gpx), were all up-regulated between 16 h and 2d of B(a)P exposure with cat (72-fold) and sod(Cu/Zn) (20-fold) giving the strongest responses in the highest dose. Finally, CAT protein level and enzyme activities showed less clear responses than the genes. The mRNA expression showed the earliest responses, followed by the protein levels. The enzymatic activities were the least sensitive and responded to the exposure after 7d. The study shows the induction capability of biomarkers in polar cod at very low bioavailable doses of B(a)P and provides new information on the selected biomarkers for use in oil monitoring in the Arctic.


Subject(s)
Benzo(a)pyrene/toxicity , Gadiformes , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antarctic Regions , Bile/drug effects , Bile/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cod Liver Oil/metabolism , Cytochrome P-450 CYP1A1/analysis , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Gadiformes/genetics , Gadiformes/metabolism , Glutathione Transferase/analysis , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics , Oxidative Stress/physiology , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
17.
J Zhejiang Univ Sci B ; 9(9): 684-90, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18763300

ABSTRACT

We investigated the effects of fish protein hydrolysate (FPH) on growth performance and humoral immune response of the large yellow croaker (Pseudosciaena crocea R.). One thousand and two hundred large yellow croakers [initial average weight: (162.75+/-23.85) g] were divided into four groups and reared in floating sea cages (3 m x 3 m x 3 m). The animals were fed with 4 diets: basal diet only (control) or diets supplemented with 5%, 10% and 15% (w/w) FPH. The results show that dietary FPH levels significantly influenced the growth and immunity of the large yellow croaker. Compared with the control group, total weight gain (TWG) in all treatment groups, relative weight gain (RWG) and specific growth rate (SGR) in fish fed with diets supplemented with 10% and 15% FPH were significantly increased (P<0.05). Similar results were observed in immune parameters [lysozyme activity, serum complements, immunoglobulin M (IgM)]. Lysozyme activity, complement C4 and IgM were also significantly increased (P<0.05) in fish fed with diets supplemented with 10% and 15% FPH, while complement C3 level was significantly increased (P<0.05) in all treatment groups. In general, with the supplementation of FPH, particularly at dose of 10%, the growth performance and immunity of the large yellow croaker can be improved effectively.


Subject(s)
Antibody Formation/drug effects , Antibody Formation/immunology , Fish Products , Gadiformes/metabolism , Perciformes/growth & development , Perciformes/immunology , Protein Hydrolysates/administration & dosage , Administration, Oral , Animals , Dietary Supplements
19.
J Toxicol Environ Health A ; 70(22): 1897-911, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17966061

ABSTRACT

Considerable attention has been devoted to the risks from mercury (Hg) and polychlorinated biphenyls (PCB) to high-level predators (including humans) who consume freshwater fish. Although the U.S. Food and Drug Administration (FDA) issued advisories because of Hg for four marine fish species, there are few data on lead (Pb), cadmium (Cd), or other metals in Bering Sea fish generally, or on the risk these levels pose to the fish themselves or to consumers of marine fish. Levels of arsenic (As), Cd, chromium (Cr), Pb, Hg, and selenium (Se) levels were examined in muscle and liver of 142 Pacific Cod (Gadus macrocephalus) collected in 2004 at Nikolski, Adak, Amchitka, and Kiska Islands in the Aleutian Chain (Alaska) in the Bering Sea/North Pacific Ocean, a major source of commercial fishing. One key objective was whether there were location, age, gender, and size effects on tissue concentration that might pose a risk to the fish or their predators (including humans). All fish were measured and weighed, and a subset was aged by examining otolith layers. As was higher in liver than in muscle (geometric mean 2420 versus 1590 ng/g or ppb wet weight), as were Cd (GM 224 versus 1.92) and Se (GM 1380 versus 165). Conversely, Cr was higher in muscle (76.8 versus 45 ppb), as were Pb (23.7 vs 12 ppb) and surprisingly Hg (128 versus 82 ppb). Adak, until recently a large military base, had the highest levels of As, Hg, and Se, while Amchitka had the highest Pb levels, but Nikolski, which generally had the lowest levels, had relatively high Pb in liver. In general, interisland differences were significant for most metals in muscle, but only for Cr in liver. Weight and length were positively related to age, but age tended to explain more of the variance in metal levels. The multiple regression relationships differed by tissue in an unanticipated manner. Location contributed significantly to the models for muscle Cd, Pb, Hg, and Se, but not for liver levels. Conversely the length by weight interaction entered all of the liver models but none of the muscle models. Se and Hg were positively but weakly correlated in both liver (tau = +0.16) and muscle tissue (tau = 0.12). Hg was positively correlated with length, weight, and age in muscle, but not in liver. As showed a significant negative correlation with size variable in both tissues, and Cr was negatively correlated in muscle. Cd was positively correlated with Hg, Se, and As. Between liver and muscle there were significant positive correlations for Hg (tau = .24), As (tau = .407), and Cr (tau = 0.17), but not for Pb, Cd, or Se. In this study, the only metals that might pose a risk to cod-eating predators is Hg, as well as some of the higher values of Pb at Amchitka and Nikolski . The U.S. Environmental Protection Agency (EPA) reference dose (RfD) (not available for lead) was used to evaluate the risk to people consuming an 8-ounce (228g) meal of cod once per day and once per week, and to calculate risk using the levels found in this study. If a subsistence fisher from one of the Aleut villages ate one meal of cod per week for As, or one meal per day for Hg, they would exceed the U.S. EPA reference dose for As and Hg (set at a level to be without adverse effect for any person with this average daily exposure).


Subject(s)
Arsenic/metabolism , Food Contamination/analysis , Gadiformes/metabolism , Metals, Heavy/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Alaska , Animals , Environmental Monitoring , Gadiformes/anatomy & histology , Humans , Liver/metabolism , Muscles/metabolism , Risk Assessment
20.
Environ Res ; 105(2): 276-84, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17599825

ABSTRACT

While there has been considerable attention devoted to the risks to high level consumers from mercury in freshwater fish, relatively little attention has been devoted to saltwater fish. Although the U.S. Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on mercury levels generally, or on the risk these levels pose to the fish themselves or to consumers of marine fish. We examined total mercury levels in liver and muscle of Pacific cod (Gadus macrocephalus) collected from the northern Pacific and Bering Sea waters around Nikolski, Amchitka, and Kiska Islands in the Aleutian Chain (Alaska). We were interested in whether there were differences in mercury levels as a function of location, weight, length, and age of the fish, and what risk mercury posed to the food chain, including people. Fish were aged by examining otoliths, and we measured selenium because of its reported protective effects against mercury. Regression models indicated that 27% of the variation in levels of mercury was due to tissue examined and age, while 67% of the variation in levels of selenium was due to tissue, length, and age. Mercury levels were significantly higher in the muscle than the liver, and the reverse was true for selenium. Mercury levels were negatively correlated with selenium levels, and positively correlated with length, weight, and age. There were no gender differences in mercury or selenium levels. The mean levels of mercury in muscle (0.17 ppm wet weight) are within the range known to cause adverse effects in sensitive birds and mammals. Only 4% of the Pacific cod samples had mercury levels above 0.5 ppm, the action level promulgated by many states and countries, and none were above the 1 ppm action level of the U.S. FDA.


Subject(s)
Food Contamination/analysis , Gadiformes/metabolism , Mercury/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Alaska , Animals , Body Size , Environmental Monitoring , Gadiformes/anatomy & histology , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL