Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Environ Microbiol ; 25(12): 2958-2971, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37599091

ABSTRACT

Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.


Subject(s)
Cycloparaffins , Gammaproteobacteria , Microbiota , Petroleum Pollution , Petroleum , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Seawater/microbiology , Gammaproteobacteria/genetics , Petroleum/metabolism , Gulf of Mexico , Biodegradation, Environmental
2.
mBio ; 12(4): e0122821, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465022

ABSTRACT

Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis, acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the "symbiont ball" formed by late-invading Sulcia and Vidania. Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis. IMPORTANCE Sup-sucking hemipterans host ancient heritable microorganisms that supplement their unbalanced diet with essential nutrients and have repeatedly been complemented or replaced by other microorganisms. These symbionts need to be reliably transmitted to subsequent generations through the reproductive system, and often they end up using the same route as the most ancient ones. We show for the first time that in a single family of planthoppers, the complementing symbionts that have established infections independently utilize different transmission strategies, one of them novel, with the transmission of different microbes separated spatially and temporally. These data show how newly arriving microbes may utilize different strategies to establish long-term heritable symbioses.


Subject(s)
Betaproteobacteria/metabolism , Gammaproteobacteria/metabolism , Hemiptera/microbiology , Nutrients/metabolism , Symbiosis , Animals , Betaproteobacteria/genetics , Female , Gammaproteobacteria/genetics , Hemiptera/anatomy & histology , High-Throughput Nucleotide Sequencing/methods , Microscopy/methods , Phylogeny
3.
Environ Microbiol ; 23(6): 3130-3148, 2021 06.
Article in English | MEDLINE | ID: mdl-33876546

ABSTRACT

Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.


Subject(s)
Alginates , Gammaproteobacteria , Bacteria/genetics , Gammaproteobacteria/genetics , Metagenome , Pectins
4.
Sci Rep ; 11(1): 6983, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772091

ABSTRACT

We investigated the dynamics of the bacterial composition and metabolic function within Akashiwo sanguinea bloom using a 100-L indoor microcosm and metagenomic next-generation sequencing. We found that the bacterial community was classified into three groups at 54% similarity. Group I was associated with "during the A. sanguinea bloom stage" and mainly consisted of Alphaproteobacteria, Flavobacteriia and Gammaproteobacteria. Meanwhile, groups II and III were associated with the "late bloom/decline stage to post-bloom stage" with decreased Flavobacteriia and Gammaproteobacteria in these stages. Upon the termination of the A. sanguinea bloom, the concentrations of inorganic nutrients (particularly PO43-, NH4+ and dissolved organic carbon) increased rapidly and then decreased. From the network analysis, we found that the A. sanguinea node is associated with certain bacteria. After the bloom, the specific increases in NH4+ and PO43- nodes are associated with other bacterial taxa. The changes in the functional groups of the bacterial community from chemoheterotrophy to nitrogen association metabolisms were consistent with the environmental impacts during and after A. sanguinea bloom. Consequently, certain bacterial communities and the environments dynamically changed during and after harmful algal blooms and a rapid turnover within the bacterial community and their function can respond to ecological interactions.


Subject(s)
Alphaproteobacteria/isolation & purification , Dinoflagellida/growth & development , Flavobacteriaceae/isolation & purification , Gammaproteobacteria/isolation & purification , Harmful Algal Bloom , Metagenome , Seawater/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/growth & development , Carbon/analysis , Dinoflagellida/microbiology , Flavobacteriaceae/genetics , Flavobacteriaceae/growth & development , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , High-Throughput Nucleotide Sequencing , Nitrogen/analysis , Phosphorus/analysis
5.
Sci Rep ; 10(1): 6746, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317769

ABSTRACT

With the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling. The LD slag was applied at 2 Mg ha-1 to Japonica and Indica rice cultivated under flooded conditions. The LD slag amendment significantly improved soil pH, plant photosynthesis, soil nutrient availability, and the crop yield, irrespective of cultivars. It significantly increased N, P, and Si uptake of rice straw. The slag amendment enhanced soil microbial biomass, soil enzyme activities and enriched certain bacterial taxa featuring copiotrophic lifestyles and having the potential role for ecosystem services provided to the benefit of the plant. The study evidenced that the short-term LD slag amendment in rice cropping systems is useful to improve soil physicochemical and biological status, and the crop yield.


Subject(s)
Fertilizers/analysis , Microbial Consortia/drug effects , Oryza/drug effects , Photosynthesis/drug effects , Waste Products/analysis , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Alphaproteobacteria/isolation & purification , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Carbon Cycle/physiology , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/isolation & purification , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Humans , Hydrogen-Ion Concentration , Iron/metabolism , Iron/pharmacology , Metallurgy/methods , Microbial Consortia/physiology , Nitrogen Cycle/physiology , Oryza/microbiology , Oryza/physiology , Phosphorus/physiology , Photosynthesis/physiology , Plant Roots/drug effects , Plant Roots/microbiology , Plant Roots/physiology , RNA, Ribosomal, 16S/genetics , Silicon/metabolism , Silicon/pharmacology , Soil/chemistry , Soil Microbiology , Steel/chemistry
6.
Arch Microbiol ; 202(5): 1069-1076, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32020244

ABSTRACT

An aerobic bacterium, designated strain Dysh456T, was isolated from a crude oil-contaminated soil. Cells of strain Dysh456T were rod-shaped, motile, and Gram-stain-negative. Strain Dysh456T grew at 13-48 °C and pH 4.3-7.9. Major cellular fatty acids were iso-C15:0 (42.5%), iso-C17:0 (15.3%) and summed feature 9 (iso-C17:1 ω9c/C16:0 10-methyl [13.7%]). Major respiratory quinone was ubiquinone-8. The genome of strain Dysh456T consists of a single circular chromosome of 2,874,969 bp in length with G + C content of 68.3%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain Dysh456T belongs to the family Rhodanobacteraceae, but none of the existing genera can accommodate this novel isolate. On the basis of physiological, chemotaxonomic, and genomic properties, strain Dysh456T (= NBRC 112897T = DSM 105662T) is proposed as the type strain representing a novel species of novel genus, for which the name Aerosticca soli gen. nov., sp. nov. is proposed.


Subject(s)
Petroleum/microbiology , Xanthomonadaceae/classification , Xanthomonadaceae/isolation & purification , Bacterial Typing Techniques , Base Composition/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/genetics , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Soil Microbiology , Ubiquinone/analysis , Xanthomonadaceae/genetics
7.
J Appl Microbiol ; 128(6): 1703-1719, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31950553

ABSTRACT

AIMS: Dickeya species are high consequence plant pathogenic bacteria; associated with potato disease outbreaks and subsequent economic losses worldwide. Early, accurate and reliable detection of Dickeya spp. is needed to prevent establishment and further dissemination of this pathogen. Therefore, a multiplex TaqMan qPCR was developed for sensitive detection of Dickeya spp. and specifically, Dickeya dianthicola. METHODS AND RESULTS: A signature genomic region for the genus Dickeya (mglA/mglC) and unique genomic region for D. dianthicola (alcohol dehydrogenase) were identified using a whole genome-based comparative genomics approach. The developed multiplex TaqMan qPCR was validated using extensive inclusivity and exclusivity panels, and naturally/artificially infected samples to confirm broad range detection capability and specificity. Both sensitivity and spiked assays showed a detection limit of 10 fg DNA. CONCLUSION: The developed multiplex assay is sensitive and reliable to detect Dickeya spp. and D. dianthicola with no false positives or false negatives. It was able to detect mixed infection from naturally and artificially infected plant materials. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed assay will serve as a practical tool for screening of propagative material, monitoring the presence and distribution, and quantification of target pathogens in a breeding programme. The assay also has applications in routine diagnostics, biosecurity and microbial forensics.


Subject(s)
Gammaproteobacteria/isolation & purification , Plant Diseases/microbiology , Dickeya , Gammaproteobacteria/genetics , Genome, Bacterial/genetics , Genomics , Limit of Detection , Multiplex Polymerase Chain Reaction , Solanum tuberosum/microbiology , Species Specificity
8.
Proc Natl Acad Sci U S A ; 116(51): 25909-25916, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776248

ABSTRACT

Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify that Bifidobacterium and Gilliamella are the principal degraders of hemicellulose and pectin. Both Bifidobacterium and Gilliamella show extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. In Bifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as in Bacteroides from the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassella and 2 Lactobacillus clusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.


Subject(s)
Bees/microbiology , Bees/physiology , Digestion , Gastrointestinal Microbiome/physiology , Plants/chemistry , Polysaccharides/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bifidobacterium/genetics , Bifidobacterium/metabolism , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Gene Expression Regulation , Genome, Bacterial , Lactobacillus/genetics , Metagenome , Microbiota , Neisseriaceae/genetics , Pollen/chemistry
9.
PLoS One ; 14(6): e0218868, 2019.
Article in English | MEDLINE | ID: mdl-31233546

ABSTRACT

Destructive maceration, a wide host range, and longevity in non-plant substrates has established Dickeya dianthicola (blackleg of potato) as a significant threat to potato industries worldwide. To protect these businesses, a specific and sensitive point-of-care D. dianthicola detection tool is necessary. We have developed a loop-mediated isothermal amplification (LAMP) assay for specific, sensitive, and rapid detection of D. dianthicola, which can be streamlined for point-of-care use. The developed LAMP assay targets a unique gene, alcohol dehydrogenase, of D. dianthicola. Assay specificity was assessed using strains present in inclusivity (16 D. dianthicola strains) and exclusivity panels (56 closely related, potato pathogenic, and other bacterial strains). Amplification with strains of inclusivity panel occurred, and cross-reactivity with non-target DNA was not observed. The limit of detection (LOD) was 10 CFU/ml when dilutions were made before isolating the genomic DNA; however, LOD was determined as 1 pg using 10-fold serially diluted D. dianthicola genomic DNA. Similar LOD of 1 pg was observed when serially diluted target genomic DNA was mixed with host genomic DNA. LOD (1 pg) was also calculated with 10-fold serially diluted synthetic DNA fragments containing primer target sites. Naturally and artificially inoculated plant samples were used for field adaptability tests with the field-deployable Optigene Plant Material Lysis Kit and a heat block (65°C); the results were obtained within 20 minutes. Despite the lack of method precision, no false positives or false negatives were observed. Therefore, with prepared reactions and a steady heat source, this assay can be used for rapid point-of-care detection, which is imperative for quarantine, eradication, disease management, and border protection.


Subject(s)
Alcohol Dehydrogenase/genetics , Gammaproteobacteria/genetics , Nucleic Acid Amplification Techniques/methods , Solanum tuberosum/microbiology , Dickeya , Gammaproteobacteria/isolation & purification , Limit of Detection , Plant Diseases/microbiology , Plant Proteins/genetics , Sensitivity and Specificity , Time Factors
10.
ISME J ; 13(8): 2129-2134, 2019 08.
Article in English | MEDLINE | ID: mdl-30952995

ABSTRACT

Modeling crude-oil biodegradation in sediments remains a challenge due in part to the lack of appropriate model organisms. Here we report the metagenome-guided isolation of a novel organism that represents a phylogenetically narrow (>97% 16S rRNA gene identity) group of previously uncharacterized, crude-oil degraders. Analysis of available sequence data showed that these organisms are highly abundant in oiled sediments of coastal marine ecosystems across the world, often comprising ~30% of the total community, and virtually absent in pristine sediments or seawater. The isolate genome encodes functional nitrogen fixation and hydrocarbon degradation genes together with putative genes for biosurfactant production that apparently facilitate growth in the typically nitrogen-limited, oiled environment. Comparisons to available genomes revealed that this isolate represents a novel genus within the Gammaproteobacteria, for which we propose the provisional name "Candidatus Macondimonas diazotrophica" gen. nov., sp. nov. "Ca. M. diazotrophica" appears to play a key ecological role in the response to oil spills around the globe and could be a promising model organism for studying ecophysiological responses to oil spills.


Subject(s)
Gammaproteobacteria/genetics , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Metagenome , Petroleum/metabolism , Biodegradation, Environmental , DNA, Bacterial/genetics , Ecosystem , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Geologic Sediments/chemistry , Nitrogen Fixation , Petroleum Pollution , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater
11.
Mol Biol Rep ; 46(2): 1563-1575, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30879274

ABSTRACT

Colonization resistance is an important attribute for bacterial interactions with hosts, but the mechanism is still not completely clear. In this study, we found that Phytobacter sp. SCO41T can effectively inhibit the in vivo colonization of Bacillus nematocida B16 in Caenorhabditis elegans, and we revealed the colonization resistance mechanism. Three strains of colonization-resistant bacteria, SCO41T, BX15, and BC7, were isolated from the intestines of the free-living nematode C. elegans derived from rotten fruit and soil. The primary characteristics and genome map of one of the three isolates was investigated to explore the underlying mechanism of colonization resistance in C. elegans. In addition, we performed exogenous iron supplementation and gene cluster knockout experiments to validate the sequencing results. The results showed that relationship was close among the three strains, which was identified as belonging to the genus Phytobacter. The type strain is SCO41T (= CICC 24103T = KCTC 52362T). Whole genome analysis showed that csgA, csgB, csgC, csgE, csgF, and csgG were involved in the curli adhesive process and that fepA, fepB, fepC, fepD, and fepG played important roles in SCO41T against the colonization of B. nematocida B16 in C. elegans by competing for iron. Exogenous iron supplementation showed that exogenous iron can increase the colonization of B. nematocida B16, which was additionally confirmed by a deletion mutant strain. The csg gene family contributes to the colonization of SCO41T in C. elegans. Curli potentially contribute to the colonization of SCO41T in C. elegans, and enterobactin has a key role in SCO41T to resist the colonization of B. nematocida B16 by competing for iron.


Subject(s)
Caenorhabditis elegans/microbiology , Gammaproteobacteria/genetics , Animals , Bacillus/pathogenicity , Caenorhabditis elegans/genetics , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/pathogenicity , Gastrointestinal Microbiome/physiology , Gene Knockout Techniques , Intestines/microbiology , Virulence , Whole Genome Sequencing/methods
12.
Sci Total Environ ; 653: 872-885, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759613

ABSTRACT

Petroleum reservoir is an unusual subsurface biosphere, where indigenous microbes lived and evolved for million years. However, continual water injection changed the situation by introduction of new electron acceptors, donors and exogenous microbes. In this study, 16S-rRNA gene sequencing, comparative metagenomics and genomic bins reconstruction were employed to investigate the microbial community and metabolic potential in three typical water-flooded blocks of the Shen84 oil reservoir in Liaohe oil field, China. The results showed significant difference of microbial community compositions and metabolic characteristics existed between the injected water and the produced water/oil mixtures; however, there was considerable uniformity between the produced samples in different blocks. Microbial communities in the produced fluids were dominated by exogenous facultative microbes such as Pseudomonas and Thauera members from Proteobacteria phylum. Metabolic potentials for O2-dependent hydrocarbon degradation, dissimilarly nitrate reduction, and thiosulfate­sulfur oxidation were much more abundant, whereas genes involved in dissimilatory sulfate reduction, anaerobic hydrocarbon degradation and methanogenesis were less abundant in the oil reservoir. Statistical analysis indicated the water composition had an obvious influence on microbial community composition and metabolic potential. The water-flooding process accompanied with introduction of nitrate or nitrite, and dissolved oxygen promoted the alteration of microbiome in oil reservoir from slow-growing anaerobic indigenous microbes (such as Thermotoga, Clostridia, and Syntrophobacter) to fast-growing opportunists as Beta- and Gama- Proteobacteria. The findings of this study shed light on the microbial ecology change in water flooded petroleum reservoir.


Subject(s)
Betaproteobacteria/metabolism , Gammaproteobacteria/metabolism , Microbiota , Oil and Gas Fields/microbiology , Petroleum/metabolism , Water Resources , Betaproteobacteria/genetics , China , Environmental Monitoring , Gammaproteobacteria/genetics , Metagenomics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S , Water Microbiology , Water Resources/supply & distribution
13.
PLoS One ; 14(1): e0198056, 2019.
Article in English | MEDLINE | ID: mdl-30645606

ABSTRACT

Jellyfish are a prominent component of the plankton community. They frequently form conspicuous blooms which may interfere with different human enterprises. Among the aspects that remain understudied are jellyfish associations with microorganisms having potentially important implications for organic matter cycling. To the best of our knowledge, this study is the first to investigate the bacterial community associated with live moon jellyfish (Aurelia solida, Scyohozoa) in the Adriatic Sea. Using 16S rRNA clone libraries and culture-based methods, we have analyzed the bacterial community composition of different body parts: the exumbrella surface, oral arms, and gastric cavity, and investigated possible differences in medusa-associated bacterial community structure at the time of the jellyfish population peak, and during the senescent phase at the end of bloom. Microbiota associated with moon jellyfish was different from ambient seawater bacterial assemblage and varied between different body parts. Betaproteobacteria (Burkholderia, Cupriavidus and Achromobacter) dominated community in the gastral cavity of medusa, while Alphaproteobacteria (Phaeobacter, Ruegeria) and Gammaproteobacteria (Stenotrophomonas, Alteromonas, Pseudoalteromonas and Vibrio) prevailed on 'outer' body parts. Bacterial community structure changed during senescent phase, at the end of the jellyfish bloom, showing an increased abundance of Gammaproteobacteria, exclusively Vibrio. The results of cultured bacterial isolates showed the dominance of Gammaproeteobacteria, especially Vibrio and Pseudoalteromonas in all body parts. Our results suggest that jellyfish associated bacterial community might have an important role for the host, and that anthropogenic pollution in the Gulf of Trieste might affect their community structure.


Subject(s)
Gammaproteobacteria , Microbial Consortia/physiology , Rhodobacteraceae , Scyphozoa/microbiology , Animals , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Oceans and Seas , Rhodobacteraceae/classification , Rhodobacteraceae/genetics , Rhodobacteraceae/isolation & purification
14.
Arch Microbiol ; 200(10): 1457-1463, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30116848

ABSTRACT

A novel bacterium, designated DCY112T, was isolated from the rhizospheric soil of a ginseng-cultivated field in Gochang-gun, Republic of Korea. Based on 16S rRNA gene sequence analysis, this isolate was assigned to the genus Rhodanobacter and is closely related to Rhodanobacter soli DCY45T (98.0%) and R. umsongensis GR24-2T (98.0%). Strain DCY112T is Gram-negative, catalase- and oxidase-positive, aerobic, non-motile, rod-shaped, and produces yellow-pigmented colonies on R2A medium. Q-8 was the predominant respiratory quinone. The major cellular fatty acids were iso-C15:0, iso-C17:0, and summed feature 9 (iso-C17:1 ω9c and/or 10-methyl-C16:0). The major polar lipids were phosphatidylglycerol (PG), phosphatidylethanolamine (PE), an unknown amino lipid (AL1), and an unidentified polar lipid (L3). The genomic DNA G + C content was 65.2 mol%. DNA-DNA homology values between strain DCY112T and related strains were lower than 55%. The low DNA relatedness data in combination with phenotypic and genotypic tests indicated that strain DCY112T could not be assigned to a recognized species. Strain DCY112T showed antagonistic activity against the fungal pathogen Fusarium solani (KACC 44891T), which causes ginseng root rot. The results of this study support that strain DCY112T is a novel species belonging to the genus Rhodanobacter, for which the name Rhodanobacter ginsengiterrae is proposed. The type strain is DCY112T (= KCTC 62018T = JCM 32167T).


Subject(s)
Antibiosis , Fusarium/physiology , Gammaproteobacteria/physiology , Soil Microbiology , Base Composition , DNA, Bacterial/chemistry , Fatty Acids/analysis , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Panax , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizosphere
15.
J Microbiol Methods ; 152: 73-79, 2018 09.
Article in English | MEDLINE | ID: mdl-30063956

ABSTRACT

Some studies have described the isolation and 16S rRNA gene sequence-based identification of hydrocarbon-degrading bacteria living associated with marine eukaryotic phytoplankton, and thus far the direct visual observation of these bacteria on micro-algal cell surfaces ('phycosphere') has not yet been reported. Here, we developed two new 16S rRNA-targeted oligonucleotide probes, PCY223 and ALGAR209, to respectively detect and enumerate the obligate hydrocarbonoclastic bacteria Polycyclovorans algicola and Algiphilus aromaticivorans by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). To enhance the hybridization specificity with the ALGAR209 probe, a competitor probe was developed. These probes were tested and optimized using pure cultures, and then used in enrichment experiments with laboratory cultures of micro-algae exposed to phenanthrene, and with coastal water enriched with crude oil. Microscopic analysis revealed these bacteria are found in culture with the micro-algal cells, some of which were found attached to algal cells, and whose abundance increased after phenanthrene or crude oil enrichment. These new probes are a valuable tool for identifying and studying the ecology of P. algicola and A. aromaticivorans in laboratory and field samples of micro-algae, as well as opening new fields of research that could harness their ability to enhance the bioremediation of contaminated sites.


Subject(s)
Bacteria/genetics , Coculture Techniques/methods , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Hydrocarbons/metabolism , In Situ Hybridization, Fluorescence/methods , Microalgae/metabolism , Biodegradation, Environmental , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Microalgae/growth & development , Oligonucleotide Probes , Petroleum/metabolism , Phenanthrenes/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity
16.
Environ Sci Pollut Res Int ; 25(22): 21801-21810, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29796882

ABSTRACT

The retention of aquatic plant debris in freshwater systems favors a reduction in soluble reactive phosphorus (P) in overlying water through microbe-mediated mechanisms in sediment. For a more complete view of the changes in sediment microbial structure and functioning when receiving plant debris, the enzyme activities and microbial community structure in sediments incubated with or without plant debris were investigated. Significantly higher fluorescein diacetate (FDA) hydrolysis, alkaline phosphatase, polyphenol oxidase, cellulase, ß-glucosidase, and dehydrogenase activities were observed with plant debris treatment. High-throughput pyrosequencing showed that the number of total operational taxonomic units (OTUs) of bacteria estimated by using the Chao1 analysis was 2064 (in the control) and 1821 (with the plant debris treatment). The Shannon index, functional organization, and Venn diagrams revealed that the enriched OTUs in plant debris-treated community were less diversified than those in the control sample. The prominent bacterial phyla Firmicutes and Bacteroidetes were more diverse after plant debris addition. At the class level, the relative abundance of Alphaproteobacteria increased by 114% when plant debris was added, whereas the relative abundances of Beta-, Delta-, and Gammaproteobacteria decreased by 42, 78, and 86%, respectively. Azospirillum and Dechloromonas, the dominant phylogenetic groups at the genus level, increased with plant debris addition. Our study showed the importance of the above microbial genera in plant debris-mediated P retention in sediment.


Subject(s)
Enzymes/metabolism , Geologic Sediments/microbiology , Lakes/microbiology , Microbiota , Plants , Aquatic Organisms , Bacteria/genetics , Bacteroidetes/genetics , China , Gammaproteobacteria/genetics , Hydrobiology , Lakes/analysis , Phosphorus/analysis , Phylogeny , RNA, Ribosomal, 16S
17.
Environ Microbiol ; 19(6): 2320-2333, 2017 06.
Article in English | MEDLINE | ID: mdl-28276126

ABSTRACT

Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multi-modular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments.


Subject(s)
Adaptation, Physiological/genetics , Gammaproteobacteria/metabolism , Pectins/metabolism , Polysaccharide-Lyases/genetics , Amino Acid Sequence , Gammaproteobacteria/genetics , Gene Transfer, Horizontal/genetics , Interspersed Repetitive Sequences/genetics , Proteomics
18.
Res Microbiol ; 168(3): 293-305, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27884784

ABSTRACT

In recent years, there has been increasing interest in plant microbiota; however, despite medicinal plant relevance, very little is known about their highly complex endophytic communities. In this work, we report on the genomic and phenotypic characterization of the antimicrobial compound producer Rheinheimera sp. EpRS3, a bacterial strain isolated from the rhizospheric soil of the medicinal plant Echinacea purpurea. In particular, EpRS3 is able to inhibit growth of different bacterial pathogens (Bcc, Acinetobacter baumannii, and Klebsiella pneumoniae) which might be related to the presence of gene clusters involved in the biosynthesis of different types of secondary metabolites. The outcomes presented in this work highlight the fact that the strain possesses huge biotechnological potential; indeed, it also shows antimicrobial effects upon well-described multidrug-resistant (MDR) human pathogens, and it affects plant root elongation and morphology, mimicking indole acetic acid (IAA) action.


Subject(s)
Antibiosis , Echinacea/microbiology , Gammaproteobacteria/genetics , Gammaproteobacteria/physiology , Rhizosphere , Acinetobacter baumannii/growth & development , Anti-Bacterial Agents/pharmacology , Biotechnology , Burkholderia cepacia/growth & development , Endophytes/isolation & purification , Fosfomycin/pharmacology , Gammaproteobacteria/chemistry , Gammaproteobacteria/isolation & purification , Genomics , Indoleacetic Acids/metabolism , Klebsiella pneumoniae/growth & development , Phenotype , Plant Roots/microbiology , Plants, Medicinal/microbiology
19.
Bioresour Technol ; 220: 55-61, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27566512

ABSTRACT

Acid stimulated accumulation of insoluble phosphorus within microbial cells is highly beneficial to wastewater treatment but remains largely unexplored. Using single cell analyses and next generation sequencing, the response of active polyphosphate accumulating microbial communities under conditions of enhanced phosphorus uptake under both acidic and aerobic conditions was characterised. Phosphorus accumulation activities were highest under acidic conditions (pH 5.5>8.5), where a significant positive effect on bioaccumulation was observed at pH 5.5 when compared to pH 8.5. In contrast to the Betaproteobacteria and Actinobacteria dominated enhanced biological phosphorus removal process, the functionally active polyP accumulators at pH 5.5 belonged to the Gammaproteobacteria, with key accumulators identified as members of the families Aeromonadaceae and Enterobacteriaceae. This study demonstrated a significant enrichment of key polyphosphate kinase and exopolyphosphatase genes within the community metagenome after acidification, concomitant with an increase in P accumulation kinetics.


Subject(s)
Microbial Consortia/physiology , Phylogeny , Polyphosphates/metabolism , Wastewater/chemistry , Wastewater/microbiology , Betaproteobacteria/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Kinetics , Microbial Consortia/genetics , Phosphorus/metabolism , Ponds , Western Australia
20.
Physiol Plant ; 157(4): 403-13, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27178359

ABSTRACT

We have developed teabags packed with dehydrated plant powders, without any supplements, for preparation of plant infusions necessary to develop media for culturing rhizobacteria. These bacteria are efficiently cultivated on such plant teabag culture media, with better progressive in situ recoverability compared to standard chemically synthetic culture media. Combining various plant-based culture media and incubation conditions enabled us to resolve unique denaturing gradient gel electrophoresis (DGGE) bands that were not resolved by tested standard culture media. Based on polymerase chain reaction PCR-DGGE of 16S rDNA fingerprints and sequencing, the plant teabag culture media supported higher diversity and significant increases in the richness of endo-rhizobacteria, namely Gammaproteobacteria (Enterobacteriaceae) and predominantly Alphaproteobacteria (Rhizobiaceae). This culminated in greater retrieval of the rhizobacteria taxa associated with the plant roots. We conclude that the plant teabag culture medium by itself, without any nutritional supplements, is sufficient and efficient for recovering and mirroring the complex and diverse communities of rhizobacteria. Our message to fellow microbial ecologists is: simply dehydrate your plant canopy, teabag it and soak it to prepare your culture media, with no need for any additional supplementary nutrients.


Subject(s)
Alphaproteobacteria/isolation & purification , Culture Media , Gammaproteobacteria/isolation & purification , Paspalum , Trifolium , Zea mays/microbiology , Alphaproteobacteria/genetics , Alphaproteobacteria/growth & development , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/growth & development , Enterobacteriaceae/isolation & purification , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Plant Preparations , Plant Roots/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/growth & development , Rhizobiaceae/isolation & purification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL