Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Phytomedicine ; 129: 155617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614041

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is the leading cause of global death, which manifests as arterial lipid stack and plaque formation. Geniposide is an iridoid glycoside extract from Gardenia jasminoides J.Ellis that ameliorates AS by mediating autophagy. However, how Geniposide regulates autophagy and treats AS remains unclear. PURPOSE: To evaluate the efficacy and mechanism of Geniposide in treating AS. STUDY DESIGN AND METHODS: Geniposide was administered to high-fat diet-fed ApoE-/- mice and oxidized low-density lipoprotein-incubated primary vascular smooth muscle cells (VSMCs). AS was evaluated with arterial lipid stack, plaque progression, and collagen loss in the artery. Foam cell formation was detected by lipid accumulation, inflammation, apoptosis, and the expression of foam cell markers. The mechanism of Geniposide in treating AS was assessed using network pharmacology. Lipophagy was measured by lysosomal activity, expression of lipophagy markers, and the co-localization of lipids and lipophagy markers. The effects of lipophagy were blocked using Chloroquine. The role of PARP1 was assessed by Olaparib (a PARP1 inhibitor) intervention and PARP1 overexpression. RESULTS: In vivo, Geniposide reversed high-fat diet-induced hyperlipidemia, plaque progression, and inflammation. In vitro, Geniposide inhibited VSMC-derived foam cell formation by suppressing lipid stack, apoptosis, and the expressions of foam cell markers. Network pharmacological analysis and in vitro validation suggested that Geniposide treated AS by enhancing lipophagy via suppressing the PI3K/AKT signaling pathway. The benefits of Geniposide in alleviating AS were offset by Chloroquine in vivo and in vitro. Inhibiting PARP1 using Olaparib promoted lipophagy and alleviated AS progression, while PARP1 overexpression exacerbated foam cell formation and lipophagy blockage. The above effects of PARP1 were weakened by PI3K inhibitor LY294002. PARP1 also inhibited the combination of the ABCG1 and PLIN1. CONCLUSION: Geniposide alleviated AS by restoring PARP1/PI3K/AKT signaling pathway-suppressed lipophagy. This study is the first to present the lipophagy-inducing effect of Geniposide and the binding of ABCG1 and PLIN1 inhibited by PARP1.


Subject(s)
Atherosclerosis , Diet, High-Fat , Iridoids , Phosphatidylinositol 3-Kinases , Poly (ADP-Ribose) Polymerase-1 , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Iridoids/pharmacology , Atherosclerosis/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Male , Mice , Diet, High-Fat/adverse effects , Autophagy/drug effects , Gardenia/chemistry , Muscle, Smooth, Vascular/drug effects , Mice, Inbred C57BL , Foam Cells/drug effects , Foam Cells/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Network Pharmacology , Lipoproteins, LDL
2.
Ultrason Sonochem ; 101: 106658, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913593

ABSTRACT

The simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) was performed by integrating natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (UAE). Among the eight kinds of NADES screened, choline chloride-1,2-propylene glycol was the most suitable extractant. The probe-type ultrasound-assisted NADES extraction system (pr-UAE-NADES) demonstrated higher extraction efficiency compared with plate-type ultrasound-assisted NADES extraction system (pl-UAE-NADES). Orthogonal experimental design and a modified multi-index synthetic weighted scoring method were adopted to optimize pr-UAE-NADES extraction process. The optimal extraction conditions that had a maximum synthetic weighted score of 29.46 were determined to be 25 °C for extraction temperature, 600 W for ultrasonic power, 20 min for extraction time, and 25% (w/w) for water content in NADES, leading to the maximum yields (7.39 ± 0.20 mg/g and 57.99 ± 0.91 mg/g, respectively) of crocin and geniposide. Thirty-three compounds including iridoids, carotenoids, phenolic acids, flavonoids, and triterpenes in the NADES extract were identified by LC-Q-TOF-MS2 coupled with a feature-based molecular networking workflow. The kinetics evaluation of the conjugated dienes generation on Cu2+-induced low density lipoprotein (LDL) oxidation via the four-parameter logistic regression model showed that crocin increased the lag time of LDL oxidation in a concentration-dependent manner (15 µg/mL, 30 µg/mL, 45 µg/mL) by 12.66%, 35.44%, and 73.42%, respectively. The quantitative determination for fluorescence properties alteration of the apolipoprotein B-100 exhibited that crocin effectively inhibited the fluorescence quenching of tryptophan residues and the modification of lysine residues caused by reactive aldehydes and malondialdehydes. The pr-UAE-NADES showed significant efficiency toward the simultaneous extraction of crocin and geniposide from gardenia fruits. And this study demonstrates the potential utility of gardenia fruits in developing anti-atherogenic functional food.


Subject(s)
Deep Eutectic Solvents , Gardenia , Gardenia/chemistry , Fruit/chemistry , Iridoids/pharmacology , Iridoids/analysis , Carotenoids/pharmacology , Carotenoids/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Solvents
3.
Molecules ; 28(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959800

ABSTRACT

Traditional Chinese medicine (TCM) possesses unique advantages in the management of blood glucose and lipids. However, there is still a significant gap in the exploration of its pharmacologically active components. Integrated strategies encompassing deep-learning prediction models and active validation based on absorbable ingredients can greatly improve the identification rate and screening efficiency in TCM. In this study, the affinity prediction of 11,549 compounds from the traditional Chinese medicine system's pharmacology database (TCMSP) with dipeptidyl peptidase-IV (DPP-IV) based on a deep-learning model was firstly conducted. With the results, Gardenia jasminoides Ellis (GJE), a food medicine with homologous properties, was selected as a model drug. The absorbed components of GJE were subsequently identified through in vivo intestinal perfusion and oral administration. As a result, a total of 38 prototypical absorbed components of GJE were identified. These components were analyzed to determine their absorption patterns after intestinal, hepatic, and systemic metabolism. Virtual docking and DPP-IV enzyme activity experiments were further conducted to validate the inhibitory effects and potential binding sites of the common constituents of deep learning and sequential metabolism. The results showed a significant DPP-IV inhibitory activity (IC50 53 ± 0.63 µg/mL) of the iridoid glycosides' potent fractions, which is a novel finding. Genipin 1-gentiobioside was screened as a promising new DPP-IV inhibitor in GJE. These findings highlight the potential of this innovative approach for the rapid screening of active ingredients in TCM and provide insights into the molecular mechanisms underlying the anti-diabetic activity of GJE.


Subject(s)
Deep Learning , Dipeptidyl-Peptidase IV Inhibitors , Gardenia , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Gardenia/chemistry , Iridoid Glycosides/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Dipeptidyl Peptidase 4 , Molecular Docking Simulation
4.
Article in English | MEDLINE | ID: mdl-37714051

ABSTRACT

Iridoid glycosides (geniposide (GP), genipin-1-gentiobioside (GB), etc.) and crocins (crocin Ⅰ (CR1), crocin Ⅱ(CR2), etc.) are two main bioactive components in Gardeniae Fructus (GF), which is a famous traditional Chinese medicine. Iridoid glycosides exhibit many activities and are used to manufacture gardenia blue pigment for the food industry. Crocins are rare natural water-soluble carotenoids that are often used as food colorants. A sequential macroporous resin column chromatography technology composed of HC-500B and HC-900B resins was developed to selectively separate iridoid glucosides and crocins from GF. The adsorption of GP on HC-900B resin was an exothermic process. The adsorption of CR1 on HC-500B resin was an endothermic process. The two kinds of components were completely separated by a sequential resin column. GB and GP were mainly found in product 1 (P1) with purities of 11.38% and 46.83%, respectively, while CR1 and CR2 were mainly found in product 2 (P2) with purities of 12.32% and 1.40%, respectively. The recovery yields of all the compounds were more than 80%. The above results showed that sequential resin column chromatography technology achieved high selectivity and recovery yields. GF extract, P1 and P2 could significantly inhibit the secretion of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 cells, indicating that iridoid glycosides and crocins provide a greater contribution to the anti-inflammatory activity of GF. At the same time, compared to the GF extract and P1, P2 exhibited stronger scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, indicating that crocins may provide a significant contribution to the antioxidant activity of GF.


Subject(s)
Drugs, Chinese Herbal , Gardenia , Iridoid Glucosides/analysis , Antioxidants/pharmacology , Gardenia/chemistry , Chromatography, High Pressure Liquid/methods , Carotenoids/pharmacology , Iridoid Glycosides/analysis , Drugs, Chinese Herbal/analysis , Anti-Inflammatory Agents/pharmacology
5.
Anal Methods ; 15(21): 2665-2676, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37212251

ABSTRACT

Traditional Chinese medicine (TCM) fingerprinting, which has the characteristics of holism and ambiguity, is a conventional strategy for the holistic quality control of TCMs. However, the fingerprinting of TCMs at the current stage generally adopts a single wavelength or few wavelengths, lacking the effective utilization of diode-array detector (DAD) chromatogram data. This study proposes an intelligent extraction approach of feature information from a three-dimensional DAD chromatogram to establish a novel bar-form-diagram (BFD) for integrated quality control of TCMs. The BFD was automatically established by the chromatographic and spectral information of a complex hybrid system in a DAD chromatogram. This covered the peak areas of target compositions at the optimal absorption wavelength. Taking 27 batches of Gardenia jasminoides root as samples, the BFD combined with chemometrics was applied for assessing the quality of samples completely, which improved the accuracy of origin classification using hierarchical cluster analysis, principal component analysis, soft independent modeling of class analogy and orthogonal partial least squares discriminant analysis. Single-wavelength fingerprinting and BFD used 23 and 38 common peaks as variables respectively, and the adjusted rand index results of the single wavelength and BFD were 0.559 and 0.819, respectively. Compared with the ergodic methods of each single wavelength, the peak recognition method in this study improved the operation speed from 180 s to 4 s and the computational complexity. The established BFD approach performed more abundant characteristic information of chemical components of TCMs and more accurate origin classification ability, and it had great advantages in the overall quality control of TCMs.


Subject(s)
Gardenia , Medicine, Chinese Traditional , Gardenia/chemistry , Quality Control , Chromatography/methods , Principal Component Analysis
6.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677937

ABSTRACT

The rising prevalence of non-alcoholic fatty liver disease NAFLD has strained the healthcare system. Natural products could solve this problem, so the current study focused on the impact of G. thunbergia Thunb. against this ailment. LC-ESI-MS/MS revealed the phytochemical profile of the methanol extract from Gardenia thunbergia leaves (GME). Forty-eight compounds were tentatively identified, and stigmasterol, fucosterol, ursolic acid, and rutin were isolated. The separation of the last three compounds from this plant had not before been achieved. The anti-NAFLD effect of the methanol extract of the leaves of G. thunbergia, and its major metabolite, rutin, was assessed in mice against high-fructose diet (HFD)-induced obesity. Male mice were allocated into nine groups: (1) saline (control), (2) 30% fructose (diseased group), (3) HFD, and 10 mg/kg of simvastatin. Groups 4-6 were administered HFD and rutin 50, 75, and 100 mg/kg. Groups (7-9) were administered HFD and methanol extract of leaves 100, 200, and 300 mg/kg. Methanol extract of G. thunbergia leaves at 200 mg/kg, and rutin at 75 mg/kg significantly reduced HFD-induced increments in mice weight and hepatic damage indicators (AST and ALT), steatosis, and hypertrophy. The levels of total cholesterol, LDL-C, and triglycerides in the blood decreased. In addition, the expressions of CYP2E1, JNK1, and iNOS in the diseased mice were downregulated. This study found that GME and rutin could ameliorate NAFLD in HFD-fed mice, with results comparable to simvastatin, validating G. thunbergia's hepatoprotective effects.


Subject(s)
Gardenia , Non-alcoholic Fatty Liver Disease , Plant Extracts , Animals , Mice , Diet, High-Fat/adverse effects , Gardenia/chemistry , Liver , Methanol , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Rutin/pharmacology , Tandem Mass Spectrometry , Plant Extracts/pharmacology
7.
J Pharm Biomed Anal ; 223: 115130, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36335849

ABSTRACT

Zhi-Zi-Chi decoction (ZZCD), comprising of Gardenia jasminoides Ellis (GJE) and Semen sojae preparatum (SSP), is a classical Chinese medicine formula. A novel analysis strategy was set up to obtain an evaluation of ZZCD on attenuation and synergy of compatibility. High-resolution ion trap/time-of-flight mass spectrometry (LC-IT-TOF-MS) was used for qualitative analysis. Variant ingredients were analyzed to compare the componential differences between ZZCD formula and single herbs. Based on our previous fingerprint studies that combined with chemometric methods, 13 remarkable chemical markers were selected and evaluated for quantitative determination by high performance liquid chromatography (HPLC) in three different ratios of ZZCD. 62 compounds in ZZCD, 55 compounds in GJE and 16 compounds in SSP were characterized. The compatibility of GJE and SSP may lead to the undetection of hepatotoxic components such as genipin and the emergence of protective components such as jasminoside A, which was not found in single herbs. Meanwhile, 13 selected chemical markers were successfully determined in three ratios of ZZCD. The compatibility may lead to the decrease of toxic ingredients and the increase of beneficial ingredients. By comparing the dissolution of chemical markers, iridoids in GJE and flavonoids in SSP had the best dissolution when the compatibility ratio was 1:1. This strategy would be a valuable reference for further study on the compatibility of traditional Chinese medicine formula.


Subject(s)
Drugs, Chinese Herbal , Gardenia , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Medicine, Chinese Traditional , Gardenia/chemistry , China
8.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4377-4384, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046865

ABSTRACT

The aim of this study was to compare crocins in the fruit of Gardenia jasminoides and Gardenia jasminoides var. radicans. Acchrom XCharge C_(18) column(4.6 mm×250 mm, 5 µm) was used for separation, with mobile phase of acetonitrile and 0.1% formic acid for gradient elution. The detection wavelength was set at 440 nm with a flow rate of 1.0 mL·min~(-1), and the column temperature was 30 ℃. The high performance liquid chromatography(HPLC) fingerprint of crocin in Gardenia species was established by testing 20 batches of G. jasminoides and 8 batches of G. jasminoides var. radicans samples from different sources, and UHPLC-ESI-Orbitrap-MS/MS technology and reference substances were used to predict and identify the common peaks. The results showed that 20 common chromatographic peaks from the samples were selected and the structures of 16 common peaks were predicted by mass spectrum. Four common peaks(crocin Ⅰ, Ⅱ, Ⅲ, and Ⅳ) were identified by the comparison with reference substances. The content of crocin Ⅰ, Ⅱ, Ⅲ, and Ⅳ was determined simultaneously under the same chromatographic condition, and both the system suitability and the methodological investigation results met the requirements of content determination. The relative similarity of HPLC fingerprint of 28 samples to the reference fingerprint was above 0.98. The results of cluster analysis(CA) showed that G. jasminoides and G. jasminoides var. radicans were separately grouped into one group. In the 20 batches of G. jasminoides, the content of crocin Ⅰ, Ⅱ, Ⅳ, and Ⅲ was between 3.58-9.58, 0.230-1.452, 0.014 5-0.135, and 0.301-1.12 mg·g~(-1), respectively, and the total content was between 4.12-12.25 mg·g~(-1). In the 8 batches of G. jasminoides var. radicans, the content of crocin Ⅰ, Ⅱ, Ⅳ, and Ⅲ was between 5.84-11.48, 0.308-0.898, 0.010 6-0.025 5, and 0.675-1.34 mg·g~(-1), respectively, and the total content was between 6.97-13.72 mg·g~(-1). The existing results showed that there is a certain similarity between G. jasminoides and G. jasminoides var. radicans in the composition of crocin, which needs further proved by more batches of samples. The method established in this paper provides references for the quality control of G. jasminoides, G. jasminoides var. radicans, and related products.


Subject(s)
Gardenia , Carotenoids/analysis , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Gardenia/chemistry , Tandem Mass Spectrometry
9.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4098-4109, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36046900

ABSTRACT

This study aimed to explore the correlation of the content of 15 non-crocin components of Gardeniae Fructus with its external properties(shape and color). The fruit shape was quantified according to the length/diameter measured by ruler and vernier calliper and the chromaticity values L~*, a~*, b~*, and ΔE~* of all samples were determined by chroma meter. Chromatographic separation was conducted on a Welch Ultimate XB C_(18) column(4.6 mm×250 mm, 5 µm) under gradient elution with acetonitrile solution(A) and 0.1% formic acid aqueous solution(B) as the mobile phase at a flow rate of 1.0 mL·min~(-1). The column temperature was 30 ℃ and the detection wavelength was 238 nm. The high-performance liquid chromatography(HPLC) method was established for simultaneous determination of the content of eight iridoid glycosides, six phenolic acids, and one flavonoid in 21 batches of Gardeniae Fructus samples. The correlation of the content of the 15 components with shapes and chromaticity values in each sample was analyzed by multivariate statistical analysis. According to the circulation situation and traditional experience, 21 batches of Gardeniae Fructus samples were divided into three categories, namely 14 batches of Jiangxi products(small and round, red and yellow), 4 batches of Fujian products(oval, red) and 3 batches of Shuizhizi(Gardenia jasminoides, longest, reddest). The Gardeniae Fructus samples were sequenced as Jiangxi products(1.71) < Fujian products(1.99) < Shuizhizi(2.55) in terms of the length/diameter average, Jiangxi products(17.7) < Fujian products(19.7) ≈ Shuizhizi(19.6) in terms of average value of a~*(red and green), Jiangxi products(24.4) > Fujian products(19.2) ≈ Shuizhizi(19.3) in terms of b~*(yellow and blue), and Jiangxi products(49.8) > Fujian products(48.0) ≈ Shuizhizi(47.8) in terms of L~*(brightness). The total content of the 15 components, 8 iridoid glycosides, 6 phenolic acids, and rutin in Jiangxi products was in the ranges of 65.53-99.64, 52.15-89.16, 6.10-11.83, and 0.145-1.81 mg·g~(-1), respectively. The total amount of the 15 components, 8 iridoid glycosides, 6 phenolic acids, and rutin in Fujian products was in the ranges of 69.33-94.35, 63.52-85.19, 5.39-8.41, and 0.333-0.757 mg·g~(-1), respectively. In Shuizhizi, the total content of the 15 components, 8 iridoid glycosides, 6 phenolic acids, and rutin was in the ranges of 77.35-85.98, 68.69-76.56, 7.30-9.05, and 0.368-0.697 mg·g~(-1), respectively. Pearson correlation analysis revealed that Gardeniae Fructus with leaner and longer fruit shape possessed lower content of total phenolic acids(the sum of the six phenolic acids) and rutin, but the correlation with iridoid glycosides was not high. Additionally, the higher content of total phenolic acids and rutin denoted the yellow coloration of Gardeniae Fructus, and the higher content of cryptochlorogenic acid, chlorogenic acid, and rutin meant the brighter color of Gardeniae Fructus. However, the higher content of geniposide and neochlorogenic acid and the lower content of deacetyl asperulosidic acid methyl ester led to the red coloration of Gardeniae Fructus. The results indicated that the morphological characters of Gardeniae Fructus were closely related to its chemical components. The more round shape and the yellower color reflected the higher content of phenolic acids and flavonoid, and Gardeniae Fructus with redder color had higher content of geniposide. OPLA-DA showed that the length/diameter and the content of six iridoid glycosides(gardoside, shanzhiside, gardenoside, genipin 1-gentiobioside, 6ß-hydroxy geniposide, and deacetyl asperulosidic acid methyl ester), two phenolic acids(neochlorogenic acid and cryptochlorogenic acid) and rutin could be used as markers to distinguish three types of samples. This study provided experimental data for the scientific connotation of "quality evaluation through morphological identification" of Gardeniae Fructus.


Subject(s)
Drugs, Chinese Herbal , Gardenia , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Esters/analysis , Flavonoids/analysis , Fruit/chemistry , Gardenia/chemistry , Iridoids/analysis , Rutin/analysis
10.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684307

ABSTRACT

The intrinsic chemical components and sensory characteristics of Gardeniae fructus Praeparatus (GFP) directly reflect its quality and subsequently, affect its clinical curative effect. However, there is little research on the correlation between the appearance traits and chemical compositions of GFP during heat processing. In this study, the major components of five typical processed decoction pieces of GFP were determined. With the deepening of processing, the contents of geniposidic acid and 5-HMF gradually increased, while the contents of deacetyl-asperulosidic acid methyl ester, gardenoside, and two pigments declined. Moreover, the electronic eye, electronic tongue, and electronic nose were applied to quantify GFP's sensory properties. It was found that the chroma values showed a downward trend during the processing of GFP. The results of odor showed that ammonia, alkenes, hydrogen, and aromatic compounds were the material base for aroma characteristics. Complex bitterness in GF was more obvious than that in other GFP processed products. Furthermore, one mathematical model was established to evaluate the correlation between the sensory characteristics and chemical composition of GFP during five different stages. A cluster analysis and neural network analysis contributed to recognizing the processing stage of GFP. This study provided an alternative method for the exterior and interior correlation-based quality evaluation of herbs.


Subject(s)
Drugs, Chinese Herbal , Gardenia , Drugs, Chinese Herbal/chemistry , Fruit/chemistry , Gardenia/chemistry , Hot Temperature , Taste
11.
Anal Methods ; 14(21): 2051-2062, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35546562

ABSTRACT

Chromatographic fingerprinting provides effective technical means for quality evaluation of traditional Chinese medicine. In this work, a novel multi-wavelength fusion column fingerprint was obtained by intelligent selection of chromatographic peaks from different wavelengths, which displayed the maximum peak area information under the optimal wavelength at the same retention time. Here, the Gardenia jasminoides root was selected as a sample. The multi-wavelength fusion column fingerprint graph of the Gardenia jasminoides root was constructed from five wavelengths (203 nm, 210 nm, 238 nm, 250 nm and 330 nm). The peak capacity, peak resolution, the number of common peaks and similarity were used to evaluate the performance. The 19 batches of Gardenia jasminoides root were classified into three categories with clear distinction between origin categories based on the multi-wavelength fusion column fingerprint combined with chemometrics, including hierarchical cluster analysis and principal component analysis. Nine markers of variation that led to differences between batches were screened by orthogonal partial least squares discriminant analysis. This study demonstrated that the classification model based on the multi-wavelength fusion column fingerprint was better than that on a single-wavelength, and the fusion fingerprint was suitable for the identification and quality control of traditional Chinese medicine with more comprehensive chemical composition information and more accurate prediction ability.


Subject(s)
Drugs, Chinese Herbal , Gardenia , Chemometrics , Chromatography, High Pressure Liquid/methods , Gardenia/chemistry , Quality Control
12.
J Nat Med ; 76(4): 774-795, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35639238

ABSTRACT

The fruits of Gardenia jasminoides Ellis are an important herb medicine in Traditional Chinese Medicine (TCM) and have been used for thousands of years for clearing away heat and toxic materials. It mainly contains iridoids, pigments, organic acids, and flavonoids. Although belonging to one species, it has two kinds of cultivars and one variety widely distributed and sold. This study aims to develop an integrated and efficient analytical strategy for comprehensive profiling of phytochemicals and clarify the differences in all three populations. Based on reversed-phase ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS), an optimized analytical approach for comprehensive profiling of phytochemicals in the fruits of G. jasminoides was established in negative ionization mode. The holistic metabolites profiling was carried out on UHPLC/ESI-QTOFMS and data analysis program Progenesis QI, and a total of 80 metabolites were obtained and interpreted by chromatographic and tandem mass spectral data. The interpretation of metabolites comprises iridoids, pigments, organic acids, and flavonoids. Principal component analysis and partial least square-discriminant analysis were performed, and 19 main different components could be obtained to distinguish the three populations. Combined with non-targeted and targeted data analysis, the integrated strategy developed in this study was feasibly applied to discern differences in the profiles of the phytochemicals accumulating in the fruits of three populations of G. jasminoides.


Subject(s)
Gardenia , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Coloring Agents/analysis , Flavonoids/analysis , Fruit/chemistry , Gardenia/chemistry , Iridoids/chemistry , Phytochemicals/analysis , Spectrometry, Mass, Electrospray Ionization/methods
13.
Biomed Pharmacother ; 149: 112899, 2022 May.
Article in English | MEDLINE | ID: mdl-35366531

ABSTRACT

PURPOSE: Radiation-induced lung injury limits the implementation of radiotherapy plans and severely impairs the quality of life. Crocetin has the capability to protect against radiation. This study is aimed at estimate the preventive effect and mechanism of crocetin on acute radiation induced lung injury. METHODS AND MATERIALS: In this study, we offer a strategy for radiation-induced lung injury by using crocetin, an extract of gardenia fruit. Histopathology, transcriptomics, flow cytometry, and other methods have served to examine the effect and mechanism of crocetin on acute radiation-induced lung injury. RESULTS: Crocetin effectively alleviates radiation-induced alveolar wall thickening and alveolar destruction. The number of normal alveoli and lung structure of mice is well protected by the prevention of crocetin. It is found that crocetin inhibits necroptosis to achieve effective radioprotection by down regulating the Tnfrsf10b gene in vitro. CONCLUSION: Crocetin inhibits necroptosis through transcriptional regulation of the Tnfrsf10b gene, thereby preventing radiation-induced lung injury. This work may provide a new strategy for the prevention of lung radiation injury by the extract from Chinese herbal medicine.


Subject(s)
Acute Lung Injury , Gardenia , Radiation Injuries , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Animals , Carotenoids , Fruit/chemistry , Gardenia/chemistry , Lung , Mice , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quality of Life , Radiation Injuries/drug therapy , Radiation Injuries/prevention & control , Vitamin A/analogs & derivatives
14.
J Ethnopharmacol ; 289: 114984, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35066066

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Gardeniae (FG) is the dried fruit of Gardenia jasminoides Ellis (GjE), which belongs to the family Rubiaceae. FG has a long history of use as a herb, and was originally recorded in Sheng Nong's herbal classic. FG has also been widely used as both medicine and food. AIM OF STUDY: This review aimed to provide a systematic and comprehensive analysis of the current research progress of FG in terms of ethnopharmacology, phytochemistry, pharmacology and toxicity, to provide new insights and extensive field of view for subsequent studies. METHODS: Scientific databases, including CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures) were searched to gather data about FG and its main active ingredients such as geniposide and genipin (only regarding toxicity). RESULTS: Many chemical constituents have been identified from the fruit of GjE, including iridoids, terpenoids, flavonoids, organic acids, volatile oils and others. The constituents of different parts of FG and processed FG are different from those of whole FG. FG extract and its main active constituents have been reported to have pharmacological properties such as hepatoprotective, choleretic, anti-inflammatory, antioxidant, neuroprotective, anti-diabetic, anti-apoptotic and antitumor activities. However, an increasing number of studies have shown that FG induces multiple organ injury, especially causing hepatotoxicity and nephrotoxicity, which could increase the risk during clinical use. The available literature shows that geniposide, a major active component of FG and a critical marker for its quality, is associated with the pharmacology and toxicity of FG. CONCLUSION: Although a large number of studies examining FG have been published, issues remain. In the aspect of FG's pharmacology, the traditional efficacy and modern pharmacological effects of FG should be combined, which to broadens clinical application prospects. In addition, few studies have assessed the toxicity of FG. Toxicity assessment of FG should tackle various aspects, including compatibility, processing and the symptom-based prescription theory, in addition to over-dosage or long-term use, for a reasonable clinical use.


Subject(s)
Gardenia/chemistry , Plant Extracts/pharmacology , Animals , Ethnopharmacology , Fruit , Humans , Medicine, Traditional/methods , Phytochemicals/pharmacology , Plant Extracts/toxicity
15.
Biomed Pharmacother ; 145: 112344, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34847477

ABSTRACT

Atopic dermatitis (AD) leads to skin barrier abnormalities and immune dysfunction. As the topical steroids commonly used to treat AD have side effects from long-term use, research into safer treatments for AD is greatly needed. The medicinal herb Gardenia jasminoides improves AD symptoms via skin barrier activation and T helper 2-mediated immune response regulation. Crocin, a bioactive component within the extract, is dispensible for its restorative effects. As such, this work explored the effects of Gardenia jasminoides extract without crocin (GjexCr) on AD symptoms in a DfE-induced AD model in 6-week-old male NC/Nga mice (25.0 ± 0.25 g, n = 10 each, 6 groups). Using histological and behavioral assays, the effects of GjexCr on dermatitis scores, scratching behavior, skin barrier activation, and serum levels of IgE, chemokines, and cytokines were analyzed. In addition, the major components from the GjexCr extract were analyzed by high-performance liquid chromatography and validated in the AD model. GjexCr reduced ear thickness due to hyperkeratosis, dermal thickening, and scratching behavior and restored dermatitis scores in AD-induced mice. GjexCr administration also decreased inflammation and mast cell infiltration, as well as modulated skin barrier recovery by upregulating the production of epidermal proteins. Moreover, GjexCr administration attenuated imbalanced immune responses. Furthermore, geniposide, the main component of GjexCr, improved AD symptoms in DfE-treated NC/Nga mice. Thus, GjexCr could be a suitable treatment for protecting the skin barrier in AD-like skin lesions and a potential therapy for AD.


Subject(s)
Dermatitis, Atopic/drug therapy , Gardenia/chemistry , Plant Extracts/pharmacology , Th2 Cells/immunology , Animals , Chromatography, High Pressure Liquid , Dermatitis, Atopic/immunology , Dermatophagoides farinae , Disease Models, Animal , Immunoglobulin E/immunology , Male , Mice , Plant Extracts/chemistry
16.
Nat Prod Res ; 36(1): 186-192, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32594764

ABSTRACT

Two new iridoid glycosides, 2'-O-cis-coumaroylgardoside (1), and 6'-O-caffeoylioxide (2), were isolated from the fruit of Gardenia jasminoides. The structures of these compounds were elucidated based on spectroscopic analysis (HR-ESI-MS, NMR) and chemical methods. The anti-inflammatory activities of the isolates were evaluated by measuring their inhibitory effects on PGE2 production in LPS stimulated RAW 264.7 macrophages, compounds 1 and 2 could reduce PGE2 levels in LPS-activated RAW 264.7 macrophages with IC50 values of 121.4 and 83.38 µM, respectively.


Subject(s)
Anti-Inflammatory Agents , Gardenia , Iridoid Glycosides , Animals , Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Gardenia/chemistry , Iridoid Glycosides/pharmacology , Mice , Plant Extracts/pharmacology , RAW 264.7 Cells
17.
Oxid Med Cell Longev ; 2021: 8031319, 2021.
Article in English | MEDLINE | ID: mdl-34917234

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease, closely related to oxidative stress and inflammatory responses, caused by reduced excretion or increased production of uric acid. However, the existing therapeutic drugs have many side effects. It is imperative to find a drug or an alternative medicine to effectively control HUA. It was reported that Gardenia jasminoides and Poria cocos could reduce the level of uric acid in hyperuricemic rats through the inhibition of xanthine oxidase (XOD) activity. But there were few studies on its mechanism. Therefore, the effective ingredients in G. jasminoides and P. cocoa extracts (GPE), the active target sites, and the further potential mechanisms were studied by LC-/MS/MS, molecular docking, and network pharmacology, combined with the validation of animal experiments. These results proved that GPE could significantly improve HUA induced by potassium oxazine with the characteristics of multicomponent, multitarget, and multichannel overall regulation. In general, GPE could reduce the level of uric acid and alleviate liver and kidney injury caused by inflammatory response and oxidative stress. The mechanism might be related to the TNF-α and IL-7 signaling pathway.


Subject(s)
Gardenia/chemistry , Hyperuricemia/drug therapy , Inflammation/drug therapy , Network Pharmacology/methods , Oxidative Stress , Plant Extracts/pharmacology , Wolfiporia/chemistry , Animals , Hyperuricemia/immunology , Hyperuricemia/pathology , Inflammation/immunology , Inflammation/pathology , Kidney/drug effects , Kidney/injuries , Liver/drug effects , Liver/injuries , Male , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Uric Acid/metabolism
18.
Brain Res Bull ; 174: 281-295, 2021 09.
Article in English | MEDLINE | ID: mdl-34216649

ABSTRACT

Rehmannia glutinosa, the fresh or dried root of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & Mey., and Gardenia, the fruit of Gardenia jasminoides Ellis from Rubiaceae, both are famous traditional Chinese medicines that have been traditionally used in China. Catalpol and geniposide, as two kinds of iridoid glycosides with high activities, are the main bioactive components in Rehmannia glutinosa and Gardenia jasminoides Ellis, respectively. Over the past few decades, catalpol and geniposide have been widely studied for their therapeutic effects. The preclinical experiments demonstrated that they possessed significant neuroprotective activities against Alzheimer's disease, Parkinson's disease, stroke, and depression, etc. In this paper, the pharmacological effects and mechanisms of catalpol and geniposide on Alzheimer's disease and Parkinson's disease from 2005 to now were systematically summarized and comprehensively analyzed. At the same time, the pharmacokinetic characteristics of the analyzed compounds were also described, hoping to provide some enlightenment for the design, research, and development of iridoid glycosides.


Subject(s)
Alzheimer Disease/drug therapy , Antiparkinson Agents/therapeutic use , Iridoid Glucosides/therapeutic use , Iridoids/therapeutic use , Parkinson Disease/drug therapy , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gardenia/chemistry , Humans , Iridoid Glucosides/pharmacology , Iridoids/pharmacology , Medicine, Chinese Traditional , Rehmannia/chemistry
19.
Fitoterapia ; 153: 104969, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147548

ABSTRACT

Crocins, as a kind of water-soluble carotenoid pigment, are a series of ester compounds formed from crocetin and gentibiose or glucose, and mainly distributed among Crocus sativus L. (CSL), Gardenia jasminoides Ellis. (GJE). Crocins exhibit a wide range of pharmacological effects on neurodegeneration, cardiovascular disease, cerebrovascular disease, depression, liver disease, arthritis, tumor, diabetes, etc. This review systematically discussed the pharmacologic study of crocins in the aspect of structural characteristic and pharmacokinetics, and summarized the mechanism of treating disease. It summarized the abundant research of crocins from 1984 to 2020 based on the above aspects, which provide a reference for the deeply development and application of crocins.


Subject(s)
Carotenoids , Crocus/chemistry , Gardenia/chemistry , Animals , Carotenoids/chemistry , Carotenoids/pharmacokinetics , Humans , Molecular Structure
20.
Molecules ; 26(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073936

ABSTRACT

Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 µM, respectively.


Subject(s)
ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Carotenoids/isolation & purification , Countercurrent Distribution/methods , Enzyme Inhibitors/pharmacology , Gardenia/chemistry , Carotenoids/pharmacology , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL