Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
Add more filters

Complementary Medicines
Publication year range
1.
JAMA Dermatol ; 159(10): 1076-1084, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37647056

ABSTRACT

Importance: The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective: To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants: This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures: Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results: A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance: The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Male , Humans , Middle Aged , Gastrointestinal Microbiome/immunology , Prospective Studies , Case-Control Studies , Disease Progression , Melanoma, Cutaneous Malignant
2.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054989

ABSTRACT

Phenotyping cardiovascular illness and recognising heterogeneities within are pivotal in the contemporary era. Besides traditional risk factors, accumulated evidence suggested that a high inflammatory burden has emerged as a key characteristic modulating both the pathogenesis and progression of cardiovascular diseases, inclusive of atherosclerosis and myocardial infarction. To mechanistically elucidate the correlation, signalling pathways downstream to Toll-like receptors, nucleotide oligomerisation domain-like receptors, interleukins, tumour necrosis factor, and corresponding cytokines were raised as central mechanisms exerting the effect of inflammation. Other remarkable adjuvant factors include oxidative stress and secondary ferroptosis. These molecular discoveries have propelled pharmaceutical advancements. Statin was suggested to confer cardiovascular benefits not only by lowering cholesterol levels but also by attenuating inflammation. Colchicine was repurposed as an immunomodulator co-administered with coronary intervention. Novel interleukin-1ß and -6 antagonists exhibited promising cardiac benefits in the recent trials as well. Moreover, manipulation of gut microbiota and associated metabolites was addressed to antagonise inflammation-related cardiovascular pathophysiology. The gut-cardio-renal axis was therein established to explain the mutual interrelationship. As for future perspectives, artificial intelligence in conjunction with machine learning could better elucidate the sequencing of the microbiome and data mining. Comprehensively understanding the interplay between the gut microbiome and its cardiovascular impact will help identify future therapeutic targets, affording holistic care for patients with cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/etiology , Cardiovascular Diseases/therapy , Disease Susceptibility , Immunomodulation , Immunotherapy , Inflammation/complications , Animals , Biomarkers , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Disease Management , Disease Susceptibility/immunology , Feedback, Physiological , Gastrointestinal Microbiome/immunology , Humans , Immunomodulation/drug effects , Immunotherapy/adverse effects , Immunotherapy/methods , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Kidney Diseases/complications , Kidney Diseases/etiology , Molecular Targeted Therapy , Risk Factors , Treatment Outcome
3.
Nutrients ; 13(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959752

ABSTRACT

Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.


Subject(s)
Eating/immunology , Gastrointestinal Microbiome/immunology , Immune System/microbiology , Infant Formula/chemistry , Infant Nutritional Physiological Phenomena/immunology , Female , Humans , Immune System/growth & development , Infant Formula/microbiology , Infant, Newborn , Intestines/growth & development , Intestines/immunology , Male , Milk, Human/chemistry , Milk, Human/microbiology , Oligosaccharides/administration & dosage , Prebiotics/administration & dosage
4.
J Immunol Res ; 2021: 2684361, 2021.
Article in English | MEDLINE | ID: mdl-34926702

ABSTRACT

The dysfunction of regulatory B cells (Breg) may result in immune inflammation such as allergic rhinitis (AR); the underlying mechanism is not fully understood yet. Short-chain fatty acids, such as propionic acid (PA), have immune regulatory functions. This study is aimed at testing a hypothesis that modulates PA production alleviating airway allergy through maintaining Breg functions. B cells were isolated from the blood obtained from AR patients and healthy control (HC) subjects. The stabilization of IL-10 mRNA in B cells was tested with RT-qPCR. An AR mouse model was developed to test the role of PA in stabilizing the IL-10 expression in B cells. We found that the serum PA levels were negatively correlated with the serum Th2 cytokine levels in AR patients. Serum PA levels were positively associated with peripheral CD5+ B cell frequency in AR patients; the CD5+ B cells were also IL-10+. The spontaneous IL-10 mRNA decay was observed in B cells, which was prevented by the presence of PA through activating GPR43. PA counteracted the effects of Tristetraprolin (TTP) on inducing IL-10 mRNA decay in B cells through the AKT/T-bet/granzyme B pathway. Administration of Yupinfeng San, a Chinese traditional medical formula, or indole-3-PA, induced PA production by intestinal bacteria to stabilize the IL-10 expression in B cells, which promoted the allergen specific immunotherapy, and efficiently alleviated experimental AR. In summary, the data show that CD5+ B cells produce IL-10. The serum lower PA levels are associated with the lower frequency of CD5+ B cells in AR patients. Administration with Yupinfeng San or indole-3-PA can improve Breg functions and alleviate experimental AR.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Desensitization, Immunologic , Propionates/metabolism , Rhinitis, Allergic/therapy , Adolescent , Adult , Animals , B-Lymphocytes, Regulatory/metabolism , Case-Control Studies , Cells, Cultured , Disease Models, Animal , Drugs, Chinese Herbal/administration & dosage , Female , Gastrointestinal Microbiome/immunology , Healthy Volunteers , Humans , Indoles/administration & dosage , Interleukin-10/genetics , Interleukin-10/metabolism , Male , Mice , Middle Aged , Primary Cell Culture , Propionates/blood , RNA Stability , Receptors, Cell Surface/metabolism , Rhinitis, Allergic/blood , Rhinitis, Allergic/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
5.
Dis Markers ; 2021: 9370758, 2021.
Article in English | MEDLINE | ID: mdl-34966466

ABSTRACT

BACKGROUND: Clinical studies have shown that ankylosing spondylitis (AS) could be significantly improved by Governor Vessel moxibustion (GVM) therapy. OBJECTIVE: Study whether GVM therapy alleviates the clinical symptoms of AS by modulating intestinal microbiota. METHODS: A total of 9 AS patients and 9 paired healthy individuals were enrolled, and GVM therapy was provided to the AS patients. Stool, urine, and saliva samples from the healthy individuals and the AS patients before and after GVM therapy were collected, and 16S rRNA gene sequencing was performed for microbiota analysis. RESULTS: We found that GVM therapy can significantly alleviate the symptoms of AS, such as diarrhea, abdominal pain, and bloating. GVM therapy also decreased the abundances of Bacteroides and Prevotella while increasing the abundances of beneficial bacteria, such as Lactobacillus, in the gut microbiota of the AS patients. The analyses for AS clinical data and microbial abundances in AS patients revealed their multiple significant correlations (P < 0.01); for example, an unclassified crystal was positively correlated with AF12 and Delftia, monocyte had a negative correlation with Scardovia, and human leukocyte antigen-B27 was negatively correlated with Catenibacterium, Coprococcus, and Oscillospira. CONCLUSIONS: Overall, these findings demonstrate that GVM therapy can alleviate AS clinical symptoms, and at the same time, it improves the microbial structure of microbiota in AS patients. This trial is registered with Chinese Clinical Trial Registry ChiCTR2100051907.


Subject(s)
Gastrointestinal Microbiome/immunology , Medicine, Chinese Traditional , Moxibustion , Spondylitis, Ankylosing/therapy , Abdominal Pain/prevention & control , Adult , Diarrhea/prevention & control , Feces/microbiology , Female , Humans , Male , Middle Aged , RNA, Ribosomal, 16S , Saliva/immunology , Urine/microbiology
6.
Front Immunol ; 12: 712130, 2021.
Article in English | MEDLINE | ID: mdl-34804008

ABSTRACT

Microbiota acquired during labor and through the first days of life contributes to the newborn's immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.


Subject(s)
Antigens/immunology , Colostrum/chemistry , Colostrum/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A/immunology , Antigens/chemistry , Bacteria/immunology , Feces/microbiology , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin A/classification , Infant, Newborn , Linear Models , Longitudinal Studies , Pregnancy , Prospective Studies , RNA, Ribosomal, 16S/genetics
7.
Front Immunol ; 12: 704089, 2021.
Article in English | MEDLINE | ID: mdl-34721377

ABSTRACT

Several studies have investigated the causative role of the microbiome in the development of rheumatoid arthritis (RA), but changes in the gut microbiome in RA patients during drug treatment have been less well studied. Here, we tracked the longitudinal changes in gut bacteria in 22 RA patients who were randomized into two groups and treated with Huayu-Qiangshen-Tongbi formula (HQT) plus methotrexate (MTX) or leflunomide (LEF) plus MTX. There were differences in the gut microbiome between untreated (at baseline) RA patients and healthy controls, with 37 species being more abundant in the RA patients and 21 species (including Clostridium celatum) being less abundant. Regarding the functional analysis, vitamin K2 biosynthesis was associated with RA-enriched bacteria. Additionally, in RA patients, alterations in gut microbial species appeared to be associated with RA-related clinical indicators through changing various gut microbiome functional pathways. The clinical efficacy of the two treatments was further observed to be similar, but the response trends of RA-related clinical indices in the two treatment groups differed. For example, HQT treatment affected the erythrocyte sedimentation rate (ESR), while LEF treatment affected the C-reactive protein (CRP) level. Further, 11 species and 9 metabolic pathways significantly changed over time in the HQT group (including C. celatum, which increased), while only 4 species and 2 metabolic pathways significantly changed over time in the LEF group. In summary, we studied the alterations in the gut microbiome of RA patients being treated with HQT or LEF. The results provide useful information on the role of the gut microbiota in the pathogenesis of RA, and they also provide potentially effective directions for developing new RA treatments.


Subject(s)
Arthritis, Rheumatoid , Clostridium/immunology , Drugs, Chinese Herbal/administration & dosage , Gastrointestinal Microbiome , Leflunomide/administration & dosage , Methotrexate/administration & dosage , Adult , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/microbiology , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Humans , Male , Middle Aged
8.
Nat Commun ; 12(1): 5958, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645820

ABSTRACT

Understanding the functional potential of the gut microbiome is of primary importance for the design of innovative strategies for allergy treatment and prevention. Here we report the gut microbiome features of 90 children affected by food (FA) or respiratory (RA) allergies and 30 age-matched, healthy controls (CT). We identify specific microbial signatures in the gut microbiome of allergic children, such as higher abundance of Ruminococcus gnavus and Faecalibacterium prausnitzii, and a depletion of Bifidobacterium longum, Bacteroides dorei, B. vulgatus and fiber-degrading taxa. The metagenome of allergic children shows a pro-inflammatory potential, with an enrichment of genes involved in the production of bacterial lipo-polysaccharides and urease. We demonstrate that specific gut microbiome signatures at baseline can be predictable of immune tolerance acquisition. Finally, a strain-level selection occurring in the gut microbiome of allergic subjects is identified. R. gnavus strains enriched in FA and RA showed lower ability to degrade fiber, and genes involved in the production of a pro-inflammatory polysaccharide. We demonstrate that a gut microbiome dysbiosis occurs in allergic children, with R. gnavus emerging as a main player in pediatric allergy. These findings may open new strategies in the development of innovative preventive and therapeutic approaches. Trial: NCT04750980.


Subject(s)
Allergens/immunology , Food Hypersensitivity/microbiology , Gastrointestinal Microbiome/immunology , Immune Tolerance , Respiratory Hypersensitivity/microbiology , Allergens/adverse effects , Animals , Bacteroides/isolation & purification , Bacteroides/metabolism , Bifidobacterium longum/isolation & purification , Bifidobacterium longum/metabolism , Case-Control Studies , Child , Child, Preschool , Clostridiales/isolation & purification , Clostridiales/metabolism , Dander/adverse effects , Dander/immunology , Eggs/adverse effects , Faecalibacterium prausnitzii/isolation & purification , Faecalibacterium prausnitzii/metabolism , Female , Food Hypersensitivity/etiology , Food Hypersensitivity/immunology , Humans , Lipopolysaccharides/biosynthesis , Male , Milk/adverse effects , Milk/immunology , Nuts/adverse effects , Nuts/immunology , Pollen/chemistry , Pollen/immunology , Prunus persica/chemistry , Prunus persica/immunology , Pyroglyphidae/chemistry , Pyroglyphidae/immunology , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/immunology , Urease/biosynthesis
9.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34625492

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Lymphocytes/immunology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Vasoactive Intestinal Peptide/metabolism , Animals , Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , Interleukins/analysis , Lymphoid Tissue/cytology , Lymphoid Tissue/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR/biosynthesis , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Tretinoin/metabolism , Vasoactive Intestinal Peptide/genetics , Interleukin-22
10.
Sci Rep ; 11(1): 18963, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556715

ABSTRACT

This study tested the hypothesis that naturally and industrially produced trans-fatty acids can exert distinct effects on metabolic parameters and on gut microbiota of rats. Wistar rats were randomized into three groups according to the diet: CONT-control, with 5% soybean oil and normal amount of fat; HVF-20% of hydrogenated vegetable fat (industrial); and RUM-20% of ruminant fat (natural). After 53 days of treatment, serum biochemical markers, fatty acid composition of liver, heart and adipose tissue, histology and hepatic oxidative parameters, as well as gut microbiota composition were evaluated. HVF diet intake reduced triglycerides (≈ 39.39%) and VLDL levels (≈ 39.49%). Trans-fatty acids levels in all tissue were higher in HVF group. However, RUM diet intake elevated amounts of anti-inflammatory cytokine IL-10 (≈ 14.7%) compared to CONT, but not to HVF. Furthermore, RUM intake led to higher concentrations of stearic acid and conjugated linoleic acid in all tissue; this particular diet was associated with a hepatoprotective effect. The microbial gut communities were significantly different among the groups. Our results show that ruminant fat reversed the hepatic steatosis normally caused by high fat diets, which may be related to the remodelling of the gut microbiota and its anti-inflammatory potential.


Subject(s)
Dietary Fats, Unsaturated/administration & dosage , Gastrointestinal Microbiome/immunology , Non-alcoholic Fatty Liver Disease/prevention & control , Trans Fatty Acids/administration & dosage , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Inflammation/prevention & control , Liver/immunology , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Rats , Rats, Wistar , Ruminants , Soybean Oil/administration & dosage
11.
Int J Med Sci ; 18(14): 3050-3058, 2021.
Article in English | MEDLINE | ID: mdl-34400875

ABSTRACT

To investigate the effect of zinc (Zn) supplementation on intestinal microflora changes and bacterial translocation in rats with severe acute pancreatitis (SAP), the rats were divided into the sham surgery (SS), SAP, SS + Zn, and SAP + Zn groups. Saline (0.1 mL/100g) and 5% sodium taurocholate were injected into the pancreaticobiliary duct of the rats in the SS and SAP + Zn groups, respectively. Intraperitoneal injection of 5 mg/kg Zn was performed immediately after injecting saline or 5% sodium taurocholate into the rats in both groups. Serum amylase and Zn levels, plasma endogenous endotoxin, intestinal permeability, and the positive rate of intestinal bacterial translocation were detected, haematoxylin and eosin (H&E) staining was performed, and the pancreatic tissue scores were calculated for each group. In addition, immunohistochemical (IHC) staining was performed to evaluate the expression of IL-1ß and TNF-α. Real-time fluorescence quantitative PCR was used to quantify the gene copy numbers of Escherichia, Bifidobacterium, and Lactobacillus in the cecum. The levels of amylase and plasma endotoxin in the SAP group were significantly higher than those in the SS and SS + Zn groups. Intestinal mucosal permeability and intestinal bacterial translocation in the liver, pancreas, and mesenteric lymph nodes were increased in the SAP group. However, the levels of amylase and plasma endotoxin were decreased as a result of zinc supplementation in the SAP group. The expression of IL-1ß and TNF-α was also reduced to a greater degree in the SAP + Zn group than in the SAP group. Moreover, alleviated intestinal mucosal permeability and intestinal bacterial translocation in the liver, pancreas, and mesenteric lymph nodes were found in the SAP + Zn group. The results of real-time quantitative PCR showed that the gene copy number of Escherichia increased with time, and the gene copy numbers of Lactobacillus and Bifidobacterium decreased over time. Zn supplementation prevented the release of TNF-α and IL-1ß, alleviated intestinal permeability and endotoxemia, reduced bacterial translocation, and inhibited changes in pathogenic intestinal flora in rats with SAP.


Subject(s)
Bacterial Translocation/drug effects , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Pancreatitis/drug therapy , Zinc/administration & dosage , Animals , Bacterial Translocation/immunology , Disease Models, Animal , Gastrointestinal Microbiome/immunology , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Pancreas/immunology , Pancreas/pathology , Pancreatitis/immunology , Pancreatitis/microbiology , Pancreatitis/pathology , Permeability/drug effects , Rats , Severity of Illness Index
12.
Nutrients ; 13(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203292

ABSTRACT

The immune system plays a key role in cancer suppression. Immunotherapy is widely used as a treatment method in patients with various types of cancer. Immune checkpoint blockade using antibodies, such as anti-PD-1, anti-PD-L1, and anti-CTLA-4, is currently gaining popularity. A systematic literature search was executed, and all available data was summarized. This review shows that specific dietary patterns (such as, e.g., animal-based, vegetarian, or Mediterranean diet) alter the gut microbiome's composition. An appropriate intestinal microbiota structure might modulate the function of human immune system, which affects the bodily anti-cancer response. This paper shows also that specific bacteria species inhabiting the gastrointestinal tract can have a beneficial influence on the efficacy of immunotherapy. Antibiotics weaken gut bacteria and worsen the immune checkpoint blockers' efficacy, whereas a faecal microbiota transplant or probiotics supplementation may help restore bacterial balance in the intestine. Other factors (like vitamins, glucose, or BMI) change the cancer treatment response, as well. This review demonstrates that there is a strong association between one's diet, gut microbiome composition, and the outcome of immunotherapy. However, further investigation on this subject is required.


Subject(s)
Diet/methods , Gastrointestinal Microbiome/immunology , Immunotherapy/methods , Neoplasms/therapy , Animals , Anti-Bacterial Agents , Antibodies, Monoclonal, Humanized , Bacteria/immunology , Fecal Microbiota Transplantation , Feces/microbiology , Humans , Obesity , Probiotics/therapeutic use , Thiamine , Vitamin D
13.
Front Immunol ; 12: 621803, 2021.
Article in English | MEDLINE | ID: mdl-34149685

ABSTRACT

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Subject(s)
Bacterial Infections/immunology , Bird Diseases/immunology , Cecum/microbiology , Chickens/immunology , Coccidia/physiology , Coccidiosis/immunology , Eimeria/physiology , Gastrointestinal Microbiome/immunology , Protozoan Vaccines/immunology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Bacitracin , Blueberry Plants , Immunity, Humoral , Lipid Metabolism , Vaccination , Vaccinium macrocarpon
14.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066560

ABSTRACT

In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.


Subject(s)
COVID-19/immunology , COVID-19/microbiology , Gastrointestinal Microbiome/immunology , Low-Level Light Therapy/methods , Probiotics/therapeutic use , SARS-CoV-2/immunology , Brain/immunology , Brain/radiation effects , COVID-19/radiotherapy , COVID-19/therapy , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/radiotherapy , Gastrointestinal Microbiome/radiation effects , Humans , Lung/immunology , Lung/radiation effects , Metabolomics , Phototherapy/methods , SARS-CoV-2/radiation effects
15.
J Immunol Res ; 2021: 9998200, 2021.
Article in English | MEDLINE | ID: mdl-34104654

ABSTRACT

The microbiome exerts considerable control over immune homeostasis and influences susceptibility to autoimmune and autoinflammatory disease (AD/AID) such as inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D), psoriasis, and uveitis. In part, this is due to direct effects of the microbiome on gastrointestinal (GI) physiology and nutrient transport, but also to indirect effects on immunoregulatory controls, including induction and stabilization of T regulatory cells (T reg). Secreted bacterial metabolites such as short-chain fatty acids (SCFA) are under intense investigation as mediators of these effects. In contrast, folate (vitamin B9), an essential micronutrient, has attracted less attention, possibly because it exerts global physiological effects which are difficult to differentiate from specific effects on the immune system. Here, we review the role of folate in AD/AID with some emphasis on sight-threatening autoimmune uveitis. Since folate is required for the generation and maintenance of T reg , we propose that one mechanism for microbiome-based control of AD/AID is via folate-dependent induction of GI tract T reg , particularly colonic T reg, via anergic T cells (T an). Hence, folate supplementation has potential prophylactic and/or therapeutic benefit in AID/AD.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity , Folic Acid/metabolism , Gastrointestinal Microbiome/immunology , Inflammation/immunology , Animals , Autoimmune Diseases/diet therapy , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Disease Models, Animal , Folic Acid/administration & dosage , Humans , Inflammation/diet therapy , Inflammation/metabolism , Inflammation/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
16.
Oxid Med Cell Longev ; 2021: 5543003, 2021.
Article in English | MEDLINE | ID: mdl-34046146

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic intestinal disorder threatening human health. Di-peptide alanyl-glutamine (Ala-Gln) has various beneficial effects on gut health. However, its role and functional mechanism in treating IBD are still not clear. Therefore, the protective effects of Ala-Gln and glutamine (Gln) on dextran sulfate sodium- (DSS-) induced colitic mice were investigated in this study. The results showed that oral supplementation of Ala-Gln or Gln significantly attenuated the colitis symptoms in mice, including body weight loss, colon length, disease activity index, histological scores, and tissue apoptosis. The concentrations of interleukin- (IL-) 1ß, IL-6, tumor necrosis factor-α, and myeloperoxidase were significantly decreased, while the concentrations of immunoglobulins (IgA, IgG, and IgM) and superoxide dismutase were significantly increased by Ala-Gln or Gln supplementation. The expression of occludin and peptide transporter 1 (PepT1) was significantly increased by Ala-Gln or Gln. Interestingly, Ala-Gln had better beneficial effects than Gln in alleviating colitis. In addition, 16S rDNA sequencing showed that the DSS-induced shifts of the microbiome (community diversity, evenness, richness, and composition) in the mouse colon were restored by Gln and Ala-Gln, including Lactobacillus, Bacteroides_acidifaciens, Bacteroidales, Firmicutes, Clostridia, Helicobacter, and Bacteroides. Correspondingly, the functions of the microflora metabolism pathways were also rescued by Ala-Gln, including fatty acid metabolism, membrane transporters, infectious diseases, and immune system. In conclusion, the results revealed that Ala-Gln can prevent colitis through PepT1, enhancing the intestinal barrier and modulating gut microbiota and microflora metabolites.


Subject(s)
Colitis/etiology , Dipeptides/metabolism , Gastrointestinal Microbiome/immunology , Sulfates/adverse effects , Animals , Colitis/physiopathology , Humans , Inflammatory Bowel Diseases , Male , Mice
17.
Cancer Res ; 81(15): 4014-4026, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34039634

ABSTRACT

Excessive intake of animal fat and resultant obesity are major risk factors for prostate cancer. Because the composition of the gut microbiota is known to change with dietary composition and body type, we used prostate-specific Pten knockout mice as a prostate cancer model to investigate whether there is a gut microbiota-mediated connection between animal fat intake and prostate cancer. Oral administration of an antibiotic mixture (Abx) in prostate cancer-bearing mice fed a high-fat diet containing a large proportion of lard drastically altered the composition of the gut microbiota including Rikenellaceae and Clostridiales, inhibited prostate cancer cell proliferation, and reduced prostate Igf1 expression and circulating insulin-like growth factor-1 (IGF1) levels. In prostate cancer tissue, MAPK and PI3K activities, both downstream of the IGF1 receptor, were suppressed by Abx administration. IGF1 directly promoted the proliferation of prostate cancer cell lines DU145 and 22Rv1 in vitro. Abx administration also reduced fecal levels of short-chain fatty acids (SCFA) produced by intestinal bacteria. Supplementation with SCFAs promoted tumor growth by increasing IGF1 levels. In humans, IGF1 was found to be highly expressed in prostate cancer tissue from obese patients. In conclusion, IGF1 production stimulated by SCFAs from gut microbes influences the growth of prostate cancer via activating local prostate MAPK and PI3K signaling, indicating the existence of a gut microbiota-IGF1-prostate axis. Disrupting this axis by modulating the gut microbiota may aid in prostate cancer prevention and treatment. SIGNIFICANCE: These results suggest that intestinal bacteria, acting through short-chain fatty acids, regulate systemic and local prostate IGF1 in the host, which can promote proliferation of prostate cancer cells.


Subject(s)
Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/immunology , Insulin-Like Growth Factor I/metabolism , Prostatic Neoplasms/genetics , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout , Signal Transduction
19.
Front Immunol ; 12: 651709, 2021.
Article in English | MEDLINE | ID: mdl-33986744

ABSTRACT

A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4th and 12th month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52-28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2-56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation.


Subject(s)
Asthma/epidemiology , Feeding Behavior , Gastrointestinal Microbiome/immunology , Infant Nutritional Physiological Phenomena/immunology , Meat/adverse effects , Animals , Asthma/immunology , Asthma/microbiology , Child , Child, Preschool , DNA, Bacterial/isolation & purification , Diet Records , Europe/epidemiology , Female , Follow-Up Studies , Gastrointestinal Microbiome/genetics , Humans , Infant , Infant, Newborn , Male , Prevalence , Prospective Studies , RNA, Ribosomal, 16S/genetics , Risk Assessment/statistics & numerical data
20.
Front Immunol ; 12: 635935, 2021.
Article in English | MEDLINE | ID: mdl-33796103

ABSTRACT

Postulated by Strachan more than 30 years ago, the Hygiene Hypothesis has undergone many revisions and adaptations. This review journeys back to the beginnings of the Hygiene Hypothesis and describes the most important landmarks in its development considering the many aspects that have refined and generalized the Hygiene Hypothesis over time. From an epidemiological perspective, the Hygiene Hypothesis advanced to a comprehensive concept expanding beyond the initial focus on allergies. The Hygiene Hypothesis comprise immunological, microbiological and evolutionary aspects. Thus, the original postulate developed into a holistic model that explains the impact of post-modern life-style on humans, who initially evolved in close proximity to a more natural environment. Focusing on diet and the microbiome as the most prominent exogenous influences we describe these discrepancies and the resulting health outcomes and point to potential solutions to reestablish the immunological homeostasis that frequently have been lost in people living in developed societies.


Subject(s)
Adaptive Immunity , Bacteria/immunology , Gastrointestinal Microbiome/immunology , Hygiene Hypothesis , Immunity, Innate , T-Lymphocytes/immunology , Animals , Asthma/immunology , Asthma/microbiology , Bacteria/pathogenicity , Diet/adverse effects , Dysbiosis , Evolution, Molecular , History, 20th Century , History, 21st Century , Host-Pathogen Interactions , Humans , Hygiene Hypothesis/history , Immune Tolerance , Phenotype , T-Lymphocytes/metabolism , T-Lymphocytes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL