Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470400

ABSTRACT

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Gene Flow/genetics , Archaeology/methods , DNA, Mitochondrial/genetics , Ethnicity/history , Gene Flow/physiology , Genetic Variation/genetics , Genetics, Population/methods , Genome, Human/genetics , Genomics/methods , Haplotypes , History, Ancient , Human Migration/history , Humans , Mediterranean Region , Middle East , Sequence Analysis, DNA
2.
Cell ; 181(5): 1158-1175.e28, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470401

ABSTRACT

Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.


Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Gene Flow/genetics , Archaeology/methods , DNA, Mitochondrial/genetics , Ethnicity/history , Gene Flow/physiology , Genetic Variation/genetics , Genetics, Population/methods , Genome, Human/genetics , Genomics/methods , Haplotypes , History, Ancient , Human Migration/history , Humans , Mediterranean Region , Middle East , Sequence Analysis, DNA
3.
Sci Rep ; 10(1): 6143, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273546

ABSTRACT

Pollen dispersal is one of the main ways of gene flow. In the past years, rice pollen dispersal and gene flow have been well studies. However, there is much dispute whether the risk of pollen dispersal and gene flow continuously increases with the source area. A Lagrangian stochastic model was used to simulate the pollen depositions at different distances from different pollen source areas. The field experiments showed a good fit in the pollen depositions. The larger the source area, the more the pollen grains were deposited at each distance, with the pollen dispersal distance increasing accordingly. However, this effect gradually leveled off as the source area increased. In the large-area of pollen source, we found a significantly higher saturation point for the amount of pollen deposition. Once the source area exceeded 1000 × 1000 m2, the pollen deposition no longer increased, even if the source area continued to increase, indicating the "critical source area" of rice pollen dispersal. However, a 100 × 100 m2 critical source area for conventional rice and hybrid rice was sufficient, while the critical source area for the sterile line was about 230 × 230 m2.


Subject(s)
Gene Flow , Oryza/physiology , Pollination , Gene Flow/physiology , Models, Statistical , Oryza/genetics , Pollen , Pollination/physiology
4.
PLoS One ; 14(2): e0212561, 2019.
Article in English | MEDLINE | ID: mdl-30807591

ABSTRACT

Foraging behaviors that impact gene flow can guide the design of pollinator strategies to mitigate gene flow. Reduced gene flow is expected to minimize the impact of genetically engineered (GE) crops on feral and natural populations and to facilitate the coexistence of different agricultural markets. The goal of this study is to link foraging behavior to gene flow and identify behaviors that can help predict gene flow for different bee species. To reach this goal, we first examined and compared the foraging behaviors of three distinct bee species, the European honey bee, Apis mellifera L., the common eastern bumble bee, Bombus impatiens Cr., and the alfalfa leafcutting bee, Megachile rotundata F., foraging on Medicago sativa flowers. Each foraging behavior investigated differed among bee species. Both social bees exhibited directionality of movement and had similar residence, in contrast to the random movement and shorter residence of the solitary bee. Tripping rate and net distance traveled differed among the three bee species. We ranked each behavior among bee species and used the relative ranking as gene flow predictor before testing the predictions against empirical gene flow data. Tripping rate and net distance traveled, but not residence, predicted relative gene dispersal among bee species. Linking specific behaviors to gene flow provides mechanisms to explain differences in gene flow among bee species and guides the development of management practices to reduce gene flow. Although developed in one system, the approach developed here can be generalized to different plant/pollinator systems.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Gene Flow/physiology , Medicago sativa/genetics , Models, Genetic , Pollen/genetics , Pollination/physiology , Animals , Species Specificity
5.
Plant Biol (Stuttg) ; 20(1): 93-100, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29063726

ABSTRACT

Variation in flowering phenology is common in natural populations, and is expected to be, together with inter-mate distance, an important driver of effective pollen dispersal. In populations composed of plants with temporally separated sexual phases (i.e. dichogamous or heterodichogamous populations), pollen-mediated gene flow is assumed to reflect phenological overlap between complementary sexual phases. In this study, we conducted paternity analyses to test this hypothesis in the temporally dimorphic tree Acer opalus. We performed spatially explicit analyses based on categorical and fractional paternity assignment, and included tree size, pair-wise genetic relatedness and morph type as additional predictors. Because differences between morphs in flowering phenology may also influence pollination distances, we modelled separate pollen dispersal kernels for the two morphs. Extended phenological overlap between male and female phases (mainly associated with inter-morph crosses) resulted in higher siring success after accounting for the effects of genetic relatedness, morph type and tree size, while reduced phenological overlap (mainly associated with intra-morph crosses) resulted in longer pollination distances achieved. Siring success also increased in larger trees. Mating patterns could not be predicted by phenology alone. However, as heterogeneity in flowering phenology was the single morph-specific predictor of siring success, it is expected to be key in maintaining the temporal dimorphism in A. opalus, by promoting not only a prevalent pattern of inter-morph mating, but also long-distance pollination resulting from intra-morph mating events.


Subject(s)
Acer/physiology , Gene Flow , Pollen/physiology , Sex Characteristics , Trees/physiology , Acer/genetics , Gene Flow/physiology , Pollination , Time Factors , Trees/genetics
6.
J Hered ; 104(4): 465-75, 2013.
Article in English | MEDLINE | ID: mdl-23613135

ABSTRACT

Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.


Subject(s)
Gene Flow/physiology , Genetic Variation/physiology , Pinus/genetics , Pollen/genetics , Rain , Seed Dispersal/physiology , Cryptomeria/genetics , Gene Frequency , Geography , Japan , Microsatellite Repeats/genetics , Pinus/embryology , Pollen/physiology , Seed Dispersal/genetics , Seeds/genetics , Seeds/physiology , Wind
7.
Pest Manag Sci ; 67(6): 677-90, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21337674

ABSTRACT

BACKGROUND: The compatibility and outcrossing rates between transgenic rice and weedy rice biotypes have been studied in some previous cases. However, few studies have addressed the reasons for these differences. The present study compared the compatibility and outcrossing rates between transgenic rice and selected weedy rice biotypes using manual and natural crossing experiments to elucidate the key innate factors causing the different outcrossing rates. RESULTS: Hybrid seed sets from manual crossing between transgenic rice and weedy rice varied from 31.8 to 82.7%, which correlated directly with genetic compatibility. Moreover, the significant differences in the quantity of germinated donor pollens and pollen tubes entering the weedy rice ovule directly contributed to the different seed sets. The natural outcrossing rates varied from 0 to 6.66‰. The duration of flowering overlap was the key factor influencing natural outcrossing. Plant and panicle height also affected outcrossing success. CONCLUSION: From this study, it is concluded that the likelihood of gene flow between transgenic rice and weedy rice biotypes is primarily determined by floral synchronisation and secondarily influenced by genetic compatibility and some morphological characteristics.


Subject(s)
Gene Flow/physiology , Hybridization, Genetic/physiology , Oryza/genetics , Oryza/physiology , Aminobutyrates/pharmacology , Chimera/genetics , Chimera/physiology , China , Herbicide Resistance/genetics , Herbicides/pharmacology , Oryza/classification , Oryza/growth & development , Ovule/physiology , Phylogeny , Plants, Genetically Modified/classification , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Pollen/physiology , Pollination/physiology , Seeds/genetics , Seeds/growth & development , Transgenes/genetics
8.
Heredity (Edinb) ; 103(5): 385-93, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19603058

ABSTRACT

The estimation of recent gene immigration is fundamental to a wide range of evolutionary and conservation studies. In a risk assessment context, gene flow estimation procedures are needed that are both accurate and readily amenable to formal evaluation of statistical uncertainty. However, genetic methods for estimating recent migration rates that are specific and have been thoroughly evaluated are scarce. Here we use an original and straightforward maximum-likelihood method to estimate recent uniparental gametic immigration from non-local plantations into an endangered population of the Iberian relict pine variety Pinus sylvestris var. nevadensis D. H. Christ. Our approach is not intended to ascertain population membership of individuals, but rather to obtain accurate immigration rate estimates with reliable confidence limits. We found very high (approximately 40%) pollen introgression at the seed-crop level into the Scots pine relict, and substantial (10-15%) male gametic introgression among naturally regenerated recruits. Using numerical simulation, we show that our method yields uniparental gametic immigration estimates that are expected to be virtually unbiased and usually accurate under our sampling conditions. Among four tested methods to estimate the confidence intervals for immigration estimates, the profile-likelihood method was the best, as it outperformed bootstrapping procedures and yielded coverage close to nominal limits under different sample sizes and migration rates. This study presents a method by which researchers can facilitate decision making within a gene flow risk assessment context.


Subject(s)
Gene Flow/physiology , Pinus sylvestris/genetics , Pollen/genetics , DNA, Plant/analysis , DNA, Plant/genetics , Ecosystem , Fossils , Gene Frequency , Genetic Variation , Genetics, Population/methods , Geography , Haplotypes , Models, Genetic , Population Dynamics , Risk Assessment , Seeds/genetics
9.
J Theor Biol ; 248(1): 154-63, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17544452

ABSTRACT

We present a spatially implicit analytical model of forager movement, designed to address a simple scenario common in nature. We assume minimal depression of patch resources, and discrete foraging bouts, during which foragers fill to capacity. The model is particularly suitable for foragers that search systematically, foragers that deplete resources in a patch only incrementally, and for sit-and-wait foragers, where harvesting does not affect the rate of arrival of forage. Drawing on the theory of job search from microeconomics, we estimate the expected number of patches visited as a function of just two variables: the coefficient of variation of the rate of energy gain among patches, and the ratio of the expected time exploiting a randomly chosen patch and the expected time travelling between patches. We then consider the forager as a pollinator and apply our model to estimate gene flow. Under model assumptions, an upper bound for animal-mediated gene flow between natural plant populations is approximately proportional to the probability that the animal rejects a plant population. In addition, an upper bound for animal-mediated gene flow in any animal-pollinated agricultural crop from a genetically modified (GM) to a non-GM field is approximately proportional to the proportion of fields that are GM and the probability that the animal rejects a field.


Subject(s)
Computer Simulation , Ecosystem , Feeding Behavior , Gene Flow/physiology , Insecta/physiology , Plants, Genetically Modified/genetics , Animals , Models, Biological , Plants, Genetically Modified/physiology , Pollen/genetics , Regression Analysis , Reproduction , Transgenes
10.
Curr Biol ; 16(10): 996-1000, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16713956

ABSTRACT

Interspecific hybridization is recognized as a potentially destructive process that represents a major threat to biodiversity. The rate of population displacement by hybridization can be rapid, but underlying mechanisms are often obscure. One hypothesis is that a species may be driven to extinction by interspecific gene flow, or pollen swamping, when hybrids are inviable or sterile. Here, we document the rapid movement of two zones of contact between monoecious hexaploid and dioecious diploid populations of the wind-pollinated plant Mercurialis annua (Euphorbiaceae) in northeastern and northwestern Spain, where diploids have displaced hexaploids by about 80 and 200 km, respectively, over a period of four decades. By using experimental mating arrays, we show that hybridization is highly asymmetrical in favor of the diploids, mainly because they disperse substantially more pollen, as expected in a comparison between an obligate outcrosser and a facultative selfer. Self-fertilization, which is expected to reduce the proportion of sterile hybrids produced in mixed ploidy populations, allowed the hexaploids to avoid the effects of pollen swamping only slightly, and in a density-dependent manner. Our results thus provide a mechanistic explanation for the rapid movement of both contact zones of M. annua in Spain.


Subject(s)
Euphorbiaceae/physiology , Gene Flow/physiology , Hybridization, Genetic/physiology , Pollen/physiology , Biodiversity , Diploidy , Inbreeding , Polyploidy , Reproduction/physiology , Spain
11.
Plant Biotechnol J ; 4(6): 633-45, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17309734

ABSTRACT

We present the first study on cross-fertilization between Bt and conventional maize in real situations of coexistence in two regions in which Bt and conventional maize were cultivated. A map was designed and the different crops were identified, as were the sowing and flowering dates, in Bt and conventional maize fields. These data were used to choose the non-transgenic fields for sampling and analysis by the real-time quantification system-polymerase chain reaction (RTQ-PCR) technique. In general, the rate of cross-fertilization was higher in the borders and, in most of the fields, decreased towards the centre of the field. Nine fields had values of genetically modified organism DNA to total DNA of much lower than 0.9%, whereas in three the rate was higher. Some differences were found when comparing our results with those of common field trials. In real conditions of coexistence and in cropping areas with smaller fields, the main factors that determined cross-pollination were the synchronicity of flowering and the distances between the donor and receptor fields. By establishing an index based on these two variables, the rate of the adventitious presence of genetically modified maize could be predicted, as well as the influence of other factors. By applying this index, and in the case of a fully synchronous flowering time, a security distance between transgenic and conventional fields of about 20 m should be sufficient to maintain the adventitious presence of genetically modified organisms as a result of pollen flow below the 0.9% threshold in the total yield of the field.


Subject(s)
Gene Flow/physiology , Pollen/genetics , Zea mays/genetics , Crosses, Genetic , Models, Genetic , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL