Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 26(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800622

ABSTRACT

Croton hirtus L'Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro ß ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), ß-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents-namely, water, methanol, dichloromethane, and ethyl acetate-and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.


Subject(s)
Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , Croton/chemistry , Glucosides/chemistry , Phytochemicals/chemistry , Phytosterols/chemistry , Terpenes/chemistry , Acetates/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Antioxidants/classification , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Benzothiazoles/chemistry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/isolation & purification , Croton/metabolism , Glucosides/classification , Glucosides/isolation & purification , Humans , Methanol/chemistry , Methylene Chloride/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytosterols/classification , Phytosterols/isolation & purification , Picrates/antagonists & inhibitors , Picrates/chemistry , Plant Extracts/chemistry , Solvents/chemistry , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors , Sulfonic Acids/chemistry , Terpenes/classification , Terpenes/isolation & purification , Water/chemistry
2.
J Pharm Pharmacol ; 72(5): 738-747, 2020 May.
Article in English | MEDLINE | ID: mdl-32162346

ABSTRACT

OBJECTIVES: The Biopharmaceutics Classification System (BCS) categorizes active pharmaceutical ingredients according to their solubility and permeability properties, which are susceptible to matrix or formulation effects. The aim of this research was to evaluate the matrix effects of a hydroethanolic extract of calyces from Physalis peruviana L. (HEE) and its butanol fraction (BF), on the biopharmaceutics classification of their major compound, quercetin-3-O-rutinoside (rutin, RU). METHODS: Rutin was quantified by HPLC-UV, and Caco-2 cell monolayer transport studies were performed to obtain the apparent permeability values (Papp ). Aqueous solubility was determined at pH 6.8 and 7.4. KEY FINDINGS: The Papp values followed this order: BF > HEE > RU (1.77 ± 0.02 > 1.53 ± 0.07 > 0.90 ± 0.03 × 10-5  cm/s). The lowest solubility values followed this order: HEE > RU > BF (2.988 ± 0.07 > 0.205 ± 0.002 > 0.189 ± 0.005 mg/ml). CONCLUSIONS: According to these results, rutin could be classified as BCS classes III (high solubility/low permeability) and IV (low solubility/low permeability), depending on the plant matrix. Further work needs to be done in order to establish how apply the BCS for research and development of new botanical drugs or for bioequivalence purposes.


Subject(s)
Flowers/chemistry , Glucosides/chemistry , Glucosides/classification , Physalis/chemistry , Plant Extracts/chemistry , Quercetin/analogs & derivatives , Rutin/chemistry , Rutin/classification , Biopharmaceutics/classification , Butanols/chemistry , Caco-2 Cells , Chromatography, High Pressure Liquid , Ethanol/chemistry , Flowers/metabolism , Glucosides/metabolism , Humans , Intestines/physiology , Liquid-Liquid Extraction , Permeability , Plant Extracts/metabolism , Quercetin/chemistry , Quercetin/classification , Quercetin/metabolism , Rutin/metabolism , Solubility
3.
J Ethnopharmacol ; 244: 112148, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31400507

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As one of the new drugs of traditional Chinese medicine, Sanye Tablet is employed as a hypolipidemic in the traditional medicine, but the biopharmaceutical properties of the drug is still unclear. AIM OF THE STUDY: Through the study of biopharmaceutical properties, the classical biopharmaceutics classification system (BCS) can be used to classify and predict the in vivo absorption properties. On this basis, the biopharmaceutical properties closely related to traditional Chinese medicine preparations are added and a modified BCS model is established to predict and judge the absorption degree of traditional Chinese medicine compound. MATERIALS AND METHODS: Representative components of Sanye Tablet were selected and subjected to different in vitro tests. The experimental results were compared with the results of the BCS to evaluate the accuracy and applicability to Sanye Tablet. We take parameters of dissolution and stability based on product characteristics into account. A "modified-BCS" was developed and the results of the improved method and the classic method were compared. Also the ability of each classification system to predict and determine the extent of absorption of the Chinese herbal compound was investigated based on the absolute bioavailability of representative components. RESULTS: For classic BCS, the five representative components (except for nuciferine) are all class III, nuciferine is class I/II obtained by Caco-2 cell assay and class III/IV obtained by everted gut sac assay. For modified BCS, paeoniflorin is class III, rutin, hyperoside and salvianolic acid B are class III/IV, and nuciferine is class I/II based on Caco-2 cell assay, class III/IV based on everted gut sac assay. Nuciferine is the best of the five components, with absolute bioavailability reaching 61.91% based on in vivo bioavailability test. CONCLUSIONS: The five representative components (except for nuciferine) are all class III/IV, which correlates well with the absolute bioavailability results and demonstrates that they are poorly absorbed substances. The correlation between the classification results obtained using the "modified-BCS" and absorption in the body is better than the correlation obtained using the classic method, suggesting that the improved BCS is more suitable for the characterization of Sanye Tablet. These results indicate that the oral formulation of Sanye Tablet is a BCS III/IV drug.


Subject(s)
Drugs, Chinese Herbal/classification , Drugs, Chinese Herbal/pharmacokinetics , Hypoglycemic Agents/classification , Hypoglycemic Agents/pharmacokinetics , Intestinal Absorption , Models, Biological , Animals , Aporphines/classification , Aporphines/pharmacokinetics , Biopharmaceutics , Caco-2 Cells , Glucosides/classification , Glucosides/pharmacokinetics , Humans , Male , Medicine, Chinese Traditional , Monoterpenes/classification , Monoterpenes/pharmacokinetics , Quercetin/analogs & derivatives , Quercetin/classification , Quercetin/pharmacokinetics , Rats, Sprague-Dawley , Rutin/classification , Rutin/pharmacokinetics
4.
Drug Chem Toxicol ; 33(2): 220-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20307149

ABSTRACT

It is reported that salidroside, the main component of a traditional Chinese medicine, Rhodiola rosea, has the efficacy of protecting Coxsackie virus impairment. As part of a safety evaluation on salidroside for use in the treatment of viral myocarditis, the present study evaluated potential genotoxicity of salidroside by using the standard battery of tests (i.e., bacterial reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay) recommended by the State Food and Drug Administration of China. The results showed that salidroside was not genotoxic under the conditions of the reverse mutation assay, chromosomal aberrations assay, and mouse micronucleus assay conditions. The anticipated clinical dose seems to be smaller than the doses administered in the genotoxicity assays. With confirmation from further toxicity studies, salidroside would hopefully prove to be a safe anti-Coxsackie virus agent.


Subject(s)
Antiviral Agents/toxicity , Glucosides/toxicity , Mutagens/toxicity , Phenols/toxicity , Animals , Antiviral Agents/classification , Antiviral Agents/metabolism , CHO Cells , Cricetinae , Cricetulus , Female , Glucosides/classification , Glucosides/metabolism , Male , Medicine, Chinese Traditional , Mice , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Microsomes, Liver , Mutagenesis/drug effects , Mutagens/classification , Mutagens/metabolism , Phenols/classification , Phenols/metabolism , Rhodiola , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
5.
Chem Pharm Bull (Tokyo) ; 56(1): 1-6, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18175965

ABSTRACT

Basic hydrolysis procedure is often included in the sample preparation in order to quantify malonylglucosides or acetylglucosides of soy materials. However, it is preferable not to use NaOH as a hydrolytic reagent considering the effect of its alkalinity on the successive injection to HPLC and low acidity of soy isoflavones. This paper presents an improved method for basic hydrolysis using ammonia as a hydrolytic reagent without the additional neutralization step. Moreover, by means of HPLC and LC-MS methods, a systematic quality evaluation of natural soy materials from Chinese markets were established and discussed, inclusive of soybeans, black soybeans, defatted soy flours, as well as the distribution of isoflavones in the seed coat, hypocotyl and cotyledon. The results indicate that HPLC profiling patterns of originating various isoflavone constituents of Chinese soybeans was similar to those of Japanese ones, and those of Chinese black soybeans was similar to those of American ones. The average content level of total soy isoflavones of Chinese soybeans and black soybeans were a little lower than that of American and Japanese ones. Additionally, the thorough analysis for Semen Sojae Praeparatum, a Chinese herbal medicine made from fermented black soybeans or soybeans was done for the first time and the characteristic of its HPLC profiling patterns shows the higher content of isoflavone glucosides and aglycones than those of natural soy materials.


Subject(s)
Dietary Supplements/analysis , Drugs, Chinese Herbal/analysis , Food Analysis/methods , Glucosides/analysis , Glycine max/chemistry , Isoflavones/analysis , Seeds/chemistry , Soy Foods/analysis , Chromatography, High Pressure Liquid , Dietary Supplements/classification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/classification , Drugs, Chinese Herbal/isolation & purification , Glucosides/classification , Hydrolysis , Isoflavones/classification , Molecular Structure , Seeds/classification , Seeds/cytology , Soy Foods/classification
SELECTION OF CITATIONS
SEARCH DETAIL