Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Publication year range
1.
Nat Commun ; 12(1): 7080, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873153

ABSTRACT

Males are generally more susceptible to impaired glucose metabolism and type 2 diabetes (T2D) than females. However, the underlying mechanisms remain to be determined. Here, we revealed that gut microbiome depletion abolished sexual dimorphism in glucose metabolism. The transfer of male donor microbiota into antibiotics-treated female mice led the recipients to be more insulin resistant. Depleting androgen via castration changed the gut microbiome of male mice to be more similar to that of females and improved glucose metabolism, while reintroducing dihydrotestosterone (DHT) reversed these alterations. More importantly, the effects of androgen on glucose metabolism were largely abolished when the gut microbiome was depleted. Next, we demonstrated that androgen modulated circulating glutamine and glutamine/glutamate (Gln/Glu) ratio partially depending on the gut microbiome, and glutamine supplementation increases insulin sensitivity in vitro. Our study identifies the effects of androgen in deteriorating glucose homeostasis partially by modulating the gut microbiome and circulating glutamine and Gln/Glu ratio, thereby contributing to the difference in glucose metabolism between the two sexes.


Subject(s)
Androgens/pharmacology , Gastrointestinal Microbiome/drug effects , Glucose/metabolism , Homeostasis/drug effects , 3T3-L1 Cells , Animals , Anti-Bacterial Agents/pharmacology , Cell Line , Dihydrotestosterone/pharmacology , Fecal Microbiota Transplantation , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Glutamic Acid/blood , Glutamine/blood , Hep G2 Cells , Humans , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Orchiectomy , Sex Factors
2.
Biomed Res Int ; 2021: 1074565, 2021.
Article in English | MEDLINE | ID: mdl-34853787

ABSTRACT

BACKGROUND: The liver is the primary organ for amino acid metabolism, and metabolic disorder of amino acids is common in liver disease. However, the characteristics of plasma amino acid profiles in patients with HBV-related cirrhosis and the impacts of late-evening snack (LES) on cirrhosis are unclear. OBJECTIVES: To investigate the characteristics of plasma amino acid profiles in patients with HBV-related chronic hepatitis, cirrhosis, and the effects of late-evening snacks on plasma amino acid profiles. METHODS: 86 patients with HBV-related cirrhosis and eighty patients with chronic hepatitis B were included in this study. The plasma amino acid profiles were measured by the amino acid analyzer. Patients were randomly divided into two groups, of which the liver cirrhosis group was to receive daily LES (n = 43) or non-LES (n = 43) for 6 months. Plasma amino acid profiles and biochemical parameters were measured in both groups at baseline and after 1, 3, and 6 months. RESULTS: Compared to healthy controls, the plasma concentration in the liver cirrhosis group of threonine, serine, glycine, glutamine, cysteine, tyrosine, phenylalanine, arginine, and methionine increased significantly (P < 0.05), while the ratio of branched chain amino acids (BCAA) to aromatic amino acids (AAA) decreased significantly (P < 0.05). A carbohydrate-predominant LES treatment resulted in a significant increase in BCAA/AAA and decrease in the level of ammonia and glutamine compared with baseline after 6 months of supplementation (P < 0.05). Patients with Child-Pugh B and C are more responsive to changes in amino acid profiles than those with Child-Pugh A. CONCLUSIONS: The application of an LES carbohydrate module for six months in liver cirrhosis patients was associated with increased BCAA/AAA and decreased level of ammonia. Patients with Child-Pugh B and C grades were the most beneficial population.


Subject(s)
Amino Acids, Aromatic/blood , Amino Acids, Branched-Chain/blood , Dietary Carbohydrates/administration & dosage , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diet therapy , Liver Cirrhosis/blood , Liver Cirrhosis/diet therapy , Adult , Ammonia/blood , Case-Control Studies , Female , Glutamine/blood , Hepatitis B, Chronic/complications , Humans , Liver Cirrhosis/etiology , Male , Middle Aged , Snacks
3.
Cell Death Differ ; 28(12): 3199-3213, 2021 12.
Article in English | MEDLINE | ID: mdl-34663907

ABSTRACT

SARS-CoV-2 vaccinations have greatly reduced COVID-19 cases, but we must continue to develop our understanding of the nature of the disease and its effects on human immunity. Previously, we suggested that a dysregulated STAT3 pathway following SARS-Co-2 infection ultimately leads to PAI-1 activation and cascades of pathologies. The major COVID-19-associated metabolic risks (old age, hypertension, cardiovascular diseases, diabetes, and obesity) share high PAI-1 levels and could predispose certain groups to severe COVID-19 complications. In this review article, we describe the common metabolic profile that is shared between all of these high-risk groups and COVID-19. This profile not only involves high levels of PAI-1 and STAT3 as previously described, but also includes low levels of glutamine and NAD+, coupled with overproduction of hyaluronan (HA). SARS-CoV-2 infection exacerbates this metabolic imbalance and predisposes these patients to the severe pathophysiologies of COVID-19, including the involvement of NETs (neutrophil extracellular traps) and HA overproduction in the lung. While hyperinflammation due to proinflammatory cytokine overproduction has been frequently documented, it is recently recognized that the immune response is markedly suppressed in some cases by the expansion and activity of MDSCs (myeloid-derived suppressor cells) and FoxP3+ Tregs (regulatory T cells). The metabolomics profiles of severe COVID-19 patients and patients with advanced cancer are similar, and in high-risk patients, SARS-CoV-2 infection leads to aberrant STAT3 activation, which promotes a cancer-like metabolism. We propose that glutamine deficiency and overproduced HA is the central metabolic characteristic of COVID-19 and its high-risk groups. We suggest the usage of glutamine supplementation and the repurposing of cancer drugs to prevent the development of severe COVID-19 pneumonia.


Subject(s)
COVID-19/physiopathology , Glutamine/deficiency , Animals , COVID-19/blood , COVID-19/epidemiology , Comorbidity , Glutamine/blood , Humans , Hyaluronic Acid/blood , Metabolome , Plasminogen Activator Inhibitor 1/blood , Risk Factors , Severity of Illness Index
4.
Clin Nutr ; 39(2): 563-573, 2020 02.
Article in English | MEDLINE | ID: mdl-30981628

ABSTRACT

BACKGROUND: Nutrients, such as glutamine (GLN), have been shown to effect levels of a family of protective proteins termed heat shock proteins (HSPs) in experimental and clinical critical illness. HSPs are believed to serve as extracellular inflammatory messengers and intracellular cytoprotective molecules. Extracellular HSP70 (eHSP70) has been termed a chaperokine due to ability to modulate the immune response. Altered levels of eHSP70 are associated with various disease states. Larger clinical trial data on GLN effect on eHSP expression and eHSP70's association with inflammatory mediators and clinical outcomes in critical illness are limited. OBJECTIVE: Explore effect of longitudinal change in serum eHSP70, eHSP27 and inflammatory cytokine levels on clinical outcomes such as pneumonia and mortality in adult surgical intensive care unit (SICU) patients. Further, evaluate effect of parenteral nutrition (PN) supplemented with GLN (GLN-PN) versus GLN-free, standard PN (STD-PN) on serum eHSP70 and eHSP27 concentrations. METHODS: Secondary observational analysis of a multicenter clinical trial in 150 adults after cardiac, vascular, or gastrointestinal surgery requiring PN support and SICU care conducted at five academic medical centers. Patients received isocaloric, isonitrogenous PN, with or without GLN dipeptide. Serum eHSP70 and eHSP27, interleukin-6 (IL-6), and 8 (IL-8) concentrations were analyzed in patient serum at baseline (prior to study PN) and over 28 days of follow up. RESULTS: eHSP70 declined over time in survivors during 28 days follow-up, but non-survivors had significantly higher eHSP70 concentrations compared to survivors. In patients developing pneumonia, eHSP70, eHSP27, IL-8, and IL-6 were significantly elevated. Adjusted relative risk for hospital mortality was reduced 75% (RR = 0.25, p = 0.001) for SICU patients with a faster decline in eHSP70. The area under the receiver operating characteristic curve was 0.85 (95% CI: 0.76 to 0.94) for the final model suggesting excellent discrimination between SICU survivors and non-survivors. GLN-PN did not alter eHSP70 or eHSP27 serum concentrations over time compared to STD-PN. CONCLUSION: Our results suggest that serum HSP70 concentration may be an important marker for severity of illness and likelihood of recovery in the SICU. GLN-supplemented-PN did not increase eHSP70.


Subject(s)
Critical Care/methods , Cytokines/blood , Glutamine/blood , HSP70 Heat-Shock Proteins/blood , Parenteral Nutrition/methods , Adult , Critical Illness , Double-Blind Method , Female , HSP70 Heat-Shock Proteins/genetics , Humans , Intensive Care Units , Male
5.
Indian J Gastroenterol ; 38(4): 338-347, 2019 08.
Article in English | MEDLINE | ID: mdl-31612309

ABSTRACT

BACKGROUND: In severe acute pancreatitis (AP), intravenous glutamine has been shown to reduce the rate of complications, hospital stay, and mortality. In the present randomized trial, we aimed to evaluate the effect of enteral glutamine supplementation on clinical outcomes, gut permeability, systemic inflammation, oxidative stress, and plasma glutamine levels in patients with severe and predicted severe AP. METHODS: Patients with AP admitted within 72 h of onset of symptoms were included. The primary outcome measure was development of infected pancreatic and peri-pancreatic necrosis and in-hospital mortality. High-sensitivity C-reactive protein (HS-CRP) and interleukin-6 (IL-6) were evaluated as markers of inflammation; plasma thiobarbituric acid reactive substances (TBARS) and activities of serum superoxide dismutase and glutathione peroxidase were determined to evaluate oxidative stress; serum polyethylene glycol (PEG) was tested for intestinal permeability; subjective global assessment (SGA) was used for nutritional assessment, and an improvement in organ function was measured by the Modified Marshall score. Intention-to-treat analysis was used. A p-value of < 0.05 was considered statistically significant. RESULTS: After power calculation, we enrolled 18 patients in the glutamine and 22 in the control arm. There was no significant improvement in the development of infected necrosis and in-hospital mortality between the groups. Improvement in Modified Marshall score was observed in a higher proportion of patients receiving glutamine (15 [83.3%] vs. 12 [54.5%]; p = 0.05). Plasma glutamine levels improved more in glutamine-treated group (432.72 ± 307.83 vs. 618.06 ± 543.29 µM/L; p = 0.004), while it was lower in controls (576.90 ± 477.97 vs. 528.20 ± 410.45 µM/L; p = 0.003). PEG level was lower after glutamine supplementation (39.91 ± 11.97 vs. 32.30 ± 7.39 ng/mL; p = 0.02). Statistically significant reduction in IL-6 concentration was observed in the glutamine group at the end of treatment (87.44 ± 7.1 vs. 63.42 ± 33.7 µM/L; p = 0.02). CONCLUSIONS: Despite absence of improvement in infected necrosis and in-hospital mortality, enteral glutamine supplementation showed improvement in gut permeability, oxidative stress, and a trend towards improvement in organ function as depicted by improvement in the Modified Marshall score. TRIAL REGISTRATION: NCT01503320.


Subject(s)
Dietary Supplements , Enteral Nutrition/methods , Glutamine/pharmacokinetics , Intestinal Mucosa/metabolism , Pancreatitis/therapy , Acute Disease , Adult , Biomarkers/blood , Female , Glutamine/blood , Humans , Inflammation , Male , Middle Aged , Oxidative Stress/drug effects , Pancreatitis/metabolism , Permeability/drug effects , Severity of Illness Index , Treatment Outcome
6.
Gastroenterology ; 156(4): 1098-1111, 2019 03.
Article in English | MEDLINE | ID: mdl-30452920

ABSTRACT

BACKGROUND & AIMS: Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS: We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS: Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS: Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.


Subject(s)
Activating Transcription Factor 4/deficiency , Antimicrobial Cationic Peptides/metabolism , Colitis, Ulcerative/metabolism , Crohn Disease/metabolism , Glutamine/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Adolescent , Adult , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Animals , Case-Control Studies , Cell Line , Colitis/chemically induced , Colitis/metabolism , Colitis, Ulcerative/blood , Colitis, Ulcerative/pathology , Colon/cytology , Colon/metabolism , Crohn Disease/blood , Crohn Disease/pathology , Epithelial Cells , Female , Gene Knockdown Techniques , Glutamine/blood , Glutamine/pharmacology , Humans , Ileum/cytology , Ileum/metabolism , Ileum/microbiology , Intestinal Mucosa/metabolism , Male , Mice , Microbiota/drug effects , Middle Aged , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Paneth Cells/metabolism , Young Adult
7.
Mitochondrion ; 44: 65-74, 2019 01.
Article in English | MEDLINE | ID: mdl-29337141

ABSTRACT

We evaluated plasma glutamine levels and basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB) of peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematous (SLE) patients and healthy controls (HCs). Lower plasma glutamine levels correlated with higher SLE disease activity indexes (p=0.025). Incubated in DMEM containing 100mg/dL glucose, SLE-PBMCs displayed lower mOCRB (p=0.018) but similar ECARB (p=0.467) to those of HC-PBMCs, and their mOCRB got elevated (p<0.001) without altering ECARB (p=0.239) by supplementation with 2 or 4mM glutamine. We conclude that impaired mitochondrial respiration of SLE-PBMCs could be improved by glutamine under euglycemic condition.


Subject(s)
Glutamine/blood , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/pathology , Mitochondria/metabolism , Oxygen Consumption , Plasma/chemistry , Adult , Aged , Cohort Studies , Female , Humans , Male , Middle Aged
8.
Clin Nutr ; 38(5): 2251-2258, 2019 10.
Article in English | MEDLINE | ID: mdl-30340895

ABSTRACT

BACKGROUND & AIMS: Plasma citrulline concentration is considered to be a marker for enterocyte metabolic mass and to reflect its reduction as may occur during intestinal dysfunction. Strenuous exercise can act as a stressor to induce small intestinal injury. Our previous studies suggest that this comprises the intestinal ability to produce citrulline from a glutamine-rich protein bolus. In this study we investigated the effects of different exercise intensities and hydration state on citrulline and iFABP levels following a post-exercise glutamine bolus in healthy young men. METHODS: Fifteen healthy young men (20-35 yrs, VO2 max 56.9 ± 3.9 ml kg-1 min-1) performed in a randomly assigned cross-over design, a rest (protocol 1) and four cycle ergometer protocols. The volunteers cycled submaximal at different percentages of their individual pre-assessed maximum workload (Wmax): 70% Wmax in hydrated (protocol 2) and dehydrated state (protocol 3), 50% Wmax (protocol 4) and intermittent 85/55% Wmax in blocks of 2 min (protocol 5). Immediately after 1 h exercise or rest, subjects were given a glutamine bolus with added alanine as an iso-caloric internal standard (7.5 g of each amino acid). Blood samples were collected before, during and after rest or exercise, up to 24 h post onset of the experiment. Amino acids and urea were analysed as metabolic markers, creatine phosphokinase and iFABP as markers of muscle and intestinal damage, respectively. Data were analysed using a multilevel mixed linear statistical model. p values were corrected for multiple testing. RESULTS: Citrulline levels already increased before glutamine supplementation during normal hydrated exercise, while this was not observed in the dehydrated and rest protocols. The low intensity exercise protocol (50% Wmax) showed the highest increase in citrulline levels both during exercise (43.83 µmol/L ± 2.63 (p < 0.001)) and after glutamine consumption (50.54 µmol/L ± 2.62) compared to the rest protocol (28.97 µmol/L ± 1.503 and 41.65 µmol/L ± 1.96, respectively, p < 0.05). However, following strenuous exercise at 70% Wmax in the dehydrated state, citrulline levels did not increase during exercise and less after the glutamine consumption when compared to the resting condition and hydrated protocols. In line with this, serum iFABP levels were the highest with the strenuous dehydrated protocol (1443.72 µmol/L ± 249.9, p < 0.001), followed by the high intensity exercise at 70% Wmax in the hydrated condition. CONCLUSIONS: Exercise induces an increase in plasma citrulline, irrespective of a glutamine bolus. The extent to which this occurs is dependent on exercise intensity and the hydration state of the subjects. The same holds true for both the post-exercise increase in citrulline levels following glutamine supplementation and serum iFABP levels. These data indicate that citrulline release during exercise and after an oral glutamine bolus might be dependent on the intestinal health state and therefore on intestinal functionality. Glutamine is known to play a major role in intestinal physiology and the maintenance of gut health and barrier function. Together, this suggests that in clinical practice, a glutamine bolus to increase citrulline levels after exercise might be preferable compared to supplementing citrulline itself. To our knowledge this is the first time that exercise workload-related effects on plasma citrulline are reported in relation to intestinal damage.


Subject(s)
Citrulline/blood , Exercise/physiology , Intestines/physiology , Adult , Bicycling/physiology , Cross-Over Studies , Fatty Acid-Binding Proteins/blood , Glutamine/blood , Humans , Male , Young Adult
9.
Mol Genet Metab ; 125(3): 251-257, 2018 11.
Article in English | MEDLINE | ID: mdl-30217721

ABSTRACT

INTRODUCTION: Glycerol phenylbutyrate (GPB) is approved in the US and EU for the chronic management of patients ≥2 months of age with urea cycle disorders (UCDs) who cannot be managed by dietary protein restriction and/or amino acid supplementation alone. GPB is a pre-prodrug, hydrolyzed by lipases to phenylbutyric acid (PBA) that upon absorption is beta-oxidized to the active nitrogen scavenger phenylacetic acid (PAA), which is conjugated to glutamine (PAGN) and excreted as urinary PAGN (UPAGN). Pharmacokinetics (PK) of GPB were examined to see if hydrolysis is impaired in very young patients who may lack lipase activity. METHODS: Patients 2 months to <2 years of age with UCDs from two open label studies (n = 17, median age 10 months) predominantly on stable doses of nitrogen scavengers (n = 14) were switched to GPB. Primary assessments included traditional plasma PK analyses of PBA, PAA, and PAGN, using noncompartmental methods with WinNonlin™. UPAGN was collected periodically throughout the study up to 12 months. RESULTS: PBA, PAA and PAGN rapidly appeared in plasma after GPB dosing, demonstrating evidence of GPB cleavage with subsequent PBA absorption. Median concentrations of PBA, PAA and PAGN did not increase over time and were similar to or lower than the values observed in older UCD patients. The median PAA/PAGN ratio was well below one over time, demonstrating that conjugation of PAA with glutamine to form PAGN did not reach saturation. Covariate analyses indicated that age did not influence the PK parameters, with body surface area (BSA) being the most significant covariate, reinforcing current BSA based dosing recommendations as seen in older patients. CONCLUSION: These observations demonstrate that UCD patients aged 2 months to <2 years have sufficient lipase activity to adequately convert the pre-prodrug GPB to PBA. PBA is then converted to its active moiety (PAA) providing successful nitrogen scavenging even in very young children.


Subject(s)
Glycerol/analogs & derivatives , Lipase/blood , Phenylbutyrates/administration & dosage , Prodrugs/administration & dosage , Urea Cycle Disorders, Inborn/drug therapy , Child , Child, Preschool , Female , Glutamine/blood , Glycerol/administration & dosage , Glycerol/blood , Glycerol/pharmacokinetics , Humans , Infant , Male , Nitrogen/blood , Nitrogen/metabolism , Phenylacetates/blood , Phenylbutyrates/blood , Phenylbutyrates/pharmacokinetics , Prodrugs/pharmacokinetics , Urea Cycle Disorders, Inborn/blood , Urea Cycle Disorders, Inborn/pathology
10.
Pharmacology ; 101(3-4): 156-162, 2018.
Article in English | MEDLINE | ID: mdl-29301138

ABSTRACT

BACKGROUND: Although there are many clinical studies in which the beneficial effect of glutamine formulation on mucositis induced by chemo/radiotherapy was evaluated, the results are sometimes conflicting with the report of clinical deterioration. Then, we hypothesized that chemotherapy may increase the incidence of hyperammonemia without comparable change of major parameters of hepatic/renal disorder. METHODS: To verify our hypothesis, we examined the increase in blood ammonia level with 1-h intravenous infusion of alanyl-glutamine on day 1-4 after cisplatin (CDDP) administration in rats and assessed the correlation with hepatic/renal parameters. RESULTS: Hepatic parameters (glutamate-oxaloacetic transaminase [GOT] and glutamic-pyruvic transaminase [GPT]) with CDDP did not change until day 3 and only GOT increased on day 4. Renal parameters (plasma creatinine, blood urea nitrogen) with CDDP continuously increased up to day 4. Alanyl-glutamine infusion significantly elevated blood ammonia level of CDDP rats with the peak on day 3, although the same dose did not change that of control rats. CONCLUSION: These results indicates that CDDP enhances the increase in blood ammonia level by glutamine supplementation without correlating with primary parameters for hepatic/renal dysfunction.


Subject(s)
Ammonia/blood , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Dipeptides/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Urea Nitrogen , Creatinine/blood , Glutamic Acid/blood , Glutamine/blood , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Male , Rats
11.
Nutr Hosp ; 34(4): 799-807, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-29095001

ABSTRACT

BACKGROUND: Glutamine depletion is common in the critically-ill patients. Glutaminemia lower than 420 µmol/l has been considered as an independent predictive factor of mortality, but the indications for exogenous glutamine supplementation remain controversial. This study intends to determine the glutaminemia profile in critical surgical patients and to investigate its correlation with the severity indexes and the prognosis. METHODS: A prospective study of 28 adult critical surgical patients was performed. Plasma amino acid concentrations were quantified, by ion exchange chromatography, at the moment of admission and at the first and third days, and compared with those of 11 reference healthy individuals. Severity indexes and parameters of prognosis were registered. RESULTS: In critical surgical patients, mean glutaminemia at admission was lower than that of control individuals (385.1 ± 123.1 versus515 ± 57.9 µmol/l, p = 0.002) and decreased until the third day (p = 0.042). Prevalence of severe hypoglutaminemia (< 420 µmol/l) at admission was 64.3%. Baseline glutaminemia correlated with the Simplified Acute Physiology Score II (SAPS II score) (Pearson's correlation coefficient r = -39.4%, p = 0.042), and it was lower in cases of erythrocytes transfusion (339.9 ± 78.8 versus 454.9 ± 148.8 µmol/l, p = 0.013). Glutaminemia at the third day correlated with the duration of invasive ventilation support (r = -65%, p = 0 .012) and ICU stay (r = -66.5%, p = 0.009). Glutaminemia below 320 µmol/l, observed in 25% of the patients, was associated with higher in-hospital mortality (42.9 versus19%, statistically not significant [n.s.]) and lower actuarial survival (212.1 ± 77.9 versus 262.3 ± 32.4 days, n.s.). CONCLUSIONS: Those results underscore the relevance of hypoglutaminemia as an adverse predictive factor in the critical surgical patients. Determination of glutaminemia may contribute to a better definition of the indications for glutamine supplementation.


Subject(s)
Critical Care/methods , Glutamine/blood , Adult , Aged , Aged, 80 and over , Critical Illness , Female , Glutamine/deficiency , Hospital Mortality , Humans , Male , Middle Aged , Patients , Prospective Studies , Respiration, Artificial , Young Adult
12.
Eur J Appl Physiol ; 117(12): 2569-2577, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29058112

ABSTRACT

PURPOSE: To examine the dose-response effects of acute glutamine supplementation on markers of gastrointestinal (GI) permeability, damage and, secondary, subjective symptoms of GI discomfort in response to running in the heat. METHODS: Ten recreationally active males completed a total of four exercise trials; a placebo trial and three glutamine trials at 0.25, 0.5 and 0.9 g kg-1 of fat-free mass (FFM) consumed 2 h before exercise. Each exercise trial consisted of a 60-min treadmill run at 70% of [Formula: see text] in an environmental chamber set at 30 °C. GI permeability was measured using ratio of lactulose to rhamnose (L:R) in serum. Plasma glutamine and intestinal fatty acid binding protein (I-FABP) concentrations were determined pre and post exercise. Subjective GI symptoms were assessed 45 min and 24 h post-exercise. RESULTS: Relative to placebo, L:R was likely lower following 0.25 g kg-1 (mean difference: - 0.023; ± 0.021) and 0.5 g kg-1 (- 0.019; ± 0.019) and very likely following 0.9 g kg- 1 (- 0.034; ± 0.024). GI symptoms were typically low and there was no effect of supplementation. DISCUSSION: Acute oral glutamine consumption attenuates GI permeability relative to placebo even at lower doses of 0.25 g kg-1, although larger doses may be more effective. It remains unclear if this will lead to reductions in GI symptoms. Athletes competing in the heat may, therefore, benefit from acute glutamine supplementation prior to exercise in order to maintain gastrointestinal integrity.


Subject(s)
Fatty Acid-Binding Proteins/blood , Glutamine/pharmacology , Hot Temperature , Intestinal Absorption , Intestines/physiology , Running/physiology , Administration, Oral , Adult , Dose-Response Relationship, Drug , Glutamine/administration & dosage , Glutamine/blood , Humans , Intestines/drug effects , Lactose/blood , Male , Rhamnose/blood
13.
Mol Genet Metab ; 122(1-2): 51-59, 2017 09.
Article in English | MEDLINE | ID: mdl-28712602

ABSTRACT

BACKGROUND: Propionic acidemia is a rare metabolic disorder caused by a deficiency of propionyl- CoA carboxylase, the enzyme converting propionyl-CoA to methylmalonyl-CoA that subsequently enters the citric acid cycle as succinyl-CoA. Patients with propionic acidemia cannot metabolize propionic acid, which combines with oxaloacetate to form methylcitric acid. This, with the defective supply of succinyl-CoA, may lead to a deficiency in citric acid cycle intermediates. PURPOSE: The objective of this study was to determine whether supplements with glutamine (400mg/kg per day), citrate (7.5mEq/kg per day), or ornithine α-ketoglutarate (400mg/kg per day) (anaplerotic agents that could fill up the citric acid cycle) would affect plasma levels of glutamine and ammonia, the urinary excretion of Krebs cycle intermediates, and the clinical outcome in 3 patients with propionic acidemia. METHODS: Each supplement was administered daily for four weeks with a two week washout period between supplements. The supplement that produced the most favorable changes was supplemented for 30 weeks following the initial study period and then for a 2 year extension. RESULTS: The urinary excretion of the Krebs cycle intermediates, α-ketoglutarate, succinate, and fumarate increased significantly compared to baseline during citrate supplementation, but not with the other two supplements. For this reason, citrate supplements were continued in the second part of the study. The urinary excretion of methylcitric acid and 3-hydroxypropionic acid did not change with any intervention. No significant changes in ammonia or glutamine levels were observed with any supplement. However, supplementation with any anaplerotic agents normalized the physiological buffering of ammonia by glutamate, with plasma glutamate and alanine levels significantly increasing, rather than decreasing with increasing ammonia levels. No significant side effects were observed with any therapy and safety labs (blood counts, chemistry and thyroid profile) remained unchanged. Motor and cognitive development was severely delayed before the trial and did not change significantly with therapy. Hospitalizations per year did not change during the trial period, but decreased significantly (p<0.05) in the 2years following the study (when citrate was continued) compared to the 2years before and during the study. CONCLUSIONS: These results indicate that citrate entered the Krebs cycle providing successful anaplerotic therapy by increasing levels of the downstream intermediates of the Krebs cycle: α-ketoglutarate, succinate and fumarate. Citrate supplements were safe and might have contributed to reduce hospitalizations in patients with propionic acidemia.


Subject(s)
Citric Acid Cycle/drug effects , Citric Acid/administration & dosage , Dietary Supplements , Glutamine/administration & dosage , Ornithine/analogs & derivatives , Propionic Acidemia/diet therapy , Amino Acids/blood , Ammonia/blood , Carbon-Carbon Ligases/metabolism , Child , Child, Preschool , Citrates/urine , Citric Acid/adverse effects , Dietary Supplements/adverse effects , Female , Glutamine/adverse effects , Glutamine/blood , Humans , Lactic Acid/analogs & derivatives , Lactic Acid/urine , Male , Ornithine/administration & dosage , Propionic Acidemia/metabolism , Propionic Acidemia/physiopathology , Treatment Outcome
14.
Eur J Clin Nutr ; 71(5): 587-593, 2017 05.
Article in English | MEDLINE | ID: mdl-27677364

ABSTRACT

BACKGROUND/OBJECTIVES: Branched-chain amino acids (BCAAs) and purine nucleotide cycle (PNC) are both associated with energy metabolism. The purpose of this study was to explore the influences of BCAA supplementation on the PNC activity of male athletes in response to a bout of endurance running exercise. SUBJECTS/METHODS: Twelve male athletes (20.3±1.4 years) participated in the study. Each of the athletes received 12 g of a BCAA supplement (leucine 54%, isoleucine 19% and valine 27%) per day during the study. They performed two identical 60-min running exercises (65-70% maximum heart rate reserved) before and after receiving the BCAA supplements for 15 days. In addition to body composition measurement, plasma and urinary samples were also collected. Plasma samples were examined for the concentrations of glucose, lactate, BCAAs, alanine, glutamine, aspartate, hypoxanthine and uric acid. Urinary samples were examined for the concentrations of urea nitrogen, hydroxyproline, 3-methylhistidine and creatinine. RESULTS: Body composition and the concentrations of urinary metabolites were not affected by BCAA supplementation, whereas clearance of plasma lactate after recovery from exercise was enhanced by BCAA supplementation (P<0.05). Plasma aspartate concentration was increased (P<0.05), whereas plasma glutamine, hypoxanthine and uric acid concentrations were decreased (P<0.05) by BCAA supplementation. CONCLUSIONS: The findings suggest that BCAA supplements not only provided additional substrate to meet the energy demands of the athletes during endurance exercise but also reduced their PNC activity, and subsequently decreased uric acid production and reduced the incidence of gout in a person engaging in endurance exercise.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Purine Nucleotides/metabolism , Running/physiology , Sports Nutritional Physiological Phenomena , Adolescent , Amino Acids, Branched-Chain/blood , Anthropometry , Athletes , Blood Glucose/metabolism , Body Composition , Dietary Supplements , Glutamine/blood , Humans , Hypoxanthine/blood , Isoleucine/administration & dosage , Isoleucine/blood , Leucine/administration & dosage , Leucine/blood , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Endurance , Pilot Projects , Uric Acid/blood , Urinalysis , Valine/administration & dosage , Valine/blood , Young Adult
15.
Clin Nutr ; 36(1): 186-190, 2017 02.
Article in English | MEDLINE | ID: mdl-26589975

ABSTRACT

BACKGROUND: A point-of-care instrument developed for measuring glutamine levels in cell cultures was validated for bedside use in the ICU setting and compared with a standard HPLC technique to measure plasma glutamine. The aim was to evaluate the instrument for absolute measurements and for screening purposes. METHODS: Consecutive blood samples were obtained from one hundred adult ICU patients 3-5 days apart during their ICU stay. Each sample was divided into 3 aliquots, out of which two were used for analyses of plasma and whole blood glutamine by the point-of-care instrument, and one was used for analysis of plasma glutamine concentration by the gold standard HPLC technique. Comparisons were performed by Bland-Altman analyses. RESULTS: Comparison of the initial plasma sample of each subject (n = 100), between the point of care instrument and HPLC analysis revealed a systematic bias of -221 µmol/L. Comparisons between plasma and whole blood on the point-of-care instrument revealed comparable results. After pragmatic adjustments for the measured bias and hematocrit, whole blood analyses during ICU stay (n = 316) compared with HPLC plasma analyses showed a line of identity of -34 µmol/L and limits of agreement between 288 and -355 µmol/L. CONCLUSION: When compared to the HPLC gold standard in particular, the lines of agreement indicate that the point-of-care instrument is not suitable for quantitative plasma or whole blood glutamine concentration measurements. For screening purposes the instrument may be useful in order to identify patients with hypoglutaminemia and hyperglutaminemia and the tested accuracy was high enough for safe supplementation of glutamine to patients with low plasma values measured with the device. The point-of-care instrument may also serve as a screening tool for scientific studies.


Subject(s)
Glutamine/blood , Intensive Care Units , Point-of-Care Testing , Adult , Aged , Aged, 80 and over , Chromatography, High Pressure Liquid , Female , Hematocrit , Humans , Male , Middle Aged , Reproducibility of Results , Young Adult
16.
Eur J Nutr ; 56(5): 1953-1962, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27289540

ABSTRACT

PURPOSE: To explore whether changes in dietary protein sources can lower plasma branched-chain amino acids (BCAAs), aromatic amino acids and sulfur amino acids (SAAs) that are often elevated in the obese, insulin-resistant state and in type 2 diabetes. METHODS: Thirty-six subjects (mean age 31 ± 2 years) underwent a voluntary abstinence from meat, poultry, eggs, and dairy products for 6 weeks, while enriching the diet with fish, in fulfillment of a religious fast. Subjects were assessed 1 week before the fast (V1), 1 week after initiation of the fast (V2) and in the last week of the fast (V3). Thirty-four subjects completed all three visits. RESULTS: Fasting plasma BCAAs decreased at V2 and remained low at V3 (P < 0.001 for all). Valine showed the greatest decline, by 20 and 19 % at V2 and V3, respectively. Phenylalanine and tryptophan, but not tyrosine, also decreased at V2 and V3. The two proteinogenic SAAs, methionine and cysteine, remained stable, but the cysteine product, taurine, decreased from 92 ± 7 µmol/L to 66 ± 6 (V2; P = 0.003) and 65 ± 6 µmol/L (V3; P = 0.003). A progressive decline in plasma glutamic acid, coupled with an increase in glutamine, was observed. Plasma total and LDL cholesterol decreased at V2 and V3 (P < 0.001 for all). CONCLUSION: Changing dietary protein sources to plant- and fish-based sources in an ad libitum setting lowers the plasma BCAAs that have been linked to diabetes risk. These findings point to habitual diet as a potentially modifiable determinant of fasting plasma BCAA concentrations.


Subject(s)
Amino Acids/blood , Diet , Seafood , Adult , Animals , Blood Glucose/metabolism , Body Composition , Cholesterol/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diet therapy , Dietary Proteins/administration & dosage , Egypt/epidemiology , Female , Fishes , Glutamine/blood , Humans , Insulin/blood , Insulin Resistance , Life Style , Male , Obesity/blood , Obesity/diet therapy , Triglycerides/blood
18.
Crit Care ; 20(1): 361, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27829456

ABSTRACT

Glutamine has been launched as a conditionally indispensible amino acid for the critically ill. Supplementation has been recommended in guidelines from international societies. Although data have been presented pointing out that glutamine supplementation may not be for everybody, recommendations for treatments and design of study protocols have included all critically ill patients. Results from more recent studies and meta-analyses indicate that indiscriminate use of glutamine supplementation in critically ill patients may actually cause harm rather than beneficial effects. This viewpoint sorts out arguments of controversy in the glutamine story.


Subject(s)
Critical Illness/therapy , Dietary Supplements , Glutamine/administration & dosage , Glutamine/blood , Humans , Parenteral Nutrition/methods , Parenteral Nutrition/trends
19.
Nutr J ; 15(1): 73, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27485319

ABSTRACT

BACKGROUND: Not only is glutamine deficiency an independent predictor of mortality in intensive care unit (ICU) patients, but glutamine supplementation is also recommended for its proven outcome benefits. However, recent data suggest that early glutamine supplementation in certain patient groups increase mortality. The aim of this study was to investigate plasma glutamine levels of adult ICU patients in the South African setting and to determine relationships between glutamine levels, gender, diagnostic categories and selected inflammatory markers. The data from this study will be used as baseline measurement to support a large scale study that will be undertaken in the South African ICU population. METHODS: This cross-sectional, analytical study included 60 mixed adult ICU patients within 24 h post ICU admission. Plasma glutamine levels were determined on admission. The relationship between glutamine levels, Interleukin-6 (IL-6) and C-reactive protein (CRP); as well as gender- and diagnosis-related differences in glutamine levels were also investigated. A non-parametric ROC curve was computed to determine the CRP concentration cut-off point above which glutamine becomes deficient. RESULTS: The median plasma glutamine level (497 µmol/L) was in the normal range; however, 38.3 % (n = 23) of patients had deficient (<420 µmol/L) and 6.7 % (n = 4) had supra-normal glutamine levels (>930 µmol/L). No significant difference could be detected between glutamine levels and gender or diagnosis categories as a group. When only the medical and surgical categories were compared, the median plasma glutamine level of the medical patients were significantly lower than that of the surgical patients (p = 0.042). Glutamine showed inverse associations with CRP levels (r = -0.44, p < 0.05) and IL-6 concentrations (r = -0.23, p = 0.08). A CRP cut-off value of 95.5 mg/L was determined above which glutamine levels became deficient. CONCLUSIONS: About a third of patients (38 %) were glutamine deficient on admission to ICU, whereas some presented with supra-normal levels. While glutamine levels correlated inversely with inflammatory markers, and a CRP value of above 95.5 mg/L indicated potential glutamine deficiency, the clinical application of this finding needs further investigation.


Subject(s)
Glutamine/deficiency , Intensive Care Units , Adult , Biomarkers/blood , C-Reactive Protein/analysis , Critical Care , Cross-Sectional Studies , Female , Glutamine/blood , Humans , Inflammation/blood , Interleukin-6/blood , Male , South Africa
20.
Appl Physiol Nutr Metab ; 41(8): 842-849, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27447686

ABSTRACT

In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.


Subject(s)
Alanine/administration & dosage , Glutamine/administration & dosage , Glutathione/blood , HSP27 Heat-Shock Proteins/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Alanine/blood , Animals , Creatine Kinase/blood , DNA-Binding Proteins/metabolism , Dietary Supplements , Erythrocytes/cytology , Erythrocytes/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamine/blood , Glutathione Disulfide/blood , Heat Shock Transcription Factors , Male , Myoglobin/blood , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL