Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cent Nerv Syst Agents Med Chem ; 23(2): 126-136, 2023.
Article in English | MEDLINE | ID: mdl-37608652

ABSTRACT

BACKGROUND: The primary phytoconstituents reported to have neuroprotective effects are flavonoids and phenolic compounds. Aerva persica roots are reported to be rich in flavonoids and phenolic compounds. Therefore, this study aimed to explore the nootropic potential of Aerva persica roots. OBJECTIVE: The objective of this study was to evaluate the nootropic potential of Aerva persica roots against D-galactose-induced memory impairment. METHODS: In this study, the roots of Aerva persica were extracted with 70% ethanol. The obtained extract was evaluated for total phenolic content using the Folin-Ciocalteu method and total flavonoid content using the aluminium chloride colorimetric assay. Afterward, the acute oral toxicity of the extract was determined following the Organisation for Economic Co-operation and Development (OECD) guideline 423. Additionally, two doses of Aerva persica (100 and 200 mg/kg body weight (BW)) were evaluated for their nootropic potential against D-galactose-induced memory impairment. The nootropic potential of the crude extract was assessed through a behavioural study and brain neurochemical analysis. Behavioural studies involved the evaluation of spatial reference- working memory using the radial arm maze test and the Y-maze test. Neurochemical analysis was performed to determine the brain's acetylcholine, acetylcholinesterase, glutathione (GSH), and malondialdehyde (MDA) levels. RESULTS: The total phenolic content and total flavonoid content were found to be 179.14 ± 2.08 µg GAE/mg and 273.72 ± 3.94 µg QE/mg, respectively. The Aerva persica extract was found to be safe up to 2000 mg/kg BW. Following the safety assessment, the experimental mice received various treatments for 14 days. The behavioural analysis using the radial maze test showed that the extract at both doses significantly improved spatial reference-working memory and reduced the number of total errors compared to disease control groups. Similarly, in the Y-maze test, both doses significantly increased the alteration percentage and the percentage of novel arm entry (both indicative of intact spatial memory) compared to disease control. In neurochemical analysis, Aerva persica at 200 mg/kg significantly normalised the acetylcholine level (p<0.0001) and GSH level (p<0.01) compared to disease control. However, the same effect was not observed with Aerva persica at 100 mg/kg. Additionally, Aerva persica at 200mg/kg BW significantly decreased the acetylcholinesterase level (p<0.0001) and decreased the brain's MDA level (p<0.01) compared to the disease control, whereas the effect of Aerva persica at 100 mg/kg BW in reducing acetylcholinesterase was non-significant. CONCLUSION: Based on the results, it can be concluded that the nootropic potential of Aerva persica was comparable to that of the standard drug, Donepezil, and the effect might be attributed to the higher content of flavonoids and phenolic compounds.


Subject(s)
Amaranthaceae , Nootropic Agents , Mice , Animals , Nootropic Agents/pharmacology , Galactose/toxicity , Acetylcholinesterase , Acetylcholine/adverse effects , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Glutathione/adverse effects , Ethanol , Flavonoids/pharmacology , Flavonoids/therapeutic use , Maze Learning
2.
Biomol Biomed ; 23(4): 649-660, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-36762432

ABSTRACT

Taxifolin (TA) is a natural flavonoid found in many foods and medicinal plants with well-documented antioxidant and anti-inflammatory properties. Cyclophosphamide (CP) is an effective antineoplastic and immunosuppressive agent; however, it is associated with numerous adverse events, including hepatotoxicity. Herein, we aimed to investigate the potential protective effects of TA using a mouse model of CP-induced hepatotoxicity. Mice were co-treated with TA (25 and 50 mg/kg, orally) and CP (30 mg/kg, i.p.) for 10 consecutive days and sacrificed 24 hours later. CP induced increased transaminases (ALT and AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) paralleled with pronounced histopathological alterations in the liver. Moreover, hepatic tissues of CP-injected mice showed increased malondialdehyde (MDA), protein carbonyl, and nitric oxide (NO) levels, accompanied by decreased antioxidant defenses (glutathione [GSH], superoxide dismutase [SOD], and catalase [CAT]). Livers of CP-injected mice also showed increased inflammatory response (nuclear transcription factor kappa-B [NF-κB] p65 activation, increased levels of proinflammatory cytokines tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1ß], and IL-6) and apoptosis (decreased Bcl-2 and increased Bax and caspase-3 expression levels). Remarkably, TA ameliorated markers of liver injury and histological damage in CP-injected mice. TA treatment also attenuated numerous markers of oxidative stress, inflammation, and apoptosis in the liver of CP-injected mice. This was accompanied by increased nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) expression in the liver tissues of CP-injected mice. Taken together, this study indicates that TA may represent a promising new avenue to prevent/treat CP-induced hepatotoxicity and perhaps other liver diseases associated with oxidative stress and inflammation.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Humans , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Oxidative Stress , Cyclophosphamide/adverse effects , NF-kappa B/metabolism , Apoptosis , Glutathione/adverse effects , Chemical and Drug Induced Liver Injury/drug therapy
3.
Appl Physiol Nutr Metab ; 46(9): 1133-1142, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33740389

ABSTRACT

The effect of oral glutathione (GSH) supplementation was studied in obese subjects with and without type 2 diabetes (T2DM) on measures of glucose homeostasis and markers of oxidative stress. Twenty subjects (10 patients with T2DM and 10 obese subjects) were recruited for the study, and randomized in a double-blinded placebo-controlled manner to consume either 1000 mg GSH per day or placebo for 3 weeks. Before and after the 3 weeks insulin sensitivity was measured with the hyperinsulinemic-euglycemic clamp and a muscle biopsy was obtained to measure GSH and skeletal muscle mitochondrial hydrogen peroxide (H2O2) emission rate. Whole body insulin sensitivity increased significantly in the GSH group. Skeletal muscle GSH was numerically increased (∼19%) in the GSH group; no change was seen in GSH to glutathione disulfide ratio. Skeletal muscle mitochondrial H2O2 emission rate did not change in response to the intervention and neither did the urinary excretion of the RNA oxidation product 8-oxo-7,8-dihydroguanosine or the DNA oxidation product 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), although 8-oxodG decreased as a main effect of time. Oral GSH supplementation improves insulin sensitivity in obese subjects with and without T2DM, although it does not alter markers of oxidative stress. The study has been registered in clinicaltrials.gov (NCT02948673). Novelty: Reduced glutathione supplementation increases insulin sensitivity in obese subjects with and without T2DM. H2O2 emission rate from skeletal muscle mitochondria was not affected by GSH supplementation.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Glutathione/administration & dosage , Insulin Resistance/physiology , Obesity/physiopathology , Administration, Oral , Biomarkers/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements/adverse effects , Glucose Tolerance Test , Glutathione/adverse effects , Glutathione/blood , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Hydrogen Peroxide/metabolism , Middle Aged , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Oxidative Stress , Oxygen Consumption
4.
Eur J Nutr ; 54(2): 251-63, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24791752

ABSTRACT

PURPOSE: Glutathione (GSH), the most abundant endogenous antioxidant, is a critical regulator of oxidative stress and immune function. While oral GSH has been shown to be bioavailable in laboratory animal models, its efficacy in humans has not been established. Our objective was to determine the long-term effectiveness of oral GSH supplementation on body stores of GSH in healthy adults. METHODS: A 6-month randomized, double-blinded, placebo-controlled trial of oral GSH (250 or 1,000 mg/day) on GSH levels in blood, erythrocytes, plasma, lymphocytes and exfoliated buccal mucosal cells was conducted in 54 non-smoking adults. Secondary outcomes on a subset of subjects included a battery of immune markers. RESULTS: GSH levels in blood increased after 1, 3 and 6 months versus baseline at both doses. At 6 months, mean GSH levels increased 30-35 % in erythrocytes, plasma and lymphocytes and 260 % in buccal cells in the high-dose group (P < 0.05). GSH levels increased 17 and 29 % in blood and erythrocytes, respectively, in the low-dose group (P < 0.05). In most cases, the increases were dose and time dependent, and levels returned to baseline after a 1-month washout period. A reduction in oxidative stress in both GSH dose groups was indicated by decreases in the oxidized to reduced glutathione ratio in whole blood after 6 months. Natural killer cytotoxicity increased >twofold in the high-dose group versus placebo (P < 0.05) at 3 months. CONCLUSIONS: These findings show, for the first time, that daily consumption of GSH supplements was effective at increasing body compartment stores of GSH.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Glutathione/administration & dosage , Immunologic Factors/administration & dosage , Intestinal Absorption , Killer Cells, Natural/immunology , Oxidative Stress , Adult , Aged , Antioxidants/adverse effects , Antioxidants/analysis , Antioxidants/metabolism , Biomarkers/blood , Biomarkers/metabolism , Dietary Supplements/adverse effects , Double-Blind Method , Erythrocytes/metabolism , Female , Glutathione/adverse effects , Glutathione/blood , Glutathione/metabolism , Humans , Immunologic Factors/adverse effects , Immunologic Factors/analysis , Immunologic Factors/metabolism , Killer Cells, Natural/metabolism , Lymphocytes/metabolism , Male , Middle Aged , Mouth Mucosa/metabolism , Oxidation-Reduction , Tissue Distribution
5.
J Altern Complement Med ; 19(5): 459-63, 2013 May.
Article in English | MEDLINE | ID: mdl-23240940

ABSTRACT

PURPOSE: Glutathione depletion has been documented in several disease states, and exogenous administration has been hypothesized to have therapeutic potential for some conditions. In an effort to reach target tissues of the sinuses and central nervous system (CNS), glutathione is being prescribed as an intranasal spray, although no literature exists to support this mode of administration. The objective of this study was to describe patient-reported outcomes in a population of individuals who have been prescribed intranasal reduced glutathione, (in)GSH. METHODS: A survey was designed to assess individuals' perception of tolerability, adverse events, and health benefits associated with (in)GSH use. Using a pharmacy database, 300 individuals were randomly selected to receive a survey; any individual who had received one or more prescriptions for (in)GSH between March 2009 and March 2011 was eligible for participation. RESULTS: Seventy (70) individuals returned the survey (23.3% response rate) from 20 different states. Reported indications for (in)GSH prescriptions were multiple chemical sensitivity (MCS) (n=29), allergies/sinusitis (n=25), Parkinson disease (PD) (n=7), Lyme disease (n=3), fatigue (n=2), and other (n=10). Of the respondents, 78.8% (n=52) reported an overall positive experience with (in)GSH, 12.1% (n=8) reported having experienced adverse effects, and 62.1% (n=41) reported having experienced health benefits attributable to (in)GSH use. Over 86% of respondents considered the nasal spray to be comfortable and easy to administer. CONCLUSIONS: This is the first study to evaluate patient-reported outcomes among individuals across the country who have been prescribed (in)GSH. The majority of survey respondents considered (in)GSH to be effective and without significant adverse effects. (in)GSH should be further evaluated as a method of treating respiratory and CNS diseases where free-radical burden is a suspected contributor to disease progression.


Subject(s)
Glutathione/administration & dosage , Glutathione/adverse effects , Adult , Aged , Female , Humans , Male , Middle Aged , Multiple Chemical Sensitivity/diagnosis , Multiple Chemical Sensitivity/drug therapy , Nasal Sprays , Parkinson Disease/diagnosis , Parkinson Disease/drug therapy , Patient Satisfaction , Product Surveillance, Postmarketing , Respiratory Hypersensitivity/diagnosis , Respiratory Hypersensitivity/drug therapy , Sinusitis/diagnosis , Sinusitis/drug therapy , Young Adult
6.
Salvador; s.n; 2013. 47 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: biblio-1000906

ABSTRACT

Leptospirose é uma zoonose que pode levar a graves complicações, como a síndrome de Weil e a síndrome pulmonar hemorrágica, porém os mecanismos patogênicos que levam ao desenvolvimento das formas graves da doença ainda são desconhecidos. Após a penetração no indivíduo, as leptospiras invadem a corrente sanguínea e se disseminam para os órgãos. Dessa forma, a leptospirose apresenta características semelhantes as da sepse, doença que tem o estresse oxidativo como um dos principais responsáveis pelo seu agravamento. Entretanto, pouco se sabe sobre o envolvimento do estresse oxidativo na leptospirose. O presente estudo teve como objetivo avaliar se a produção de espécies reativas de oxigênio (ROS) e os níveis do antioxidante glutationa (GSH) estão relacionados com as manifestações clínicas mais graves de pacientes hospitalizados com leptospirose. A produção de ROS e os níveis de GSH foram avaliados nas amostras de sangue de doze pacientes e nove indivíduos saudáveis através dos ensaios de quimioluminescência e de absorbância, respectivamente. Nós observamos que os níveis de ROS estavam aumentados (p=0.0012) e os de GSH diminuídos (p=0.0002) nos pacientes quando comparados com os indivíduos saudáveis. Dentre os pacientes, a diminuição de GSH estava correlacionada com a trombocitopenia (r=0.63) e com elevados níveis de creatinina (r= -0.64), enquanto que a produção de ROS estava fortemente correlacionada com os níveis elevados de potássio sérico (r=0.8). A compreensão da importância biológica de ROS e do GSH na leptospirose faz-se necessária, pois uma investigação mais detalhada pode levar ao desenvolvimento de terapias adjuvantes focadas no estresse oxidativo.


Leptospirosis is a zoonotic disease that causes severe manifestations such as Weil’s disease and pulmonary hemorrhage syndrome, however the underlying mechanisms that lead to the development of severe forms are not clear. Leptospires penetrate through skin, reach the bloodstream and disseminate to the organs. Thus, leptospirosis and sepsis have similar characteristics. Although there is vast literature demonstrating that oxidative stress play an important role in the severity of sepsis, none is known about it in leptospirosis. The aim of this study was to evaluate whether reactive oxygen species (ROS) production and antioxidant reduced glutathione (GSH) levels are related to complications in patients hospitalized with leptospirosis. ROS production and GSH levels were measured in blood samples of twelve patients and nine healthy controls using chemiluminescence and absorbance assays. We found that ROS production was higher (p=0.0012) and GSH levels were lower (p=0.0002) in leptospirosis patients compared with healthy individuals. Among patients, GSH depletion was correlated with thrombocytopenia (r=0.63) and elevated serum creatinine (r= -0.64), while a strong positive correlation was observed between ROS production and elevated serum potassium (r=0.8). Additional investigation of the biological significance of ROS production and GSH levels is warranted as they may guide the development of novel adjuvant therapies for leptospirosis targeting oxidative stress.


Subject(s)
Humans , Glutathione , Glutathione/analysis , Glutathione/adverse effects , Leptospirosis/complications , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Leptospirosis/mortality , Leptospirosis/prevention & control , Leptospirosis/blood , Leptospirosis/transmission
7.
Biol Trace Elem Res ; 150(1-3): 249-57, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22661074

ABSTRACT

The main purpose of this study was to prepare selenium/glutathione-enriched Candida utilis and investigate its effect on growth performance, antioxidant capacity, and immune response in rats. The preparation of the selenium/glutathione-enriched yeast was conducted using fed-batch culture for high cell density. The optimal culture conditions for increased intracellular organic selenium and glutathione contents were as follows: the concentrated medium was fed beginning at 12 h using a polynomial feeding strategy until a total glucose concentration of 150 g/l was reached, and sodium selenite was continuously added together with glucose to a total concentration of 60 mg/l. As a result, 81 % of sodium selenite was assimilated and transformed into organic selenium by C. utilis under optimal conditions, which in turn resulted in greater glutathione accumulation and lower malondialdehyde cellular content in the yeast. To investigate and compare the effects of the prepared selenized C. utilis and other dietary supplements, 40 female rats were divided into five groups of eight rats each, following a randomized block design. Experimental feeding was conducted for a period of 6 weeks. Selenium supplementation with inorganic selenium (sodium selenite) and organic selenium (selenized C. utilis) showed better results than the control and other groups supplemented with yeast with or without glutathione. The body mass of rats, selenium deposition, and oxidative enzymes activities in both serum and liver samples, and immunity responses were all significantly improved by selenium supplementation, and between the two sources, organic selenium was more effective than inorganic selenium.


Subject(s)
Antioxidants/metabolism , Candida/metabolism , Dietary Supplements , Glutathione/metabolism , Immunologic Factors/metabolism , Lymphocyte Activation , Selenium/metabolism , Animals , Antioxidants/administration & dosage , Antioxidants/adverse effects , Batch Cell Culture Techniques , Candida/chemistry , Candida/growth & development , Dietary Supplements/adverse effects , Dietary Supplements/analysis , Female , Glutathione/administration & dosage , Glutathione/adverse effects , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Liver/enzymology , Liver/metabolism , Malondialdehyde/metabolism , Oxidation-Reduction , Oxidoreductases/blood , Oxidoreductases/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Selenium/administration & dosage , Selenium/adverse effects , Sodium Selenite/administration & dosage , Sodium Selenite/adverse effects , Sodium Selenite/metabolism , Tissue Distribution , Weight Gain
8.
Kardiologiia ; 51(11): 28-37, 2011.
Article in Russian | MEDLINE | ID: mdl-22117768

ABSTRACT

On the basis of earlier executed studies of hypotensive effect of dinitrosyl iron complexes (DNIC) with glutathione, the drug has been created in industrial conditions named oxacom. Preliminary pharmacological studies of oxacom have not revealed negative qualities. The drug has been now tested in 14 healthy men in whom at single intravenous introduction it caused typical response - a decrease of diastolic as well as systolic arterial pressure on 24-27 mmHg through 3-4 min with subsequent very slow restoration in 8-10 hours. The heart rate after initial rise was quickly normalized. Echocardiography revealed unaltered cardiac output in spite of reduced cardiac filling by 28%. The multilateral analysis of clinical and biochemical data has revealed an absence of essential alterations which could lead to pathological consequences. The drug is recommended for carrying out of the second phase of clinical trial. The comparative study of the efficiency of hypotensive action of oxacom, S-nitrosoglutathione (GS-NO) and sodium nitrite (NO2) in rats has shown that the duration of effect was the greatest at oxacom action.


Subject(s)
Blood Pressure/drug effects , Glutathione , Hypertension/drug therapy , Iron , Nitrogen Oxides , S-Nitrosoglutathione/pharmacokinetics , Sodium Nitrite/pharmacokinetics , Adult , Animals , Biological Availability , Drug Evaluation, Preclinical/methods , Drug Monitoring/methods , Glutathione/administration & dosage , Glutathione/adverse effects , Glutathione/pharmacokinetics , Glutathione/pharmacology , Humans , Hypertension/metabolism , Hypertension/physiopathology , Hypotension/chemically induced , Infusions, Intravenous , Iron/administration & dosage , Iron/adverse effects , Iron/pharmacokinetics , Iron/pharmacology , Male , Nitric Oxide/metabolism , Nitrogen Oxides/administration & dosage , Nitrogen Oxides/adverse effects , Nitrogen Oxides/pharmacokinetics , Nitrogen Oxides/pharmacology , Rats , Rats, Wistar , Therapeutic Equivalency , Therapies, Investigational , Treatment Outcome
9.
Free Radic Biol Med ; 51(3): 681-7, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21672627

ABSTRACT

Two popular complementary, alternative, and integrative medicine therapies, high-dose intravenous ascorbic acid (AA) and intravenous glutathione (GSH), are often coadministered to cancer patients with unclear efficacy and drug-drug interaction. In this study we provide the first survey evidence for clinical use of iv GSH with iv AA. To address questions of efficacy and drug-drug interaction, we tested 10 cancer cell lines with AA, GSH, and their combination. The results showed that pharmacologic AA induced cytotoxicity in all tested cancer cells, with IC(50) less than 4 mM, a concentration easily achievable in humans. GSH reduced cytotoxicity by 10-95% by attenuating AA-induced H(2)O(2) production. Treatment in mouse pancreatic cancer xenografts showed that intraperitoneal AA at 4 g/kg daily reduced tumor volume by 42%. Addition of intraperitoneal GSH inhibited the AA-induced tumor volume reduction. Although all treatments (AA, GSH, and AA+GSH) improved survival rate, AA+GSH inhibited the cytotoxic effect of AA alone and failed to provide further survival benefit. These data confirm the pro-oxidative anti-cancer mechanism of pharmacologic AA and suggest that AA and GSH administered together provide no additional benefit compared with AA alone. There is an antagonism between ascorbate and glutathione in treating cancer, and therefore iv AA and iv GSH should not be coadministered to cancer patients on the same day.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma/drug therapy , Pancreatic Neoplasms/drug therapy , Animals , Antioxidants/administration & dosage , Antioxidants/adverse effects , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , Carcinoma/metabolism , Carcinoma/pathology , Drug Evaluation, Preclinical , Drug Interactions , Female , Glutathione/administration & dosage , Glutathione/adverse effects , HeLa Cells , Humans , Infusions, Parenteral , Injections, Intravenous , Mice , Mice, Nude , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
10.
Phytochemistry ; 64(3): 673-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-13679089

ABSTRACT

Kava-kava is a traditional beverage of the South Pacific islanders and has had centuries of use without major side effects. Standardised extracts of kava-kava produced in Europe have led to many serious health problems and even to death. The extraction process (aqueous vs. acetone in the two types of preparations) is responsible for the difference in toxicity as extraction of glutathione in addition to the kava lactones is important to provide protection against hepatotoxicity. The Michael reaction between glutathione and kava lactones, resulting in opening of the lactone ring, reduces the side effects of the kava kava extracts. This protective activity was demonstrated using Acanthamoebae castellanii in which 100% cell death occurred with 100 mg ml(-1) kava lactones alone, and 40% cell death with a mixture of 100 mg ml (-1)glutathione and 100 mg ml (-1) kava lactones. A comparison of kava lactone toxicity with other pharmaceutical products is discussed and recommendations made for safe usage of kava-kava products


Subject(s)
Kava/chemistry , Lactones/adverse effects , Acanthamoeba/cytology , Acanthamoeba/drug effects , Animals , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury , Drug Interactions , Glutathione/adverse effects , Glutathione/analysis , Glutathione/chemistry , Glutathione/toxicity , Humans , Lactones/chemistry , Lactones/isolation & purification , Lactones/toxicity , Plant Extracts/adverse effects , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Roots/chemistry , Plant Stems/chemistry , Pyrones/chemistry , Tissue Distribution
11.
Poult Sci ; 72(11): 2095-105, 1993 Nov.
Article in English | MEDLINE | ID: mdl-8265498

ABSTRACT

The effects of CP and antioxidants on fatty liver hemorrhagic syndrome (FLHS) in Japanese quail hens were studied. In Experiment 1, four treatments were arranged as a 2 x 2 factorial; dietary CP (18 or 24%) and reduced glutathione (GSH, 0 or 120 mg/kg diet) were the major variables, but cysteine and other amino acids were higher in the 24% CP diets. Negative control (NC1) and positive control (PC1) diets were also evaluated. In Experiment 2, the effects of vitamin E (VE) and GSH were evaluated in the presence and absence of adequate dietary sulfur amino acids. Negative control (NC2) and positive control (PC2) diets were used. In both experiments, liver hemorrhage was most severe in quail fed the diets that were formulated to induce hepatic steatosis and limit oxidant defense capability. Liver hemorrhage was least severe in quail fed the diets that were formulated to minimize liver lipid accumulation and support oxidant defenses. Histological evaluation of affected quail livers showed changes consistent with FLHS in chicken hens. In Experiment 1, neither CP concentration nor GSH supplementation influenced liver hemorrhage. In Experiment 2, liver hemorrhagic score was reduced from 3.8 to 2.7 (P < or = .05) by adding VE to the basal diet. The PC2 diet further depressed liver score to only 2.0 (P < or = .05). The data clearly show that Japanese quail are susceptible to FLHS and indicate that a combination of lipotropic and antioxidant nutrients is protective against hemorrhage, even when lipogenic demands are maximized by feeding diets devoid of added fat.


Subject(s)
Coturnix , Dietary Proteins/adverse effects , Fatty Liver/veterinary , Glutathione/adverse effects , Hemorrhage/veterinary , Poultry Diseases/pathology , Vitamin E/adverse effects , Animals , Fatty Liver/etiology , Fatty Liver/pathology , Female , Glutathione/administration & dosage , Hemorrhage/etiology , Hemorrhage/pathology , Organ Size , Oviposition , Poultry Diseases/etiology , Vitamin E/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL