Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mol Med ; 30(1): 24, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321393

ABSTRACT

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Nanospheres , Selenium , Humans , Mice , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Selenium/metabolism , Selenium/pharmacology , Selenium/therapeutic use , Silicon Dioxide/metabolism , Silicon Dioxide/pharmacology , Silicon Dioxide/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/metabolism , Lipid Peroxidation , Porosity , Tumor Necrosis Factor-alpha/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Tight Junction Proteins/metabolism
2.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728183

ABSTRACT

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Subject(s)
Beta vulgaris , Exosomes , Ferroptosis , Humans , Mice , Animals , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Myocardium/metabolism , Beta vulgaris/metabolism , Exosomes/metabolism , Mice, Inbred C57BL , Doxorubicin/adverse effects , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Oxidative Stress , Myocytes, Cardiac/metabolism
3.
J Ethnopharmacol ; 312: 116505, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37080366

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dachaihu decoction (DCH), a classic formula for Yangming and Shaoyang Syndrome Complex recorded in "Treatise on Cold Damage", has been widely used in treating intestinal disorders and inflammatory diseases with few side effects in China. However, the mechanism of DCH on septic intestinal injury (SII) remains to be explored. AIM OF THE STUDY: This study aimed to clarify the mechanism of DCH on SII. MATERIALS AND METHODS: SII model of rat, established by cecal ligation and puncture (CLP), was used to study the effect of DCH on SII. 24 h mortality was recorded. Histological changes were observed by H&E staining. The expression of tight junction protein ZO-1 (ZO-1) and mucin2 (MUC2) was determined by immunohistochemical analysis. Secretory IgA (sIgA), diamine oxidase (DAO) and intestinal fatty acid binding protein (iFABP) were determined by enzyme-linked immunosorbent assay (ELISA). IL-1ß, IL-6 and TNF-α were measured by ELISA and quantitative Real-time PCR (RT-qPCR). The gut microbiota was analyzed by 16S rRNA sequencing. The potential targets and pathways of DCH in treating SII were analyzed by integrative analysis of transcriptomic and metabolomic methods. Total glutathione (T-GSH), GSH, GSSG (reduced form of GSH), GSH peroxidase (GPX), superoxide dismutase (SOD), malonaldehyde (MDA) and indicators of hepatic and renal function were measured by biochemical kits. RESULTS: Medium dose of DCH improved 24 h mortality of SII rats, reduced the pathological changes of ileum, and increased the expression levels of ZO-1, MUC2 and sIgA. DCH decreased DAO, iFABP of serum and IL-1ß, IL-6, TNF-α of ileum. DCH improved α- and ß-diversity and modulated the structure of gut microbiota, with Escherichia_Shigella decreased and Bacteroides and Ruminococcus increased. GSH metabolism was identified as the key pathway of DCH on SII by integrative analysis of transcriptome and metabolome. GSH/GSSG and the most common indicators of oxidative stress, were validated. Antioxidative T-GSH, GSH, GPX and SOD were increased, while MDA, the mark of lipid peroxidation was downregulated by DCH. Eventually, DCH was proved to be safe and hepato- and nephro-protective. CONCLUSION: DCH ameliorated septic intestinal injury possibly by modulating the gut microbiota and enhancing glutathione metabolism of SII rats, without hepatotoxicity and nephrotoxicity.


Subject(s)
Gastrointestinal Microbiome , Tumor Necrosis Factor-alpha , Rats , Animals , Tumor Necrosis Factor-alpha/pharmacology , Multiomics , RNA, Ribosomal, 16S , Glutathione Disulfide/pharmacology , Interleukin-6 , Glutathione/metabolism , Superoxide Dismutase/metabolism
4.
Chin J Nat Med ; 21(4): 279-291, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37120246

ABSTRACT

Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3ßSer9/GSK3ß and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.


Subject(s)
Potentilla , Reperfusion Injury , Cadmium/toxicity , Cadmium/metabolism , Caspase 3/metabolism , Potentilla/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cytochromes c/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Oxidative Stress , Myocytes, Cardiac , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Apoptosis , Polysaccharides/pharmacology , Adenosine Triphosphate/metabolism
5.
J Ethnopharmacol ; 306: 116176, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36682600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua A. Juss (Meliaceae) is used in Brazilian folk medicine to alleviate fatigue and emotional stress and improve memory. Previous studies from our laboratory reported that an ethyl-acetate fraction (EAF) of T. catigua that was given before cerebral ischemia in vivo prevented memory loss and reduced oxidative stress and neuroinflammation. Despite the value of these findings of a neuroprotective effect of T. catigua, treatment that was given immediately before or immediately after ischemia limits its clinical relevance. Thus, unknown is whether T. catigua possesses a specific time window of efficacy (TWE) when administered postischemia. AIM OF THE STUDY: Given continuity to previous studies, we investigated whether an EAF of T. catigua maintains its neuroprotective properties if treatment begins at different time windows of efficacy after ischemia. We also evaluated, for the first time, whether T. catigua possesses neuroplasticity/neurotrophic properties. MATERIAL AND METHODS: Rats were subjected to transient global brain ischemia (TGCI) and then given a single dose of the EAF (400 mg/kg) or vehicle (1 ml/kg) orally 1, 4, or 6 h postischemia. The levels of protein PCG, GSH, and GSSG, and activity of SOD and CAT were assayed as markers of oxidative stress on the day after ischemia. In another experiment, naive rats underwent spatial learning training in a radial maze task and then subjected to TGCI. Delayed treatment with the EAF began 4 or 6 h later and continued for 7 days. Retrograde memory performance was assessed 10, 17, and 24 days postischemia. Afterward, brains were examined for neurodegeneration and neuronal dendritic morphology in the hippocampus and cerebral cortex. Another group received the EAF at 4 h of reperfusion, and 4 days later their brains were examined for GFAP and Iba-1 immunoreactivity. Lastly, ischemic rats received the EAF 4 h after ischemia and neural plasticity-related proteins, BDNF, SYN, PSD 95, and NeuN were measured in the hippocampus 7 and 14 days after ischemia. RESULTS: A single EAF administration 1, 4, or 6 h postischemia alleviated oxidative stress that was caused by ischemia, expressed as a reduction of the amount of the PCG and GSSG, normalization of the GSH/GSSG ratio, and the restoration of SOD activity. Ischemia caused the persistent loss of memory (i.e., amnesia), an outcome that was consistently ameliorated by treatment with the EAF that was initiated 4 or 6 h postischemia. The 4 h delay in EAF treatment positively impacted dendritic morphology in neurons that survived ischemia. TGCI reduced BDNF, SYN, PSD-95, and NeuN protein levels in the hippocampus and cerebral cortex. The EAF normalized SYN and PSD-95 protein levels. Ischemia-induced neurodegeneration and glial cell activation were not prevented by EAF treatment. CONCLUSION: The present study corroborates prior data that demonstrated the neuroprotective potential of T. catigua and extends these data by showing that the delayed administration of EAF postischemia effectively prevented memory impairment and decreased oxidative stress, dendritic deterioration, and synaptic protein loss within a TWE that ranged from 1 to 6 h. This specific TWE in preclinical research may have clinical relevance by suggesting the possible utility of this plant for the development of neuroprotective strategies in the setting of ischemic brain diseases. Another innovative finding of the present study was the possible neurotrophic/neuroplastic properties of T. catigua.


Subject(s)
Brain Ischemia , Meliaceae , Neuroprotective Agents , Rats , Animals , Brain-Derived Neurotrophic Factor/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glutathione Disulfide/therapeutic use , Plant Extracts/pharmacology , Brain Ischemia/drug therapy , Oxidative Stress , Cerebral Infarction/drug therapy , Hippocampus , Memory Disorders/drug therapy , Acetates/pharmacology , Superoxide Dismutase/metabolism , Neuronal Plasticity , Neuroprotective Agents/pharmacology
6.
J Food Biochem ; 46(10): e14334, 2022 10.
Article in English | MEDLINE | ID: mdl-35848364

ABSTRACT

Sodium butyrate (NaB), obtained by fermenting dietary fiber via intestinal microflora, was recently shown to improve the activity of some antioxidant enzymes in vivo. This study aims to investigate the term changes of mitochondrial energy metabolism and redox homeostasis in skeletal muscles and clarify the regulatory mechanism and dose effect of NaB on skeletal muscle. Male Sprague-Dawley rats were divided into the control group, obesity-prone (OP) group and obesity-resistant (OR) group based on the gain of body weight after 8 weeks' of feeding high-fat diet (HFD), followed by sacrificing rats at the end of 20th week. NaB intervention (12 weeks) could effectively reduce the body weight of rats in the OP and OR groups. NaB also mediated upregulation of antioxidant enzyme activity and GSH/GSSG ratio, while reducing reactive oxygen species (ROS) levels and malondialdehyde (MDA) content. At the molecular level, NaB upregulated Pi3k, Nrf2, Nqo-1, and Ho-1, but downregulated Gsk-3ß mRNA expression by regulating the Nrf2 antioxidant pathway to enhance tissue antioxidant capacity. At the same time, NaB intervention significantly upregulated Glut4, Irs-1, Pdx1, and MafA, expression in gastrocnemius muscles of OP and OR rats, and elevated insulin secretion and muscle insulin sensitivity. Thus, NaB activates antioxidant pathway, improves the antioxidant capacity of obese rat tissues and promotes glucose metabolism. PRACTICAL APPLICATIONS: This study found that obesity-prone and obesity-resistant rats have differences in mitochondrial redox homeostasis and energy metabolism in tissues. Meanwhile, sodium butyrate can effectively promote muscle protein synthesis, increase insulin sensitivity, and promote glucose metabolism in obesity rats. Thus, sodium butyrate supplementation or increasing intestinal butyrate production (e.g., by consuming foods rich in dietary fiber) is a potential means of improving the body's glucose metabolism and obesity profile.


Subject(s)
Diet, High-Fat , Insulin Resistance , Animals , Antioxidants/pharmacology , Body Weight , Butyric Acid/metabolism , Butyric Acid/pharmacology , Dietary Fiber/pharmacology , Glucose/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Insulin Resistance/genetics , Male , Malondialdehyde/metabolism , Mitochondria , Muscle Proteins , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Obesity/etiology , Obesity/genetics , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
7.
Exp Dermatol ; 31(4): 608-614, 2022 04.
Article in English | MEDLINE | ID: mdl-34758172

ABSTRACT

The off-label use of imiquimod (IQ) for hemangioma treatment has shown clinical benefits. We have previously reported a selective direct IQ-cytotoxic effect on transformed (H5V) vs. normal (1G11) endothelial cells (EC). In the present study, we investigated the mechanism underlying this selective cytotoxicity in terms of TLR7/8 receptor expression, NF-κB signalling and time-dependent modifications of oxidative stress parameters (ROS: reactive oxygen species, catalase and superoxide dismutase activities, GSH/GSSG and lipid peroxidation). TLR7/8 level was extremely low in both cell lines, and IQ did not upregulate TLR7/8 expression or activate NF-κB signalling. IQ significantly induced ROS in H5V after 2 h and strongly affected antioxidant defenses. After 12 h, enzyme activities were restored to baseline levels but a robust drop in GSH/GSSG persisted together with increased lipid peroxidation levels and a marked mitochondrial dysfunction. Although in normal IQ-treated EC some oxidative stress parameters were affected after 4 h, mitochondrial health and GSH/GSSG ratio remained notably unaffected after 12 h. Therefore, the early alterations (0-2 h) in transformed EC breached redox homeostasis as strongly as to enhance their susceptibility to IQ. This interesting facet of IQ as redox disruptor could broaden its therapeutic potential for other skin malignancies, alone or in adjuvant schemes.


Subject(s)
Glutathione , NF-kappa B , Antioxidants/metabolism , Endothelial Cells/metabolism , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Homeostasis , Imiquimod/pharmacology , NF-kappa B/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Toll-Like Receptor 7
8.
Plant Cell ; 32(8): 2582-2601, 2020 08.
Article in English | MEDLINE | ID: mdl-32471862

ABSTRACT

Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cytosol/metabolism , Fluorescent Dyes/metabolism , Second Messenger Systems , Transcription, Genetic , Adenosine Triphosphate/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Calcium/metabolism , Chlorides/metabolism , Cytosol/drug effects , Fluorescence Resonance Energy Transfer , Glutamic Acid/pharmacology , Glutathione Disulfide/pharmacology , Hydrogen/metabolism , Hydrogen Peroxide/toxicity , Hydrogen-Ion Concentration , Indoleacetic Acids/pharmacology , Oxidation-Reduction , Plant Roots/drug effects , Plant Roots/metabolism , Transcription, Genetic/drug effects
9.
Tree Physiol ; 35(2): 209-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25716878

ABSTRACT

A major barrier to the commercialization of somatic embryogenesis technology in loblolly pine (Pinus taeda L.) is recalcitrance of some high-value crosses to initiate embryogenic tissue (ET) and continue early-stage somatic embryo growth. Developing initiation and multiplication media that resemble the seed environment has been shown to decrease this recalcitrance. Glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid and dehydroascorbate analyses were performed weekly throughout the sequence of seed development for female gametophyte and zygotic embryo tissues to determine physiological concentrations. Major differences in stage-specific oxidation-reduction (redox) agents were observed. A simple bioassay was used to evaluate potential growth-promotion of natural and inorganic redox agents added to early-stage somatic embryo growth medium. Compounds showing statistically significant increases in early-stage embryo growth were then tested for the ability to increase initiation of loblolly pine. Low-cost reducing agents sodium dithionite and sodium thiosulfate increased ET initiation for loblolly pine and Douglas fir (Mirb) Franco. Germination medium supplementation with GSSG increased somatic embryo germination. Early-stage somatic embryos grown on medium with or without sodium thiosulfate did not differ in GSH or GSSG content, suggesting that sodium thiosulfate-mediated growth stimulation does not involve GSH or GSSG. We have developed information demonstrating that alteration of the redox environment in vitro can improve ET initiation, early-stage embryo development and somatic embryo germination in loblolly pine.


Subject(s)
Germination , Glutathione Disulfide/pharmacology , Ovule/drug effects , Pinus/drug effects , Plant Somatic Embryogenesis Techniques/methods , Seeds/drug effects , Thiosulfates/pharmacology , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Germination/drug effects , Glutathione/metabolism , Glutathione/pharmacology , Ovule/growth & development , Ovule/metabolism , Oxidation-Reduction , Pinus/growth & development , Pinus/metabolism , Pseudotsuga/drug effects , Pseudotsuga/growth & development , Pseudotsuga/metabolism , Seeds/growth & development , Seeds/metabolism
10.
J Hepatol ; 46(5): 858-68, 2007 May.
Article in English | MEDLINE | ID: mdl-17275124

ABSTRACT

BACKGROUND/AIMS: The agonistic Jo2 anti-Fas antibody reproduces human fulminant hepatitis in mice. We tested the hypothesis that enhancing hepatic glutathione (GSH) stores may prevent Jo2-induced apoptosis. METHODS: We fed mice with a normal diet or a sulfur amino acid-enriched (SAA(+)) diet increasing hepatic GSH by 63%, and challenged these mice with Jo2. RESULTS: The SAA(+) diet markedly attenuated the Jo2-mediated decrease in hepatic GSH and the increase in the oxidized glutathione (GSSG)/GSH ratio in cytosol and mitochondria. The SAA(+) diet prevented protein kinase Czeta (PKCzeta) and p47(phox) phosphorylations, Yes activation, Fas-tyrosine phosphorylation, Bid truncation, Bax, and cytochrome c translocations, the mitochondrial membrane potential collapse, caspase activation, DNA fragmentation, hepatocyte apoptosis, and mouse lethality after Jo2 administration. The protective effect of the SAA(+) diet was abolished by a small dose of phorone decreasing hepatic GSH back to the levels observed in mice fed the normal diet. Conversely, administration of GSH monoethyl ester after Jo2 administration prevented hepatic GSH depletion and attenuated toxicity in mice fed with the normal diet. CONCLUSIONS: The SAA(+) diet preserves GSSG/GSH ratios, and prevents PKCzeta and p47(phox) phosphorylations, Yes activation, Fas-tyrosine phosphorylation, mitochondrial permeabilization, and hepatic apoptosis after Fas stimulation. GSH monoethyl ester is also protective, suggesting possible clinical applications.


Subject(s)
Apoptosis/physiology , Fas Ligand Protein/metabolism , Glutathione Disulfide/metabolism , Glutathione/deficiency , Liver Failure, Acute/diet therapy , Liver Failure, Acute/metabolism , Liver/metabolism , Amino Acids, Sulfur/administration & dosage , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Caspases/metabolism , Diet , Dietary Supplements , Down-Regulation , Fas Ligand Protein/agonists , Glutathione/antagonists & inhibitors , Glutathione/pharmacology , Glutathione Disulfide/pharmacology , Ketones/administration & dosage , Liver/ultrastructure , Liver Failure, Acute/chemically induced , Male , Metabolic Networks and Pathways/drug effects , Mice , Mitochondria, Liver/drug effects , NADPH Oxidases/metabolism , Oxidation-Reduction , Phosphorylation , Protein Kinase C/metabolism , Signal Transduction/drug effects , bcl-2-Associated X Protein/metabolism
11.
Planta Med ; 70(5): 427-31, 2004 May.
Article in English | MEDLINE | ID: mdl-15124087

ABSTRACT

The present study investigated the protective effects of the antioxidant scutellarin against oxidative toxicity induced by glutamate in PC12 cells. Vitamin E, a classical antioxidant was employed as a comparative agent. Incubation of PC12 cells with 10 mM glutamate resulted in significant cytotoxity as evaluated by the MTT and lactate dehydrogenase (LDH) assays, decreases of GSSG reductase activity, disturbance of the cell redox state as indicated by the GSH/GSSG ratio, and accumulation of intracellular reactive oxygen species (ROS) and lipid peroxidation products. Scutellarin at 0.1, 1 and 10 microM significantly protected against the cytoxicity and production of ROS and lipid peroxidation induced by glutamate. Scutellarin did not prevent the reduction of cellular GSH levels, but it up-regulated GSSG reductase activity, thus preventing an increase in cellular GSSG levels, and concomitantly improved the cell redox status. Our data also show that the protective effects of scutellarin against glutamate-induced oxidative toxicity are more potent than that of vitamin E. These results demonstrate that scutellarin can protect PC12 cells from oxidative glutamate toxicity by scavenging ROS, inhibiting lipid peroxidation and improving the cell redox status, and may reduce the cellular damage in pathological conditions associated with excessive glutamate release.


Subject(s)
Antioxidants/pharmacology , Apigenin , Asteraceae , Flavonoids/pharmacology , Glucuronates/pharmacology , Glutathione Disulfide/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Apoptosis/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Flavonoids/administration & dosage , Flavonoids/therapeutic use , Glucuronates/administration & dosage , Glucuronates/therapeutic use , Lipid Peroxidation/drug effects , PC12 Cells/drug effects , PC12 Cells/enzymology , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Protective Agents/administration & dosage , Protective Agents/therapeutic use , Rats , Vitamin E/administration & dosage , Vitamin E/pharmacology , Vitamin E/therapeutic use
12.
Biosci Biotechnol Biochem ; 66(8): 1751-4, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12353641

ABSTRACT

The application of glutathione to immature soybean cotyledons reduced the accumulation of the beta subunit of beta-conglycinin, and increased the accumulation of most glycinins. Both reduced and oxidized forms of glutathione had these effects. The application of an inhibitor of glutathione synthesis, buthionine sulfoximine, increased accumulation of beta subunit. These results suggest that glutathione is important in affecting the composition of seed storage proteins.


Subject(s)
Globulins/biosynthesis , Glutathione/pharmacology , Glycine max/drug effects , Soybean Proteins/biosynthesis , Antigens, Plant , Buthionine Sulfoximine/pharmacology , Cotyledon/drug effects , Cotyledon/metabolism , Cysteine/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Globulins/metabolism , Glutathione/antagonists & inhibitors , Glutathione/biosynthesis , Glutathione Disulfide/pharmacology , Seed Storage Proteins , Soybean Proteins/metabolism , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL