Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Environ Res ; 251(Pt 1): 118545, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38431067

ABSTRACT

An extensive volume of acid mine drainage (AMD) generated throughout the mining process has been widely regarded as one of the most catastrophic environmental problems. Surface water and groundwater impacted by pollution exhibit extreme low pH values and elevated sulfate and metal/metalloid concentrations, posing a serious threat to the production efficiency of enterprises, domestic water safety, and the ecological health of the basin. Over the recent years, a plethora of techniques has been developed to address the issue of AMD, encompassing nanofiltration membranes, lime neutralization, and carrier-microencapsulation. Nonetheless, these approaches often come with substantial financial implications and exhibit restricted long-term sustainability. Among the array of choices, the permeable reactive barrier (PRB) system emerges as a noteworthy passive remediation method for AMD. Distinguished by its modest construction expenses and enduring stability, this approach proves particularly well-suited for addressing the environmental challenges posed by abandoned mines. This study undertook a comprehensive evaluation of the PRB systems utilized in the remediation of AMD. Furthermore, it introduced the concept of low permeability barrier, derived from the realm of site-contaminated groundwater management. The strategies pertaining to the selection of materials, the physicochemical aspects influencing long-term efficacy, the intricacies of design and construction, as well as the challenges and prospects inherent in barrier technology, are elaborated upon in this discourse.


Subject(s)
Mining , Water Pollutants, Chemical/analysis , Environmental Restoration and Remediation/methods , Acids , Groundwater/chemistry , Filtration/methods , Hydrogen-Ion Concentration
2.
Environ Pollut ; 348: 123768, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38493868

ABSTRACT

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Trichloroethylene/metabolism , Biodegradation, Environmental , Carbon , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Hydrogen , Hydrogen-Ion Concentration
3.
Sci Total Environ ; 926: 171918, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522553

ABSTRACT

The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.


Subject(s)
Desulfovibrio , Groundwater , Uranium , Bacteria , Uranium/analysis , RNA, Ribosomal, 16S/genetics , Prospective Studies , Groundwater/chemistry , Sulfates/analysis
4.
Sci Total Environ ; 917: 170397, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38307284

ABSTRACT

Confronting the threat of environment uranium pollution, decades of research have yielded advanced and significant findings in uranium bioremediation, resulting in the accumulation of tremendous amount of high-quality literature. In this study, we analyzed over 10,000 uranium reduction-related papers published from 1990 to the present in the Web of Science based on bibliometrics, and revealed some critical information on knowledge structure, thematic evolution and additional attention. Methods including contribution comparison, co-occurrence and temporal evolution analysis are applied. The results of the distribution and impact analysis of authors, sources, and journals indicated that the United States is a leader in this field of research and China is on the rise. The top keywords remained stable, primarily focused on chemicals (uranium, iron, plutonium, nitrat, carbon), characters (divers, surfac, speciat), and microbiology (microbial commun, cytochrome, extracellular polymeric subst). Keywords related to new strains, reduction mechanisms and product characteristics demonstrated the strongest uptrend, while some keywords related to mechanism and performance were clearly emerging in the past 5 years. Furthermore, the evolution of the thematic progression can be categorized into three stages, commencing with the discovery of the enzymatic reduction of hexavalent uranium to tetravalent uranium, developing in the groundwater remediation process at uranium-contaminated sites, and delving into the research on microbial reduction mechanisms of uranium. For future research, enhancing the understanding of mechanisms, improving uranium removal performance, and exploring practical applications can be considered. This study provides unique insights into microbial uranium reduction research, providing valuable references for related studies in this field.


Subject(s)
Groundwater , Uranium , Uranium/analysis , Iron , Biodegradation, Environmental , Groundwater/chemistry , Bibliometrics
5.
Water Res ; 252: 121195, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290236

ABSTRACT

Successful in situ chemical oxidation (ISCO) applications require real-time monitoring to assess the oxidant delivery and treatment effectiveness, and to support rapid and cost-effective decision making. Existing monitoring methods often suffer from poor spatial coverage given a limited number of boreholes in most field conditions. The ionic nature of oxidants (e.g., permanganate) makes time-lapse electrical resistivity tomography (ERT) a potential monitoring tool for ISCO. However, time-lapse ERT is usually limited to qualitative analysis because it cannot distinguish between the electrical responses of the ionic oxidant and the ionic products from contaminant oxidation. This study proposed a real-time quantitative monitoring approach for ISCO by integrating time-lapse ERT and physics-based reactive transport models (RTM). Moving past common practice, where an electrical-conductivity anomaly in an ERT survey would be roughly linked to concentrations of anything ionic, we used PHT3D as our RTM to distinguish the contributions from the ionic oxidant and the ionic products and to quantify the spatio-temporal evolution of all chemical components. The proposed approach was evaluated through laboratory column experiments for trichloroethene (TCE) remediation. This ISCO experiment was monitored by both time-lapse ERT and downstream sampling. We found that changes in inverted bulk electrical conductivity, unsurprisingly, did not correlate well with the observed permanganate concentrations due to the ionic products. By integrating time-lapse ERT and RTM, the distribution of all chemical components was satisfactorily characterized and quantified. Measured concentration data from limited locations and the non-intrusive ERT data were found to be complementary for ISCO monitoring. The inverted bulk conductivity data were effective in capturing the spatial distribution of ionic species, while the concentration data provided information regarding dissolved TCE. Through incorporating multi-source data, the error of quantifying ISCO efficiency was kept at most 5 %, compared to errors that can reach up to 68 % when relying solely on concentration data.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Manganese Compounds , Oxides , Trichloroethylene , Water Pollutants, Chemical , Trichloroethylene/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Oxidants , Tomography
6.
Chemosphere ; 351: 141174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218242

ABSTRACT

Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.


Subject(s)
Groundwater , Microbiota , Petroleum , Sodium Compounds , Sulfates , Petroleum/toxicity , Petroleum/metabolism , Bacteria/genetics , Bacteria/metabolism , Groundwater/chemistry
7.
Environ Sci Pollut Res Int ; 30(59): 123466-123479, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987974

ABSTRACT

Groundwater is an essential freshwater resource utilized in industry, agriculture, and daily life. In the Huaibei Plain (HBP), where groundwater significantly influences socio-economic development, information about its quality, hydrochemistry, and related health risks remains limited. We conducted a comprehensive groundwater sampling in the HBP and examined its rock characteristics, water quality index (WQI), and potential health risks. The results revealed that the primary factors shaping groundwater hydrochemistry were rock dissolution and weathering, cation exchange, and anthropogenic activities. WQI assessment indicated that only 73% of the groundwaters is potable, as Fe2+, Mn2+, NO3-, and F- contents in the water could pose non-carcinogenic hazards to humans. Children were more susceptible to these health risks through oral ingestion than adults. Uncertainty analysis indicated that the probabilities of non-carcinogenic risk were approximately 57% and 31% for children and adults, respectively. Sensitivity analysis further identified fluoride as the primary factor influencing non-carcinogenic risks, indicating that reducing fluoride contamination should be prioritized in future groundwater management in the HBP.


Subject(s)
Groundwater , Water Pollutants, Chemical , Child , Adult , Humans , Environmental Monitoring/methods , Fluorides/analysis , Water Pollutants, Chemical/analysis , Water Quality , Groundwater/chemistry , China , Risk Assessment
8.
Environ Sci Pollut Res Int ; 30(55): 117132-117142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37864694

ABSTRACT

The processes of acid in situ leaching (ISL) uranium (U) mines cause the pollution of groundwater. Phosphate (PO43-) has the potential to immobilize U in groundwater through forming highly insoluble phosphate minerals, but the performance is highly restricted by low pH and high sulfate concentration. In this study, hydrogen peroxide (H2O2) and PO43- were synergistically used for immobilizing U based on the specific properties of groundwater from a decommissioned acid ISL U mine. The removal mechanisms of U and the stability of U on the formed minerals were elucidated by employing X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and kinetic experiments. Our results indicated that the removal of U by simultaneously adding H2O2 and PO43- was significantly higher than the removal of U by individually adding H2O2 or PO43-. The removal of U increased with increasing PO43- concentration from 20 to 200 mg L-1 while decreased with increasing H2O2 concentration from 0.003 to 0.3%. Specifically, the removal efficiency of U from groundwater reached 98% after the application of 0.003% H2O2 and 200 mg L-1 PO43-. Amorphous iron phosphate that preferentially formed at low H2O2 and high PO43- concentrations played a dominant role in U removal, while the formations of schwertmannite and crystalline iron phosphates may be also contributed to the removal of U. This was significantly different from the immobilization mechanism of U through the formation of uranyl phosphate minerals after adding phosphate. The kinetic experimental results suggested that the immobilized U had a good stability. Our research may provide a promising method for in situ remediating U-contaminated groundwater at the decommissioned acid ISL U mines.


Subject(s)
Groundwater , Uranium , Hydrogen Peroxide , Uranium/chemistry , Phosphates/chemistry , Minerals , Groundwater/chemistry , Iron/chemistry
9.
Environ Sci Technol ; 57(45): 17427-17438, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37697639

ABSTRACT

The enrichment of geogenic phosphorus (P) in groundwater systems threatens environmental and public health worldwide. Two significant factors affecting geogenic P enrichment include organic matter (OM) and Fe (oxyhydr)oxide (FeOOH). However, due to variable reactivities of OM and FeOOH, variable strategies of their coupled influence controlling P enrichment in groundwater systems remain elusive. This research reveals that when the depositional environment is enriched in more labile aliphatic OM, its fermentation is coupled with the reductive dissolution of both amorphous and crystalline FeOOHs. When the depositional environment is enriched in more recalcitrant aromatic OM, it largely relies on crystalline FeOOH acting concurrently as electron acceptors while serving as "conduits" to help itself stimulate degradation and methanogenesis. The main source of geogenic P enriched by these two different coupled processes is different: the former is P-containing OM, which mainly contained unsaturated aliphatic compounds and highly unsaturated-low O compounds, and the latter is P associated with crystalline FeOOH. In addition, geological setting affects the deposition rate of sediments, which can alter OM degradation/preservation, and subsequently affects geochemical conditions of geogenic P occurrence. These findings provide new evidence and perspectives for understanding the hydro(bio)geochemical processes controlling geogenic P enrichment in alluvial-lacustrine aquifer systems.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Phosphorus , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Oxides , Environmental Monitoring , Geologic Sediments/chemistry
10.
Chemosphere ; 344: 140160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716562

ABSTRACT

Acid in-situ leach uranium mining significantly alters the geochemistry of the ore zone, and leaves uranium, residual acid, as well as other potential contaminants in groundwater, which bring harm to human health and ecological environment. Many investigators have been trying to propose remediation strategies for the uranium-contaminated groundwater. Phosphate is an effective immobilization reagent of uranium in the groundwater. However, direct injection of phosphate tends to quickly form precipitates, resulting in fast blockage of the seepage passages in the ore zone around the injection holes and hindering its diffusion. In this paper, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA with core-shell structures were prepared. Their slow-release of phosphate, the effects of pH, contact time, initial uranium concentration, and coexisting ions on their removal rate and efficiency of uranium, and their function of remediating uranium-contaminated groundwater were investigated. It was found that the increase of SA content in the outer layer of HAP@SiO2-600@25SA and HAP@SiO2-600@75SA resulted in the slow release rate of phosphate, decreasing the removal rate of uranium. The adsorption capacities of HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA from the aqueous solution at pH = 3.0 and 303 K were up to 582.6, 558.5, and 507.3 mg g-1, respectively. In addition, the materials showed excellent uranium removal performance in experiments where multiple ions coexisted. For actual acidic uranium-contaminated groundwater, HAP@SiO2-600, HAP@SiO2-600@25SA, and HAP@SiO2-600@75SA effectively increased the pH from 2.75 to 4.40, 3.87, and 3.72, respectively, and decreased the uranium concentration from 5.12 to 0.0062, 0.0065, and 0.0058 mg L-1, respectively. The FT-IR, XRD, TEM and XPS characterizations were performed to further clarify the uranium removal mechanism, and it was found that the elimination of U(VI) was ascribed to dissolution-precipitation, adsorption and ion exchange. The results show that the core-shell composite material capable of slowly releasing phosphate is effective in remediating uranium-contaminated groundwater.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Humans , Uranium/analysis , Phosphates/chemistry , Spectroscopy, Fourier Transform Infrared , Silicon Dioxide , Water Pollutants, Radioactive/analysis , Groundwater/chemistry , Adsorption
11.
J Environ Manage ; 345: 118749, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37591092

ABSTRACT

Soil aquifer treatment (SAT) is an emerging, nature-based, economically viable wastewater treatment solution. Currently, most SAT experiments are done at the laboratory scale, which cannot generate the same conditions as natural field sites and limits the understanding of treatment efficiency. The current study carried out in situ SAT experiments in the Musi River basin in India, where wastewater irrigation is a common practice. SAT efficiency was determined using an integrated approach, including electrical resistivity tomography (ERT) surveys, soil investigations (grain size, permeability, and moisture measurements), and biochemical characterization of raw and SAT treated wastewater. The ERT scans of SAT column show lower order electrical resistivity 10-30 Ω-m with enhanced chargeability >5-6 mV/V attributed to the vadose zone, characterized by clay-rich soil and sandy soil up to 5-6 m depth. The increase in sand percentage (>70%) below 140-160 cm depth corroborates with the high moisture content (23.5%). The vadose zone permeability (K) 1.58 m/day and discharge (Q) 38.19 m3/day is used to determine the pollutants reduction efficiency of SAT column. Hydrogeological and biogeochemical observations reveal that the improved dissolved oxygen from <1.0 to 5-6 mg/L in the vadose zone catalyzes the oxidation of organic matter resulting in the reduction of BOD and COD up to 92% and 97%, respectively, and denitrification reducing NO3-- (0.55 kg/day). In addition, the precipitation and adsorption by kaolinite clay prompted the reduction of PO42- (0.26 kg/day). Furthermore, the oxic-vadose zone could not support the growth of coliforms and faecal coliforms, and the reduction observed was up to 99.99% in the SAT production well. Overall, the results indicated a positive outcome with SAT efficiency and framed the SAT sitting criteria for different geological environments.


Subject(s)
Groundwater , Soil Pollutants , Water Pollutants, Chemical , Wastewater , Soil/chemistry , Clay , Groundwater/chemistry , Soil Pollutants/analysis , Water Pollutants, Chemical/chemistry
12.
J Environ Radioact ; 264: 107189, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37167645

ABSTRACT

The study is focused on the hydrogeological conditions and the chemistry of groundwater of the Vendian aquifer in the western part of the Leningrad oblast (Karelian Isthmus and the area near Sosnovy Bor town) and St. Petersburg City, where groundwater features higher radioactivity, but nevertheless it is used for drinking water supply. Data on the radiological characteristics, which have been determined in the estimation of the quality of groundwater used for drinking are generalized and analyzed. These characteristics include the gross alpha and gross beta activity and the specific activity of natural radionuclides 222Rn, 226Ra, 228Ra, 210Pb, 210Po, 238U, and 234U. The data were subjected to statistical and correlation analysis to determine the hygienic criteria for the use of groundwater of this aquifer for drinking water supply and to study the sources and the processes of formation of the natural radiological background. Groundwater quality standards were shown to be exceeded in the majority of the analyzed wells. The brackish water in the southern, deeper, part of the aquifer system was shown to have higher radioactivity and relatively high concentrations of 226Ra, 228Ra, 210Pb, and 210Po, compared with fresh water in the northern part of the territory, of which higher, though nonuniform, 222Rn activity is typical. Relationships between the radiation characteristics of groundwater are considered along with the causes of formation of groundwater radionuclide composition as a result of the higher radioactivity of the host deposits and the chemistry of groundwater; changes in the radiological and hydrochemical background groundwater characteristics from the north to the south are characterized in accordance with the subsidence of the aquifer system and an increase in the stagnation of the hydrochemical regime. The analysis of the well-known relationship between the concentrations of radium isotopes in groundwater, uranium and thorium isotopes in the host rocks, and groundwater residence time in the aquifer, along with the comparison of the available field data with calculation results, suggested the conclusion that the concentration of uranium in the water-bearing rocks in the major portion of the area under consideration is higher than its regional mean values.


Subject(s)
Drinking Water , Groundwater , Radiation Monitoring , Radioactivity , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Drinking Water/analysis , Radiation Monitoring/methods , Lead/analysis , Water Pollutants, Radioactive/analysis , Groundwater/chemistry , Radioisotopes/analysis , Russia
13.
Ground Water ; 61(4): 586-598, 2023.
Article in English | MEDLINE | ID: mdl-37078097

ABSTRACT

Monitoring of a seasonal-use, on-site wastewater disposal system (septic system) in Canada, over a 33-year period from 1988 to 2021, showed that during recent sampling the groundwater plume had TIN (total inorganic nitrogen) averaging 12.2 mg/L that was not significantly different than early values, representing 80% removal, whereas SRP (soluble reactive phosphate), although higher than early values averaging 0.08 mg/L, was still 99% lower than the effluent concentration. Evidence suggests that the anammox reaction and possibly also denitrification contribute to TIN removal, whereas SRP removal is primarily the result of mineral precipitation. Most of the removal occurs in close proximity to the drainfield infiltration pipes (within about 1 m) demonstrating that reaction rates are relatively fast in the context of typical groundwater plume residence times. This long-term consistency demonstrates that sustainable nutrient treatment can be achieved with conventional on-site wastewater disposal systems that have low capital costs and require minimal energy input and maintenance.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Wastewater , Denitrification , Groundwater/chemistry , Nitrogen/analysis , Oxidation-Reduction , Sewage , Waste Disposal, Fluid
14.
Sci Total Environ ; 884: 163725, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37116809

ABSTRACT

This study investigated critical metal (CM) geochemistry including rare earth elements (REEs), Co, Ni, and Mn in groundwaters below and surrounding two dredged material placement facilities (DMPFs). Metal concentrations are elevated at both sites, spanning several orders of magnitude. The highest CM concentrations measured exceed many environments considered as aqueous resources (Co and Ni > 1 mg L-1, REEs > 3 mg L-1). Correlations between sulfur and iron, major cations, and CMs indicate that oxidation of sulfides present in the DM releases metals both directly from sulfide minerals and indirectly through acid dissolution of and/or desorption from additional minerals. REE fractionation patterns indicate that their mobility in the groundwaters may be influenced by interactions with silicate, carbonate, and phosphate minerals. Significant positive Gd and Eu anomalies were observed, which may be attributed to increased mobility of Eu2+ and anthropogenic Gd. Nanogeochemical analysis of filtered samples revealed several REE-bearing nanoparticulate (diameter < 100 nm) species, some of which co-occurred with aluminum, suggesting an (oxy)hydroxide or a clay mineral component. Further characterization of soluble and nano scale geochemical speciation is needed to fully assess the viability of CM recovery from DM-associated groundwater. CM recovery from DM-associated waters can provide a beneficial use, both offsetting costs associated with disposal, and supplementing domestic CM resources.


Subject(s)
Groundwater , Metals, Rare Earth , Environmental Monitoring , Metals/analysis , Metals, Rare Earth/analysis , Groundwater/chemistry , Minerals/analysis
15.
Water Res ; 233: 119777, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36868118

ABSTRACT

The mechanistic study of soil and groundwater remediation in petroleum contaminated lands significantly demands rapid qualitative and quantitative identification of petroleum substances. However, most traditional detection methods cannot provide the on-site or in-situ information of petroleum compositions and contents simultaneously even with multi-spot sampling and complex sample preparation. In this work, we developed a strategy for the on-site detection of petroleum compositions and in-situ monitoring of petroleum contents in soil and groundwater using dual-excitation Raman spectroscopy and microscopy. The detection time was 0.5 h for the Extraction-Raman spectroscopy method and one minute for the Fiber-Raman spectroscopy method. The limit of detection was 94 ppm for the soil samples and 0.46 ppm for the groundwater samples. Meanwhile, the petroleum changes at the soil-groundwater interface were successfully observed by Raman microscopy during the in-situ chemical oxidation remediation processes. The results revealed that hydrogen peroxide oxidation released petroleum from the interior to the surface of soil particles and then to groundwater during the remediation process, while persulfate oxidation only degraded petroleum on the soil surface and in groundwater. This Raman spectroscopic and microscopic method can shed light on the petroleum degradation mechanism in contaminated lands, and facilitate the selection of suitable soil and groundwater remediation plans.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Petroleum , Soil Pollutants , Petroleum/metabolism , Soil/chemistry , Spectrum Analysis, Raman , Groundwater/chemistry , Soil Pollutants/analysis
16.
Water Res ; 233: 119805, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36868119

ABSTRACT

Rapid sand filters (RSF) are an established and widely applied technology for groundwater treatment. Yet, the underlying interwoven biological and physical-chemical reactions controlling the sequential removal of iron, ammonia and manganese remain poorly understood. To resolve the contribution and interactions between the individual reactions, we studied two full-scale drinking water treatment plant configurations, namely (i) one dual-media (anthracite and quartz sand) filter and (ii) two single-media (quartz sand) filters in series. In situ and ex situ activity tests were combined with mineral coating characterization and metagenome-guided metaproteomics along the depth of each filter. Both plants exhibited comparable performances and process compartmentalization, with most of ammonium and manganese removal occurring only after complete iron depletion. The homogeneity of the media coating and genome-based microbial composition within each compartment highlighted the effect of backwashing, namely the complete vertical mixing of the filter media. In stark contrast to this homogeneity, the removal of the contaminants was strongly stratified within each compartment, and decreased along the filter height. This apparent and longstanding conflict was resolved by quantifying the expressed proteome at different filter heights, revealing a consistent stratification of proteins catalysing ammonia oxidation and protein-based relative abundances of nitrifying genera (up to 2 orders of magnitude difference between top and bottom samples). This implies that microorganisms adapt their protein pool to the available nutrient load at a faster rate than the backwash mixing frequency. Ultimately, these results show the unique and complementary potential of metaproteomics to understand metabolic adaptations and interactions in highly dynamic ecosystems.


Subject(s)
Ammonium Compounds , Groundwater , Water Purification , Manganese/chemistry , Iron , Ammonium Compounds/chemistry , Ammonia , Quartz , Ecosystem , Groundwater/chemistry , Filtration/methods , Water Purification/methods
17.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Article in English | MEDLINE | ID: mdl-36918194

ABSTRACT

The drinking water quality in Southeast Asia is at risk due to arsenic (As) groundwater contamination. Intensive use of fertilizers may lead to nitrate (NO3-) leaching into aquifers, yet very little is known about its effect on iron (Fe) and As mobility in water. We ran a set of microcosm experiments using aquifer sediment from Vietnam supplemented with 15NO3- and 13CH4. To assess the effect of nitrate-dependent anaerobic methane oxidation (N-DAMO) we also inoculated the sediment with two different N-DAMO enrichment cultures. We found that native microorganisms and both N-DAMO enrichments could efficiently consume all NO3- in 5 days. However, CH4 oxidation was observed only in the inoculated microcosms, suggesting that the native microbial community did not perform N-DAMO. In uninoculated microcosms, NO3- was preferentially used over Fe(III) as an electron acceptor and consequently inhibited Fe(III) reduction and As mobilization. The addition of N-DAMO enrichment cultures led to Fe(III) reduction and stimulated As and Mn release into the water. The archaeal community in all treatments was dominated by Ca. Methanoperedens while the bacterial community consisted of various denitrifiers. Our results suggest that input of N fertilizers to the aquifer decreases As mobility and that CH4 cannot serve as an electron donor for NO3- reduction.


Subject(s)
Arsenic , Ferric Compounds , Groundwater , Anaerobiosis , Fertilizers , Groundwater/chemistry , Methane/metabolism , Nitrates/metabolism , Nitrites/metabolism , Oxidation-Reduction
18.
Chemosphere ; 322: 138214, 2023 May.
Article in English | MEDLINE | ID: mdl-36841455

ABSTRACT

High concentrations of geogenic phosphorus (P) in coastal aquifer systems pose a serious and continuous threat to the health of marine ecosystems. A major source for geogenic P enrichment in aquifer systems is the mineralization of P-containing organic matter. However, the mechanisms that drive the enrichment remain unclear. Therefore, our study sought to characterize the occurrence, sources, and enrichment mechanisms of geogenic P in a coastal confined aquifer system of the Pearl River Delta, southern China. To achieve this, we conducted Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and fluorescence excitation-emission-matrix spectra (EEMs) as well as hydrochemistry and stable carbon isotope analyses. Our findings indicated that intense degradation of P-containing organic matter produced up to 8.07 mg/L of geogenic P in a reducing environment with abundant organic matter. The dissolved organic matter (DOM) of high-P groundwater (P > 1 mg/L) contained more humic-like fluorophores and exhibited higher humification. Groundwater with high P concentrations contained more aliphatic compounds and highly unsaturated-low O compounds, and the enrichment of P was mostly associated with CHOP compounds in the region of aliphatic compounds and CHON2P compounds in the region of highly unsaturated-low O compounds. Different types of dissolved organic phosphorus (DOP) can be mineralized into P, and even the mineralization of phosphonates takes precedence over the more unstable phosphate esters. P produced by the metabolism of different types of DOP was assimilated by marine microorganisms (e.g., heterotrophic bacteria and archaea), and the newly synthesized organic P compounds by chemosynthesis were subsequently released into the groundwater. Over time, P continues to be enriched in the aquifer system. This study provides new insights into subsurface P cycling in coastal aquatic systems.


Subject(s)
Dissolved Organic Matter , Groundwater , Phosphorus , Ecosystem , Groundwater/chemistry , China , Organic Chemicals
19.
Environ Sci Pollut Res Int ; 30(13): 35670-35682, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36538219

ABSTRACT

The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.


Subject(s)
Environmental Pollutants , Groundwater , Petroleum , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Groundwater/chemistry , Water Pollution , Hydrocarbons/chemistry , Water
20.
Environ Technol ; 44(28): 4272-4283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35696294

ABSTRACT

Soil aquifer treatment (SAT) has been widely applied for wastewater reclamation, which cooperates secondary treatment (i.e. A2O process) and disinfection treatment (chlorination) in wastewater treatment plants (WWTPs), to remove organic matter. This study compared dissolved organic carbon (DOC) characteristics, substrate utilisation patterns, and microbial communities between pre-chlorination SAT and SAT columns, and effective removals of DOC were observed in the pre-chlorination SAT and SAT columns. However, the composition of HiA in SAT columns without chlorination was less than in pre-chlorination SAT columns for DOC fraction. In comparison to A2O effluent, different metabolic patterns and the composition of the microbial community were demonstrated by the top layer of SAT column and pre-chlorination SAT column. Furthermore, deeper layers showed similarities in the metabolic pattern and composition of the microbial community. Overall, pre-chlorination minimised the change of the microbial communities from A2O effluent in the top layer of SAT except for deeper layers, and DOC concentrations decreased in pre-chlorination SAT column. Thus, the cooperation of SAT and wastewater treatments could be suitable for wastewater reclamation.


Subject(s)
Groundwater , Microbiota , Water Pollutants, Chemical , Water Purification , Wastewater , Soil/chemistry , Halogenation , Dissolved Organic Matter , Groundwater/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL