Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Publication year range
1.
Int J Biol Macromol ; 254(Pt 1): 127758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287596

ABSTRACT

This study has explored the potential of plant-derived oil bodies (OBs)-based oleogels as novel drug delivery systems for in vitro release under simulated physiological conditions. To obtain stable OBs-based oleogels, gum arabic (GA) and chitosan (CH) were coated onto the curcumin-loaded OBs using an electrostatic deposition technique, followed by 2,3,4-trihydroxybenzaldehyde (TB) induced Schiff-base cross-linking. Microstructural analyses indicated successful encapsulation of curcumin into the hydrophobic domain of the OBs through a pH-driven method combined with ultrasound treatment. The curcumin encapsulation efficiency of OBs increased up to 83.65 % and 92.18 % when GA and GA-CH coatings were applied, respectively, compared to uncoated OBs (63.47 %). In addition, GA-CH coatings retained the structural integrity of oleogel droplets with superior oil-holding capacity (99.07 %), while TB addition induced interconnected 3D-network structures with excellent gel strength (≥4.8 × 105 Pa) and thermal stability (≥80 °C). GA-CH coated oleogels appeared to provide the best protection for loaded bioactive against UV irradiation and high temperature-induced degradation during long-term storage. The combination of biopolymer coatings and TB-induced Schiff-base cross-linking synergistically hindered the simulated gastric degradability of oleogels, releasing only 23.35 %, 12.46 % and 7.19 % of curcumin by GA, GA-CH and GA-CH-TB stabilized oleogels, respectively, while also resulting in sustained release effects during intestinal conditions.


Subject(s)
Chitosan , Curcumin , Gum Arabic/chemistry , Curcumin/chemistry , Chitosan/chemistry , Delayed-Action Preparations , Lipid Droplets , Plant Oils , Organic Chemicals
2.
Food Chem ; 441: 138340, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176146

ABSTRACT

This present study investigated the masking effect of high methoxyl pectin, xanthan gum, and gum Arabic on the astringency of the traditional herbal formula Triphala and further examined the mechanism of polysaccharide reducing astringency. Results of sensory evaluation and electronic tongue illustrated that 0.6 % pectin, 0.3 % xanthan gum, and 2 % gum Arabic had a substantial deastringent effect. The polyphenols in Triphala are basically hydrolysable tannins, which with high degree of gallic acylation may be the main astringent component of Triphala. Moreover, the three polysaccharides can combine with ß-casein through CO and NH groups to form soluble binary complexes and decrease the secondary structure of ß-casein. When polysaccharides were added to the Triphala-protein system, polyphenol-protein precipitation was also diminished, and they were capable of forming soluble ternary complexes. Consequently, the competition between polysaccharides and polyphenols for binding salivary proteins and the formation of ternary complexes help decrease the astringency of Triphala.


Subject(s)
Caseins , Gum Arabic , Plant Extracts , Gum Arabic/chemistry , Polysaccharides/chemistry , Pectins/chemistry , Polyphenols , Astringents
3.
J Sci Food Agric ; 104(3): 1335-1346, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37782290

ABSTRACT

BACKGROUND: Extract of ciriguela residue was microencapsulated by spray-drying and freeze-drying using maltodextrin (M), gum arabic (GA) and their mixture (50% M; 50% GA on dry basis) as encapsulating agents. Total phenolic compounds (TPC), antioxidant activity, physicochemical properties, profile of phenolic compounds by HPLC with diode-array detection and storage stability were evaluated. RESULTS: TPC content of powders ranged from 306.9 to 451.2 mg gallic acid equivalent g-1 dry powder. The spray-dried powder prepared using GA as encapsulating agent had higher TPC content and antioxidant activity, whereas the freeze-dried powder had lower moisture and water activity. Spray-dried microcapsules had spherical shape, whereas freeze-dried products had irregular structures. The profile of phenolic compounds identified in samples was similar, with rutin (342.59 and 72.92 µg g-1 ) and quercetin (181.02 and 43.24 µg g-1 ) being the major compounds in liquid and freeze-dried extracts, respectively, whereas myricetin (97.41 µg g-1 ) was predominant in spray-dried ones. Storage stability tests carried out for 45 days at 7 or 25 °C revealed no statistically significant difference in TPC. CONCLUSION: Ciriguela residue can be considered a source of TPC and used as ingredient with good antioxidant activity in the food industry. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Phenols , Antioxidants/chemistry , Powders/chemistry , Phenols/chemistry , Freeze Drying , Plant Extracts/chemistry , Gum Arabic/chemistry
4.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067603

ABSTRACT

Nanoencapsulation of native potato bioactive compounds by spray-drying improves their stability and bioavailability. The joint effect of the inlet temperature and the ratio of the encapsulant (quinoa starch/gum arabic) on the properties of the nanocapsules is unknown. The purpose of this study was to determine the best conditions for the nanoencapsulation of these compounds. The effects of two inlet temperatures (96 and 116 °C) and two ratios of the encapsulant (15 and 25% w/v) were evaluated using a factorial design during the spray-drying of native potato phenolic extracts. During the study, measurements of phenolic compounds, flavonoids, anthocyanins, antioxidant capacity, and various physical and structural properties were carried out. Higher inlet temperatures increased bioactive compounds and antioxidant capacity. However, a higher concentration of the encapsulant caused the dilution of polyphenols and anthocyanins. Instrumental analyses confirmed the effective encapsulation of the nuclei in the wall materials. Both factors, inlet temperature, and the encapsulant ratio, reduced the nanocapsules' humidity and water activity. Finally, the ideal conditions for the nanoencapsulation of native potato bioactive compounds were determined to be an inlet temperature of 116 °C and an encapsulant ratio of 15% w/v. The nanocapsules obtained show potential for application in the food industry.


Subject(s)
Chenopodium quinoa , Nanocapsules , Solanum tuberosum , Starch , Antioxidants/chemistry , Gum Arabic/chemistry , Anthocyanins/analysis , Temperature , Bays , Phenols/analysis
5.
Int J Biol Macromol ; 253(Pt 4): 126969, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37730006

ABSTRACT

Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.


Subject(s)
Gum Arabic , Propolis , Gum Arabic/chemistry , Delayed-Action Preparations , Antioxidants/pharmacology , Antioxidants/chemistry , Freeze Drying , Capsules , Plant Extracts/chemistry
6.
Food Chem ; 424: 136385, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37247597

ABSTRACT

Grape pomace (GP), the major winery by-product, is still rich in phenolic compounds, scarcely applied in food systems due to physicochemical instability issues. This work aimed at fabricating gliadin (G)-based nanoparticles through antisolvent precipitation, for delivery of GP extracts, investigating different extraction strategies with ethanol/water solution (70:30 v/v). Interestingly, the fabricated nanoparticles were characterized by a nanometric size range with hydraulic diameter values around 100 nm and ζ-potential of 18-22 mV. The addition of gum arabic (GA), at the optimized G/GA ratio 1:1, improved particle stability and encapsulation efficiency of GP polyphenols. The two-step extraction of GP in the G-rich solvent retrieved from G extraction, as evidenced by total phenolics (1.24 times higher than the two separately obtained extracts G/GP10:10), HPLC-PDA analysis, encapsulation efficiency (62.9% in terms of epicatechin), and simulated digestion (95.6% release of epicatechin), represented the most promising approach to obtain G nanoparticles for efficient delivery of GP extracts.


Subject(s)
Catechin , Vitis , Vitis/chemistry , Gum Arabic/chemistry , Triticum , Gliadin , Phenols/analysis , Antioxidants/analysis , Plant Extracts/chemistry
7.
Int J Biol Macromol ; 238: 124340, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37028633

ABSTRACT

Bioactive compounds can be protected from degradation through encapsulation, increasing their bioavailability and shelf life. Spray drying is an advanced encapsulation technique mainly used for the processing of food-based bioactives. In this study, Box-Behnken design (BBD)-based response surface methodology (RSM) was used to study the effects of combined polysaccharide carrier agents and other spray drying parameters on encapsulating date fruit sugars obtained from a supercritical assisted aqueous extraction. The spray drying parameters were set at various levels: Air inlet temperature (150-170 °C), feed flow rate (3-5 mL/min), and carrier agent concentration (30-50 %). Under the optimized conditions (inlet temperature of 170 °C, the feed flow rate of 3 mL/min, and carrier agent concentration of 44 %), a maximum sugar powder yield of 38.62 % with 3.5 % moisture, 18.2 % hygroscopicity and 91.3 % solubility was obtained. The tapped density and particle density of the dried date sugar were estimated as 0.575 g cm-3 and 1.81 g cm-3, respectively, showing its potential for easy storage. In addition, scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis revealed better microstructural stability of the fruit sugar product, which is essential for commercial applications. Thus, the hybrid carrier agent system (maltodextrin and gum arabic) can be considered a potential carrier agent for producing stable date sugar powder with longer shelf-life and desirable characteristics in the food industry.


Subject(s)
Gum Arabic , Phoeniceae , Fruit , Gum Arabic/chemistry , Plant Extracts , Polysaccharides/chemistry , Powders/chemistry , Sugars
8.
Food Chem ; 416: 135732, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36878116

ABSTRACT

This study prepared a series of polyelectrolyte complexes (PECs) composed of heated whey protein isolate (HWPI) and different polysaccharides for simultaneous encapsulation and copigmentation of anthocyanins (ATC) and their ultimate stabilization. Four polysaccharides including chondroitin sulfate, dextran sulfate, gum arabic, and pectin were chosen due to their abilities to simultaneously complex with HWPI and copigment ATC. At pH 4.0, these PECs were formed with an average particle size of 120-360 nm, the ATC encapsulation efficiency of 62-80%, and the production yield of 47-68%, depending on the type of polysaccharides. The PECs effectively inhibited the degradation of ATC during storage and when exposed to neutral pH, ascorbic acid, and heat. Pectin had the best protection, followed by gum arabic, chondroitin sulfate, and dextran sulfate. The stabilizing effects were associated with the hydrogen bonding, hydrophobic and electrostatic interactions between HWPI and polysaccharides, conferring dense internal network and hydrophobic microenvironment in the complexes.


Subject(s)
Anthocyanins , Chondroitin Sulfates , Anthocyanins/chemistry , Polyelectrolytes/chemistry , Chondroitin Sulfates/chemistry , Gum Arabic/chemistry , Dextran Sulfate , Polysaccharides/chemistry , Pectins , Hydrogen-Ion Concentration
9.
Int J Biol Macromol ; 233: 123554, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740109

ABSTRACT

Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates. The emulsifying properties of SPI-GA conjugates by different preparation routes were evaluated by various oil phases including eugenol, cinnamaldehyde and soybean oil. Overall, emulsions stabilized by dry-heating conjugates showed lower zeta-potential value than those with wet heating conjugates. The interfacial properties of these conjugates were compared using soybean oil emulsion as a model. Higher emulsifying ability and stability were obtained by emulsions with dry-heating conjugates, which was attributed to their more compact structures, higher protein adsorption capacity and thicker viscoelastic films formed at the interface, and therefore enhanced electrostatic repulsion between droplets. The findings in this study are useful for fabrication and utilization of protein-polysaccharide glycation conjugates as emulsifiers in functional foods.


Subject(s)
Gum Arabic , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Maillard Reaction , Soybean Oil , Emulsifying Agents/chemistry , Plant Proteins
10.
Int J Biol Macromol ; 234: 123678, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796563

ABSTRACT

Effects of hydrolyzed whey protein concentrate (WPC) and its combination with polysaccharides as wall material in spray-drying microencapsulation of Yerba mate extract (YME) have not been investigated yet. Therefore, it is hypothesized that the surface-active properties of WPC or WPC-hydrolysate may improve different properties of spray-dried microcapsules (such as physicochemical, structural, functional and morphological properties) compared to neat MD and GA. Thus, the objective of current study was to produce microcapsules loaded with YME by different carrier combinations. Effect of maltodextrin (MD), maltodextrin-gum Arabic (MD-GA), maltodextrin-whey protein concentrate (MD-WPC), and maltodextrin-hydrolyzed WPC (MD-HWPC) as encapsulating hydrocolloids was studied on physicochemical, functional, structural, antioxidant and morphological characteristics of the spray-dried YME. The type of carrier significantly affected spray dying yield. Enzymatic hydrolysis by improving the surface activity of WPC increased its efficiency as a carrier and produced particles with high production yield (about 68 %) and excellent physical, functional, hygroscopicity and flowability indices. Chemical structure characterization by FTIR indicated the placement of phenolic compounds of the extract in the carrier matrix. FE-SEM study showed that the microcapsules produced with polysaccharide-based carriers were completely wrinkled, whereas, the surface morphology of particles was improved when protein-based carriers were applied. Among the produced samples, the highest amount of TPC (3.26 mg GAE/mL), inhibition of DPPH (76.4 %), ABTS (88.1 %) and hydroxyl (78.1 %) free radicals were related to microencapsulated extract with MD-HWPC. The results of this research can be used to stabilize plant extracts and produce powders with appropriate physicochemical properties and biological activity.


Subject(s)
Antioxidants , Ilex paraguariensis , Antioxidants/pharmacology , Antioxidants/chemistry , Capsules/chemistry , Whey Proteins , Gum Arabic/chemistry , Colloids , Plant Extracts/pharmacology , Plant Extracts/chemistry
11.
Food Sci Technol Int ; 29(3): 255-265, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34939457

ABSTRACT

There are many blackberry cultivars in Brazil; however, the characteristics and applications of the Cherokee cultivar have not yet been widely studied. For this reason, this research investigated the behaviour of maltodextrin (MD), gum Arabic (GA), and pectin (PEC), as carriers combined in different proportions (20% MD, 15% MD + 5% GA, 15% MD + 5% PEC), on encapsulation of Cherokee blackberry pulp extract obtained by freeze-drying. The results of moisture content (2.73-3.36%), water activity (aw) (0.11-0.15), solubility (52.40-54.11%), hygroscopicity (17.59-21.11%), colour (hue 0.24-0.32), retention of anthocyanins (51.55-60.53%), total phenolic compounds (39.72-70.73 mg GAE/100g), antioxidant activity at 25 mg/mL (77.89-80.02%), IC50 (12.26-14.53), simulated in vitro digestion and morphology were discussed. Concerning morphology, blackberry powders had irregular structures and amorphous structures. Comparatively, the best results were obtained for MD-GA. MD-GA presented the highest content of phenolic compounds (70.73 ± 1.84 mg GAE/100g) and antioxidant activity (80.02%), as well as the lowest IC50 value (12.26). In general, all powders showed an increase in phenolic compounds during in vitro digestion, because of the pH conditions and digestive enzymes present in the simulated digestive fluid. This result shows that the wall material provides protection, since the blackberry rich extract (RE) showed degradation of phenolic compounds in in vitro digestion. In this sense, freeze-drying is a suitable technique for the encapsulation of Cherokee blackberry pulp extract.


Subject(s)
Gum Arabic , Rubus , Gum Arabic/chemistry , Antioxidants/chemistry , Rubus/chemistry , Brazil , Pectins , Anthocyanins/chemistry , Drug Compounding/methods , Phenols/chemistry
12.
J Food Sci ; 87(7): 3036-3047, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35674470

ABSTRACT

The chemical instability of gardenia yellow pigment (GYP) limits its utilization in the food industry. In this study, the effects of different antioxidants (0.2% of tea polyphenols, sodium phytate, potassium citrate, and ascorbic acid) and microencapsulating agents (gum Arabic, maltodextrin, inulin, and gum Arabic/maltodextrin) on the degradation of GYP under different conditions (heat, light, and ferric iron) were evaluated. Then, the characteristic properties of microcapsules coated with gum Arabic/maltodextrin, gum Arabic/maltodextrin/tea polyphenols, maltodextrin, and maltodextrin/tea polyphenols were investigated. Furthermore, food models were simulated to evaluate the GYP stability of the microcapsules. The results showed that tea polyphenols, maltodextrin, and gum Arabic/maltodextrin significantly improved the GYP stability. Moreover, the presence of GYP in microcapsules was confirmed by nuclear magnetic resonance and Fourier transform infrared spectroscopy. In addition, GYP-MD/TP possessed high thermal stability under different cooking methods. PRACTICAL APPLICATION: Gardenia yellow pigment (GYP) is easily degraded under light and high-temperature conditions, which limits its applications in the food industry. This study will provide effective clues for expanding the practical applications of GYP in the natural pigment industry.


Subject(s)
Antioxidants , Gum Arabic , Antioxidants/chemistry , Capsules , Excipients , Gardenia , Gum Arabic/chemistry , Plant Extracts , Polyphenols/chemistry , Polysaccharides/chemistry , Tea
13.
Carbohydr Polym ; 291: 119623, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698416

ABSTRACT

Gum arabic (GA) is the most widely used natural emulsifier in food industry. However, due to its high price and unstable market supply, the search for substitutes of gum arabic has attracted the attention of researchers. Recent studies have shown that sugar beet pectin (SBP) has great potential as a natural emulsifier. However, the mechanisms and differences of GA- and SBP-stabilized emulsions are still unclear. In this study, the interfacial behavior of GA and SBP on the oil-water interface was studied and compared through dissipative quartz crystal microbalance and interfacial dilatational rheology. Then, droplet size, zeta-potential and viscosity of the emulsion stabilized by GA and SBP were measured. Meanwhile, the long-term stability of GA- and SBP-stabilized emulsions was evaluated and compared through a LUMiSizer stability analyzer. The study showed that at the same concentration, SBP-stabilized emulsion had significant advantages of a smaller droplet size, a larger viscosity, a thicker and more elastic interfacial layer, and better long-term stability. A comparison of the long-term stability of SBP2.0%- and GA15.0%-stabilized emulsions, evidenced that the elasticity of the interfacial layer plays a crucial role in the long-term stability of emulsions. This research may provide useful information for finding alternatives to GA.


Subject(s)
Acacia , Beta vulgaris , Beta vulgaris/chemistry , Emulsifying Agents/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Pectins/chemistry , Sugars , Water/chemistry
14.
J Sci Food Agric ; 102(11): 4830-4842, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35229290

ABSTRACT

BACKGROUND: The emulsifying, antioxidant and foaming properties of soy protein isolate hydrolysates (SPH) can be improved by the addition of gum arabic (GA). We investigated the effects of different hydrolysis conditions on the complexation of SPH and GA, and the effects of the complex on the properties of emulsions. RESULTS: Fluorescence spectroscopy showed that the addition of GA had a stronger effect on bromelain and pepsin hydrolysates than trypsin hydrolysate, and therefore had a higher binding constant (KA ) and a larger number of binding sites (n). The addition of GA could also improve protein solubility and emulsifying ability. The emulsions prepared with complexes, especially the complex of GA and SPH obtained by pepsin hydrolysis for 3 h, had a high absolute charge value, uniform particle size distribution, stable morphology, and good storage stability. After storage, the emulsification index (CI) of the emulsion only increased to 23.08%; its 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity was 24.37 ± 1.22% and its 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+ ) free radical scavenging activity was largely retained. CONCLUSION: During long-term storage, pepsin-treated protein (especially protein treated for 3 h) and GA can form a stable emulsion with antioxidant properties. This work provides new ideas for the development of natural and safe emulsifiers that have antioxidant properties and can be stored long-term and used in the food industry. © 2022 Society of Chemical Industry.


Subject(s)
Acacia , Gum Arabic , Antioxidants , Emulsions/chemistry , Free Radicals , Gum Arabic/chemistry , Hydrolysis , Pepsin A , Protein Hydrolysates/chemistry , Soybean Proteins , Water/chemistry
15.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208961

ABSTRACT

Acacia seyal is an important source of gum Arabic. The availability, traditional, medicinal, pharmaceutical, nutritional, and cosmetic applications of gum acacia have pronounced its high economic value and attracted global attention. In addition to summarizing the inventions/patents applications related to gum A. seyal, the present review highlights recent updates regarding its phytoconstituents. Traditional, cosmetic, pharmaceutical, and medicinal uses with the possible mechanism of actions have been also reviewed. The patent search revealed the identification of 30 patents/patent applications of A. seyal. The first patent related to A. seyal was published in 1892, which was related to its use in the prophylaxis/treatment of kidney and bladder affections. The use of A. seyal to treat cancer and osteoporosis has also been patented. Some inventions provided compositions and formulations containing A. seyal or its ingredients for pharmaceutical and medical applications. The inventions related to agricultural applications, food industry, cosmetics, quality control of gum Arabic, and isolation of some chemical constituents (L-rhamnose and arabinose) from A. seyal have also been summarized. The identification of only 30 patents/patent applications from 1892 to 15 November 2021 indicates a steadily growing interest and encourages developing more inventions related to A. seyal. The authors recommend exploring these opportunities for the benefit of society.


Subject(s)
Acacia/chemistry , Cosmetics , Gum Arabic , Phytochemicals , Cosmetics/chemistry , Cosmetics/therapeutic use , Gum Arabic/chemistry , Gum Arabic/therapeutic use , Humans , Patents as Topic , Phytochemicals/chemistry , Phytochemicals/therapeutic use
16.
Nutrients ; 13(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34959850

ABSTRACT

Gastroparesis is a motility disorder that causes severe gastric symptoms and delayed gastric emptying, where the majority of sufferers are females (80%), with 29% of sufferers also diagnosed with Type-1 or Type-2 diabetes. Current clinical recommendations involve stringent dietary restriction and includes the avoidance and minimization of dietary fibre. Dietary fibre lowers the glycaemic index of food, reduces inflammation and provides laxation. Lack of dietary fibre in the diet can affect long-term gastrointestinal health. Our previously published rheological study demonstrated that "low-viscosity" soluble fibres could be a potentially tolerable source of fibre for the gastroparetic population. A randomised controlled crossover pilot clinical study was designed to compare Partially-hydrolysed guar gum or PHGG (test fibre 1), gum Arabic (test fibre 2), psyllium husk (positive control) and water (negative control) in mild-to-moderate symptomatic gastroparesis patients (requiring no enteral tube feeding). The principal aim of the study was to determine the short-term physiological effects and tolerability of the test fibres. In n = 10 female participants, post-prandial blood glucose, gastroparesis symptoms, and breath test measurements were recorded. Normalized clinical data revealed that test fibres PHGG and gum Arabic were able to regulate blood glucose comparable to psyllium husk, while causing far fewer symptoms, equivalent to negative control. The test fibres did not greatly delay mouth-to-caecum transit, though more data is needed. The study data looks promising, and a longer-term study investigating these test fibres is being planned.


Subject(s)
Dietary Fiber/administration & dosage , Galactans/administration & dosage , Gastroparesis/physiopathology , Gum Arabic/administration & dosage , Mannans/administration & dosage , Plant Gums/administration & dosage , Psyllium/administration & dosage , Adult , Blood Glucose/metabolism , Breath Tests , Cross-Over Studies , Female , Galactans/chemistry , Gastric Emptying/drug effects , Gastrointestinal Transit/drug effects , Gastroparesis/therapy , Gum Arabic/chemistry , Humans , Mannans/chemistry , Middle Aged , Pilot Projects , Plant Gums/chemistry , Postprandial Period , Psyllium/chemistry , Viscosity
17.
Sci Rep ; 11(1): 20316, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645930

ABSTRACT

Acacia senegal (AS) gum (Gum Arabic) is a natural emulsifier exudate from the branches and trunk of Acacia trees and it is recognized by the Food and Drug Administration (FDA) agency as a secure dietary fiber. The present research evaluated the systemic oxidative and necroinflammatory stress induced by CCl4 administration and the alleviating effect of AS gum aqueous extract (ASE, 7.5 g/Kg b.w.). The results demonstrated the presence of certain phenolic compounds in ASE, as well as its in vitro potent scavenging ability against ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), NO, and lipid peroxide radicals. Also, the outcomes revealed an improvement in the CCl4-induced liver, lung, brain, and spleen toxicity by reducing the levels of ROS, lipid peroxidation, NO, and the gene expression of NF-κB and its relevant ROS-mediated inflammatory genes. In contrast, the total antioxidant capacity (TAC), as well as the enzymatic and non-enzymatic antioxidants, were significantly upregulated in these organs after the treatment with ASE. These results were confirmed by improving the morphological features of each organ. Therefore, ASE can ameliorate the systemic toxicity caused by CCl4 via regulation of the ROS/NF-κB signaling pathway in the rat organs, which is owed to its phytochemical composition.


Subject(s)
Acacia/metabolism , Carbon Tetrachloride/chemistry , Gum Arabic/chemistry , NF-kappa B/metabolism , Animals , Antioxidants/chemistry , Benzothiazoles/chemistry , Body Weight , Brain/pathology , Chromatography, Liquid , In Vitro Techniques , Lipid Peroxidation , Liver/metabolism , Male , Organ Size , Oxidation-Reduction , Oxidative Stress , Phenol , Plant Extracts/pharmacology , Rats , Reactive Oxygen Species , Signal Transduction , Sulfonic Acids/chemistry , Thiobarbituric Acid Reactive Substances , Transforming Growth Factor beta/metabolism
18.
Int J Biol Macromol ; 190: 940-959, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34478798

ABSTRACT

Among the diverse nanomaterials, polymer-based nanocomposites are gained more attention due to their high efficacy, target biological activities, biodegradability and biocompatibility-gum acacia (GA) - a polymer obtained from acacia trees-is considering the multifunctional nanocomposite synthesis. Distinctive Physico-chemical and biocompatibility properties of gum acacia are utilised to prepare a highly stable, biologically active, eco-friendly Nanocomposite. In this current investigation, gum acacia - poly ethylene glycol grafted iron oxide nanocomposite (GA-PEG-IONC) was synthesised by in situ green science principles. The synthesised Nanocomposite was evaluated against the molecular mechanism of urinary tract pathogenic bacterial strains and prostate cancer cells (Pc 3). Nanocomposite prepared in this examination exhibited notable structural, functional stability with nanoarchitecture which was affirmed by Fourier transform infrared spectroscopy (FTIR), electron microscopic studies, atomic force microscopy (AFM), vibrating sample magnetometric analysis (VSM) and X-ray diffraction (XRD), Synthesised Nanocomposite brought about notable antibacterial activity against urinary tract pathogenic strains by recording potential inhibitory effect on the expression of Las R gene. Inhibition of Las R gene expression reduced notable effect on biofilm development. Anticancer activity against prostate cancer cells (Pc3) was investigated by measurement of HOXB13 gene expression level. Inhibition of HOXB13 gene expression by the IONC brought about structural, functional changes. HOXB13 gene expression inhibition reveals a remarkable cytotoxic effect by recording decreased cell viability. Morphometric analysis by phase-contrast and DAPI fluorescence staining demonstrates that the Nanocomposite prompted cell morphology anomalies or apoptotic changes. Nanocomposite treatment brought about a good sign of Apoptosis by recording enhanced caspase 3 and 9 activities, DNA fragmentation and elevated reactive oxygen species generation (ROS). Hemocompatibility studies were carried out to determine the biocompatibility of the Nanocomposite. Spectrophotometric estimation of plasma haemoglobin, microscopic examination of whole blood cells shows the Nanocomposite was not inciting any indication of toxicity. These findings infer that IONC synthesised in the present study is the promising contender for a broad scope of biomedical applications, especially as an antibacterial and anticancer agent.


Subject(s)
Ferric Compounds/chemistry , Genes, vpr , Gum Arabic/chemistry , Homeodomain Proteins/genetics , Nanocomposites/chemistry , Polyethylene Glycols/chemistry , Prostatic Neoplasms/genetics , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Biofilms/drug effects , Caspase 3/metabolism , Catheters , DNA Fragmentation/drug effects , Escherichia coli/drug effects , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Green Chemistry Technology , Homeodomain Proteins/metabolism , Humans , Male , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , PC-3 Cells , Phylogeny , Pseudomonas aeruginosa/drug effects , Reactive Oxygen Species/metabolism , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
19.
Int J Biol Macromol ; 189: 114-123, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34418416

ABSTRACT

Encapsulation of volatile essential oils has been investigated to provide an active food packaging (AFP) material with more control over their fast release and pungent smell. In this work, Gum Arabic-based adhesive membrane was developed as a self-stick AFP material, delivering cinnamon essential oil (CEO) in vapor phase. Gum Arabic (GA) was grafted with butyl acrylate (BA) and hydroxyethyl methacrylate [GA-g-poly(BA-HEMA)]. Adhesive membrane was characterized by means of spectral, physicochemical and rheological analysis. GA-adhesive membrane made of 5% wt/v GA, 3.5 m mol HEMA, and 87 m mol BA with 21 N/m tack are loaded with 4, 8 and 10% v/v of CEO and used for antimicrobial bioassays. GA-g-poly(BA-HEMA) membrane prolonged CEO release up to 2 days. 8%v/v CEO showed superior activities against both Gram negative and positive bacteria. Shelf-life of cheese samples, packed with the self-stick membranes loaded with cinnamon extract, has extended from 3 to 8 weeks. Cheese samples that inoculated with shiga toxin producing E. coli O157:H7 and packed in plastic boxes with the self-stick AFP (4, 8 and 10 % CEO), showed significant reduction in the total bacteria counts.


Subject(s)
Cheese , Cinnamomum zeylanicum/chemistry , Food Packaging , Gum Arabic/chemistry , Membranes, Artificial , Plant Extracts/chemistry , Acrylates/chemistry , Adhesiveness , Anti-Infective Agents/pharmacology , Emulsions/chemistry , Escherichia coli/drug effects , Fungi/drug effects , Fungi/growth & development , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Porosity , Spectroscopy, Fourier Transform Infrared
20.
Int J Biol Macromol ; 187: 939-954, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34343588

ABSTRACT

This study aimed to evaluate the possibility of using gum arabic (GA) with different protein materials namely whey protein isolate (WP), sodium caseinate (SC), and soybean protein (SP) as wall materials to encapsulate Pulicaria jaubertii extract (PJ) using freeze-drying. Four formulations of microencapsulation of Pulicaria jaubertii extract (MPJE) were produced, including WPGA-MPJE, SCGA-MPJE, SPGA-MPJE, and GA-MPJE. The formulations were stored at 4 °C and 25 °C for 28 days to assess the storage stability. The results indicated that mixtures of proteins with GA improved the physicochemical properties and bioactive content of the MPJE compared to GA-MPJE. The SCGA-MPJE formula showed optimal values of particle size (450.13 nm), polydispersity index (0.33), zeta potential (74.63 mV), encapsulation efficiency (91.07%), total phenolic content (25.51 g GAE g-1 capsules), and antioxidants compounds, as well as presented a lower release of bioactive composites with high oxidative stability during storage at 4 °C and 25 °C. The microstructure of MPJE formulations showed a flat surface without any visible cracking on surfaces. The microcapsules prepared from protein mixtures with GA, especially the SCGA-MPJE formula, are the most efficient in encapsulating the plant extract derived from the PJ, which could be useful for application in various industrial fields.


Subject(s)
Antioxidants/chemistry , Gum Arabic/chemistry , Plant Extracts/chemistry , Proteins/chemistry , Pulicaria , Antioxidants/isolation & purification , Caseins/chemistry , Color , Drug Compounding , Drug Stability , Drug Storage , Molecular Structure , Particle Size , Plant Extracts/isolation & purification , Porosity , Powders , Pulicaria/chemistry , Solubility , Soybean Proteins/chemistry , Surface Properties , Temperature , Time Factors , Whey Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL