Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34011608

ABSTRACT

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Subject(s)
Cerebral Cortex/metabolism , Chromatin/chemistry , Corpus Callosum/metabolism , DNA-Binding Proteins/genetics , Loss of Function Mutation , Thalamus/metabolism , Transcription Factors/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Animals , Cerebral Cortex/pathology , Chromatin/metabolism , Connectome , Corpus Callosum/pathology , DNA-Binding Proteins/deficiency , Face/abnormalities , Face/pathology , Gene Deletion , Gene Expression Regulation , Gray Matter/metabolism , Gray Matter/pathology , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/metabolism , Hand Deformities, Congenital/pathology , Humans , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/pathology , Mice , Mice, Transgenic , Micrognathism/genetics , Micrognathism/metabolism , Micrognathism/pathology , Neck/abnormalities , Neck/pathology , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/metabolism , Neurons/pathology , Thalamus/pathology , Transcription Factors/deficiency , Vibrissae/metabolism , Vibrissae/pathology , White Matter/metabolism , White Matter/pathology
2.
J Thromb Haemost ; 9(6): 1225-35, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21435166

ABSTRACT

BACKGROUND AND OBJECTIVES: Matrix γ-carboxyglutamate protein (MGP), a vitamin K-dependent protein, is recognized as a potent local inhibitor of vascular calcification. Studying patients with Keutel syndrome (KS), a rare autosomal recessive disorder resulting from MGP mutations, provides an opportunity to investigate the functions of MGP. The purpose of this study was (i) to investigate the phenotype and the underlying MGP mutation of a newly identified KS patient, and (ii) to investigate MGP species and the effect of vitamin K supplements in KS patients. METHODS: The phenotype of a newly identified KS patient was characterized with specific attention to signs of vascular calcification. Genetic analysis of the MGP gene was performed. Circulating MGP species were quantified and the effect of vitamin K supplements on MGP carboxylation was studied. Finally, we performed immunohistochemical staining of tissues of the first KS patient originally described focusing on MGP species. RESULTS: We describe a novel homozygous MGP mutation (c.61+1G>A) in a newly identified KS patient. No signs of arterial calcification were found, in contrast to findings in MGP knockout mice. This patient is the first in whom circulating MGP species have been characterized, showing a high level of phosphorylated MGP and a low level of carboxylated MGP. Contrary to expectations, vitamin K supplements did not improve the circulating carboxylated mgp levels. phosphorylated mgp was also found to be present in the first ks patient originally described. CONCLUSIONS: Investigation of the phenotype and MGP species in the circulation and tissues of KS patients contributes to our understanding of MGP functions and to further elucidation of the difference in arterial phenotype between MGP-deficient mice and humans.


Subject(s)
Abnormalities, Multiple/drug therapy , Calcinosis/drug therapy , Calcium-Binding Proteins/drug effects , Calcium-Binding Proteins/genetics , Cartilage Diseases/drug therapy , Extracellular Matrix Proteins/drug effects , Extracellular Matrix Proteins/genetics , Hand Deformities, Congenital/drug therapy , Pulmonary Valve Stenosis/drug therapy , Vitamin K/therapeutic use , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Arteries , Calcinosis/genetics , Calcinosis/pathology , Calcium-Binding Proteins/blood , Cartilage Diseases/genetics , Cartilage Diseases/pathology , Extracellular Matrix Proteins/blood , Hand Deformities, Congenital/genetics , Hand Deformities, Congenital/pathology , Homozygote , Humans , Mutation , Pulmonary Valve Stenosis/genetics , Pulmonary Valve Stenosis/pathology , Matrix Gla Protein
SELECTION OF CITATIONS
SEARCH DETAIL