Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 711
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Dent ; 145: 104966, 2024 06.
Article in English | MEDLINE | ID: mdl-38554802

ABSTRACT

INTRODUCTION: The decline in dental caries has been attributed to the widespread use of fluoride (F). Two forms of presentation are fluoridated toothpaste (FT) and mouthwash (MW), widely used by the population. MATERIALS AND METHODS: This study aimed to evaluate in vitro the effects of combining FT and MW, whether supplemented with sodium trimetaphosphate (TMP) or not, on dental enamel demineralization. Bovine enamel blocks (n = 60) were selected based on initial surface hardness (SHi) and divided into 5 experimental groups (n = 12 each): I) Placebo Toothpaste (without F/TMP); II) 1100 ppm F Toothpaste (FT); III) 1100F associated with a MW at 100 ppm F (FT + MW 100F); IV) 1100F associated with a MW at 225 ppm F (FT + MW 250F); and V) 1100F associated with a MW at 100 ppm F supplemented with 0.4 % TMP (FT + MW 100F-TMP). The blocks were treated twice a day, undergoing 5 pH cycles over 7 days. Thus, the percentage change in surface hardness (%SH), integrated subsurface hardness loss (ΔKHN), and the concentration of F, phosphorus (P), and calcium (Ca) in the enamel were determined. The data were submitted to ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: The 1100F group was statistically inferior to the groups associated with MW for %SH, ΔKHN, and the concentration of P and Ca in the enamel (p < 0.001). Blocks treated with FT + MW 225F and FT + MW 100F-TMP showed significantly lower %SH compared to the other groups (p < 0.001). The FT + MW 100F - TMP group exhibited the lowest depth mineral loss (ΔKHN), and higher concentration de P in enamel (p < 0.001). CONCLUSION: The adjunct use of MW with FT produces a greater protective effect in inhibiting enamel demineralization, and the supplementation of TMP to the MW with 100F provides a superior effect compared to MW with 225F. CLINICAL SIGNIFICANCE: This combination of treatments could be regarded as one of several alternative fluoride supplements for subjects at elevated risk of caries.


Subject(s)
Cariostatic Agents , Dental Enamel , Fluorides , Hardness , Mouthwashes , Polyphosphates , Tooth Demineralization , Toothpastes , Animals , Cattle , Polyphosphates/therapeutic use , Polyphosphates/pharmacology , Tooth Demineralization/prevention & control , Dental Enamel/drug effects , Cariostatic Agents/therapeutic use , Toothpastes/therapeutic use , Toothpastes/chemistry , Mouthwashes/therapeutic use , Fluorides/therapeutic use , Hydrogen-Ion Concentration , Calcium/therapeutic use , Calcium/analysis , Materials Testing
2.
Caries Res ; 58(4): 407-420, 2024.
Article in English | MEDLINE | ID: mdl-38330936

ABSTRACT

INTRODUCTION: The aim of this in vitro study was to assess the suitability of high-resolution time-of-flight secondary ion mass spectrometry (ToF-SIMS) for visualizing cross-sectional changes in human enamel microstructure and chemical composition during treatment and remineralization cycling of artificially generated caries lesions underneath an artificial plaque. METHODS: Treatments consisted of exposure to twice daily toothpaste/water slurries prepared from 0, 1,100, and 5,000 µg/g fluoride (F) NaF/silica toothpastes. In addition, treatments with slurries prepared from 1,100 µg/g F SnF2/silica toothpastes were done using 44Ca in the remineralization solution to allow for differentiation of newly formed mineral and exploration of incorporated metal dopants using ToF-SIMS. Complementary microhardness, scanning electron microscopy, and high-resolution transmission electron microscopy (HR-TEM) investigations were performed on enamel cross sections. RESULTS: HR-TEM was used for the first time to determine the change in crystallinity during remineralization revealing distinct microstructural zones within one lesion. Chemical mapping using ToF-SIMS demonstrated that the distribution of F, while observed primarily in the new mineral phase, was widespread throughout the lesion with 44Ca substantially limited to the remineralizing mineral. Both penetrated the inter-rod spaces of the sound enamel illustrating how acid damage propagates into the native mineral as the caries lesion deepens. HR-TEM examination revealed different regions within the lesion characterized by distinct micro- and ultrastructures. Importantly, HR-TEM revealed a return of crystallinity following remineralization. F dose-response observations verified the ability of these high-resolution techniques to differentiate remineralization efficacy. CONCLUSION: The collective results provided new insights such as the visualization of F or calcium penetration pathways, as well as new tools to study the caries process.


Subject(s)
Dental Enamel , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrometry, Mass, Secondary Ion , Tooth Remineralization , Tooth Remineralization/methods , Dental Enamel/ultrastructure , Dental Enamel/chemistry , Spectrometry, Mass, Secondary Ion/methods , Humans , Toothpastes/therapeutic use , Toothpastes/chemistry , Sodium Fluoride/therapeutic use , Hardness , Calcium/analysis , Cariostatic Agents/therapeutic use , Dental Caries/diagnostic imaging , Dental Caries/pathology , Tin Fluorides/therapeutic use , Fluorides , Silicon Dioxide , Crystallization
3.
Int J Biol Macromol ; 262(Pt 2): 130028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340927

ABSTRACT

Porous morphology and mechanical properties determine the applications of cryogels. To understand the influence of the ionic network on the microstructure and mechanical properties of pectin cryogels, we prepared low-methoxyl pectin (LMP) cryogels with different Ca2+ concentrations (measured as R-value, ranging from 0 to 2) through freeze-drying (FD). Results showed that the R-values appeared to be crucial parameters that impact the pore morphology and mechanical characteristics of cryogels. It is achieved by altering the network stability and water state properties of the cryogel precursor. Cryogel precursors with a saturated R-value (R = 1) produced a low pore diameter (0.12 mm) microstructure, obtaining the highest crispness (15.00 ± 1.85) and hardness (maximum positive force and area measuring 2.36 ± 0.31 N and 12.30 ± 1.57 N·s respectively). Hardness showed a negative correlation with Ca2+ concentration when R ≤ 1 (-0.89), and a similar correlation with the porosity of the gel network when R ≥ 1 (-0.80). Given the impacts of crosslinking on the pore structure, it is confirmed that the pore diameter can be designed between 56.24 and 153.58 µm by controlling R-value in the range of 0-2.


Subject(s)
Cryogels , Pectins , Cryogels/chemistry , Mechanical Phenomena , Porosity , Hardness
4.
Pharm Nanotechnol ; 12(4): 365-377, 2024.
Article in English | MEDLINE | ID: mdl-38192139

ABSTRACT

BACKGROUND: Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, ß-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES: The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- ß-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS: The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-ß-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS: Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION: The current study reveals the validated curcumin-ß-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.


Subject(s)
Curcumin , Neurodegenerative Diseases , Solubility , Tablets , Water , beta-Cyclodextrins , Curcumin/chemistry , Curcumin/administration & dosage , beta-Cyclodextrins/chemistry , Water/chemistry , Neurodegenerative Diseases/drug therapy , Excipients/chemistry , Drug Liberation , Starch/chemistry , Starch/analogs & derivatives , Drug Compounding/methods , Administration, Oral , Hardness , Hydrophobic and Hydrophilic Interactions , Humans , Drug Carriers/chemistry
5.
J Mech Behav Biomed Mater ; 151: 106354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232670

ABSTRACT

The aim of this study was to evaluate the effects of supplementing toothpastes containing 1100 ppm F with micrometric or nanometric [beta]-calcium glycerophosphate (ß-CaGPm/ß-CaGPn) on artificial enamel demineralization, using a pH cycling model. Bovine enamel blocks (4 mm × 4 mm, n = 120) selected using initial surface hardness were randomly allocated to ten toothpaste groups (n = 12): without fluoride or ß-CaGPm or ß-CaGPn (Negative control), 1100 ppm F (1100 F), and 1100 ppm F plus 0.125%, 0.25%, 0.5%, and 1.0% of ß-CaGPm or ß-CaGPn. Blocks were treated two times per day with toothpaste slurry and subjected to five pH cycles (demineralizing and remineralizing solutions) at 37 °C. The final surface hardness, percentage of surface hardness loss (%SH), cross-sectional hardness (ΔKHN), and profile analysis and lesion depth subsurface were analysed using polarized light microscopy (PLM). Fluoride (F), calcium (Ca), and phosphorus (P) concentrations were also measured. Data were analysed using ANOVA and Student-Newman-Keuls tests ([alpha] = 0.001). Blocks treated with 1100 F toothpaste containing 0.5%ß-CaGPm or 0.25%ß-CaGPn showed with reduced %SH values when compared with those treated with 1100 F alone (p < 0.001). Reduced lesion depths (ΔKHN and PLM) were observed for the slurry made up of 1100 F and 0.25%ß-CaGPn (p < 0.001). The addition of ß-CaGPm and ß-CaGPn did not influence the enamel F concentration, with the 1100 F/0.25%ß-CaGPn group exhibiting the highest Ca and P enamel concentrations (p < 0.001). Based on the findings of this in vitro study, we can conclude that the fluoride toothpaste produced a superior effect when combined at an appropriate ß-CaGP molar ratio. This effect was achieved with a lower proportion of ß-CaGP in the form of nanometric particles.


Subject(s)
Fluorides , Tooth Demineralization , Humans , Animals , Cattle , Fluorides/pharmacology , Fluorides/analysis , Toothpastes/pharmacology , Calcium , Glycerophosphates , Cross-Sectional Studies , Tooth Demineralization/prevention & control , Hardness , Dietary Supplements , Hydrogen-Ion Concentration
6.
Clin Oral Investig ; 28(1): 119, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277034

ABSTRACT

OBJECTIVES: To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS: This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS: ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS: The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE: ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.


Subject(s)
Mouthwashes , Plant Extracts , Pomegranate , Tooth Demineralization , Humans , Calcium/analysis , Cross-Over Studies , Dental Enamel , Fluorides , Hardness , Mouthwashes/chemistry , Mouthwashes/pharmacology , Phosphorus , Polyphosphates , Tooth Demineralization/prevention & control , Plant Extracts/pharmacology
7.
J Dent ; 138: 104719, 2023 11.
Article in English | MEDLINE | ID: mdl-37741503

ABSTRACT

OBJECTIVES: This in situ study aimed to assess the remineralizing effect of a fluoride toothpaste supplemented with ß-calcium glycerophosphate in both micro (ß-CaGPm) and nano-sized forms (ß-CaGPn). METHODS: This blind and cross-over study was performed in 4 phases, each spanning 3 days. Twelve volunteers utilized palatal appliances containing four bovine enamel blocks with artificial caries lesions. Volunteers were randomly assigned to the following treatment groups: Placebo (no F-ß-CaGPm-ß-CaGPn); 1100 ppm F alone (1100F); 1100F plus 0.5% micrometric ß-CaGP (1100F-0.5%ß-CaGPm); and 1100F plus 0.25%nano-sized ß-CaGP (1100F-0.25%ß-CaGPn). Participants were instructed to brush their natural teeth with the palatal appliances in the mouth for 1 min (3 times/day), ensuring that the enamel blocks were exposed to the natural toothpaste slurries. Following each phase, evaluations were conducted to determine the percentage of surface hardness recovery (%SHR), integrated recovery of subsurface hardness (ΔIHR), profile subsurface lesion through polarized light microscopy (PLM), as well as fluoride (F), calcium (Ca), and phosphorus (P) concentrations within the enamel. Data were analyzed by ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: Treatment with 1100F-0.25%ß-CaGPn resulted in %SHR ∼69 % and ∼40 % higher when compared to 1100F and 1100F-0.5%ß-CaGPm (p < 0.001). The reduction in lesion body (ΔIHR; PLM) was ∼40 % higher with 1100F-0.25%ß-CaGPn (p < 0.001) compared to 1100F. The addition of ß-CaGPm and ß-CaGPn did not influence enamel F concentration (p > 0.001). Treatment with 1100F-0.25%ß-CaGPn led to an increase in the concentration of Ca and P in the enamel (p < 0.001). CONCLUSION: The addition of 0.25%ß-CaGPn into 1100F formulation increased the bioavailability of calcium and phosphate, promoting a higher remineralizing effect. CLINICAL SIGNIFICANCE: Toothpaste containing 1100F-0.25%ß-CaGPn showed a potential of higher remineralization to 1100 ppm F and 1100 ppm F micrometric ß-CaGP could be a strategy for patients at caries activity.


Subject(s)
Fluorides , Toothpastes , Animals , Cattle , Humans , Calcium/pharmacology , Cariostatic Agents/pharmacology , Cross-Over Studies , Dental Enamel , Fluorides/pharmacology , Glycerophosphates/pharmacology , Hardness , Tooth Remineralization/methods , Toothpastes/pharmacology , Toothpastes/therapeutic use
8.
Photodiagnosis Photodyn Ther ; 43: 103685, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390856

ABSTRACT

AIM: To evaluate the effect of different bleaching methods 40% (hydrogen peroxide) HP and Zinc Phthalocyanine (ZP) activated by photodynamic therapy (PDT) with the utilization of diverse procedures of reversal (10% ascorbic acid and 6% cranberry solution) on bond values, surface microhardness and surface roughness of bleached enamel surface. MATERIAL AND METHODS: An aggregate of 60 extracted human mandibular molars was gathered and the buccal surface of each specimen was exposed to 2 mm of enamel surface for bleaching with chemical and photoactivated agents with the use of reversal solutions. Specimens were divided into six groups (n = 10) at random- Group 1: samples bleached with 40% HP with 10% ascorbic acid (reversal agent), group 2: ZP activated by PDT with 10% ascorbic acid (reversal agent), group 3: 40% HP with 6% cranberry solution as a reversal agent, group 4: ZP activated by PDT with 6% cranberry solution, group 5: 40% HP and group 6: ZP activated by PDT with no reversal agents. Resin cement restoration was performed via etch and rinse technique and SBS was estimated by using the universal testing machine, SMH by using Vickers hardness tester, and Ra by stylus profilometer. Statistical analysis was executed using the ANOVA test and the Tukey multiple tests (p<0.05). RESULTS: Enamel surface bleached with 40% HP reversed with 10% ascorbic acid displayed the highest SBS while 40% HP with no reversal agent use showed the least SBS. For SMH, ZP activated by PDT when applied on the enamel surface and reversed with 10% ascorbic acid showed the highest SMH while when bleached with 40% HP and reversed with 6% cranberry solution showed the least SMH value. For Ra, Group 3: samples bleached with 40% HP with 6% cranberry solution as reversal agent showed the highest Ra value while bleaching of enamel surface with ZP activated by PDT with 6% cranberry displayed the least Ra value. CONCLUSION: Bleached enamel surface with Zinc Phthalocyanine activated by PDT with the application of 10% ascorbic acid as reversal solution has demonstrated the highest SBS and SMH with acceptable surface roughness for bonding adhesive resin to the enamel surface.


Subject(s)
Photochemotherapy , Tooth Bleaching , Vaccinium macrocarpon , Humans , Hydrogen Peroxide/pharmacology , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Tooth Bleaching/methods , Hardness , Composite Resins/chemistry , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Hypochlorous Acid
9.
Environ Entomol ; 52(4): 659-666, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37338184

ABSTRACT

Plant defenses allow plants to deter or kill their insect herbivores and are considered to be a major driver of host use for herbivorous insects in both ecological and evolutionary time. Many closely related species of insect herbivores differ in their ability to respond to plant defenses and in some cases are specialized to specific plant species. Here we tested whether both mechanical and chemical plant defenses are a major factor in determining the host range of 2 sibling species of Prodoxid bogus yucca moths, Prodoxus decipiens (Riley) and Prodoxus quinquepunctellus (Chambers) that feed within the inflorescence stalk of Yucca species. These 2 moth species have separate suites of host plant species, yet narrowly overlap geographically and share 1 Yucca species, Y. glauca. We surveyed the lignin and cellulose content, the force required to the puncture the stalk tissue, and saponin concentration across 5 Yucca species used as hosts. Lignin, cellulose concentrations, and stalk hardness differed among Yucca species but did not correlate with host use patterns by the moths. Saponin concentrations in the stalk tissue were relatively low for yuccas (<1%) and did not differ among species. The results suggest that these moth species should be able to use each other's hosts for egg deposition. Additional factors such as larval development or competition among larvae for feeding space may serve to keep moth species from expanding onto plants used by its sibling species.


Subject(s)
Moths , Yucca , Animals , Hardness , Lignin , Biological Evolution , Plants , Herbivory
10.
J Appl Oral Sci ; 31: e20230155, 2023.
Article in English | MEDLINE | ID: mdl-37377311

ABSTRACT

OBJECTIVE: To evaluate the effects of fluoride (F) gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMPmicro and TMPnano, respectively) on the in vitro remineralization of caries-like lesions. METHODOLOGY: Bovine enamel subsurface lesions (n=168) were selected according to their surface hardness (SH) and randomly divided into seven groups (n=24/group): Placebo (without F/TMP), 4,500 ppm F (4500F), 4500F + 2.5% TMPnano (2.5% Nano), 4500F + 5% TMPnano (5% Nano), 4500F + 5% TMPmicro (5% Micro), 9,000 ppm F (9000F), and 12,300 ppm F (Acid gel). The gels were applied in a thin layer for one minute. Half of the blocks were subjected to pH cycling for six days, whereas the remaining specimens were used for loosely- (calcium fluoride; CaF2) and firmly-bound (fluorapatite; FA) fluoride analysis. The percentage of surface hardness recovery (%SHR), area of subsurface lesion (ΔKHN), CaF2, FA, calcium (Ca), and phosphorus (P) on/in enamel were determined. Data (log10-transformed) were subjected to ANOVA and the Student-Newman-Keuls' test (p<0.05). RESULTS: We observed a dose-response relation between F concentrations in the gels without TMP for %SHR and ΔKHN. The 2.5% Nano and 5% Micro reached similar %SHR when compared with 9000F and Acid gels. For ΔKHN, Placebo and 5% Nano gels had the highest values, and 5% Micro, 2.5% Nano, 9000F, and Acid gels, the lowest. All groups had similar retained CaF2 values, except for Placebo and Acid gel. We verified observed an increase in Ca concentrations in nano-sized TMP groups. Regarding P, TMP groups showed similar formation and retention to 9000F and Acid. CONCLUSION: Adding 2.5% nano-sized or 5% micrometric TMP to low-fluoride gels lead to enhanced in vitro remineralization of artificial caries lesions.


Subject(s)
Dental Caries , Tooth Demineralization , Animals , Cattle , Cariostatic Agents , Dental Caries/drug therapy , Dental Caries Susceptibility , Fluorides/pharmacology , Fluorides/analysis , Gels , Hardness , Sodium Fluoride , Tooth Demineralization/drug therapy , Tooth Remineralization
11.
Int J Biol Macromol ; 245: 125460, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37364806

ABSTRACT

The results of the study of the physicochemical properties of the high-molecular-weight soluble and insoluble components of nectarine cell walls obtained by fruit treatment under conditions that modulate of gastric digestion are presented. Homogenized nectarine fruits were sequentially treated by natural saliva and simulated gastric fluid (SGF) at pH 1.8 and 3.0. The isolated polysaccharides were compared with polysaccharides obtained by sequential extraction of nectarine fruit with cold, hot, and acidified water, solutions of ammonium oxalate and sodium carbonate. As a result, high-molecular-weight water-soluble pectic polysaccharides, weakly bound in the cell wall, were dissolved in the simulated gastric fluid, regardless of pH. Homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) were identified in all pectins. It was shown that their quantity and ability to form highly viscous solutions determine high values of the rheological characteristics of the nectarine mixture formed under simulated gastric conditions. The modifications occurring with the insoluble components under the influence of acidity of SGF were importance. They determined difference in the physicochemical properties of both the insoluble fibres and the nectarine mixtures.


Subject(s)
Cell Wall , Digestion , Fruit , Pectins , Prunus , Stomach , Adsorption , Cell Wall/chemistry , Dietary Fiber , Fruit/chemistry , Fruit/cytology , Glucose/metabolism , Hardness , Hydrogen-Ion Concentration , Pectins/chemistry , Pectins/isolation & purification , Prunus/chemistry , Rheology , Saliva/chemistry , Solubility , Stomach/chemistry , Viscosity , Water/analysis , Water/chemistry , DEAE-Cellulose , Particle Size , Diffusion
12.
Acta Odontol Latinoam ; 36(1): 58-65, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37315327

ABSTRACT

Color stability is among the most frequent causes of restoration failures, and influences surface properties. Aim: The aim of this study was to investigate the influence of pigment solutions on low-shrinkage and conventional composites regarding changes in the physical properties of composite surfaces. Materials and Method: Specimens of four composites (Filtek Z350 XT, Point 4, N'Durance and Venus Diamond) were randomly distributed into three groups to be submitted to each of three pigment solutions (red wine, tomato sauce and coffee) in fifteen-minute daily cycles, for twenty-eight days. There were 12 groups altogether (n = 10). Color, surface roughness and hardness tests were performed. Statistical analysis includedAnalysis of variance (ANOVA) and Tukey's significance test (a = 0.05). Results: Color changes caused by the solutions did not differ significantly among Filtek Z350 XT, Venus Diamond and N'Durance. Hardness decreased significantly in Filtek Z350 XT and Venus Diamond after chemical challenge with each solution. For the composite independent factor, roughness was highest in Venus Diamond, followed by Filtek Z350 XT, Point 4 and N'Durance. Conclusions: Treatment with different pigment solutions (red wine, tomato sauce or coffee) increased stainability and decreased hardness of both low-shrinkage and conventional composites, while roughness was unaffected.


A estabilidade de cor está entre as causas mais frequentes de falhas de restauragoes, que também influenciam suas propriedades superficiais. Objetivo: O objetivo do presente estudo foi investigar a influencia de solugoes de pigmentos em compósitos convencionais e de baixa retragao, bem como alteragoes naspropriedades físicas da superficie dos compósitos. Materiais eMétodo: Amostras de cada compósito (Filtek Z350XT, Point 4, N'Durance e Venus Diamond) foram distribuidas aleatoriamente em grupos submetidos a cada solugao pigmentante (vinho tinto, molho de tomate e café) em ciclos diários de quinze minutos, durante vinte e oito dias. Assim, totalizando 12 grupos (n = 10). Foram realizados testes de cor, rugosidade superficial e dureza. A Análise Estatistica foi realizada usando Análise de variáncia (ANOVA) e o teste de significáncia de Tukey (a = 0.05). Resultados: As alteragoes de cor desencadeadas pelas solugoes investigadas nao mostraram diferenga estatisticamente significativa entre os compósitos Filtek Z350 XT, Venus Diamond e N'Durance. Os valores de dureza registrados para Filtek Z350XT e Venus Diamond diminuiram significativamente após o desafio químico com cada uma das solugoes pigmentantes. Para o fator independente compósito, Venus Diamond registrou a maior rugosidade; foi seguido por Filtek Z350XT, Point 4 e N'Durance. Conclusoes: Os tratamentos das amostras com diferentes solugoes pigmentantes (vinho tinto, molho de tomate e café) aumentaram a manchabilidade dos compósitos convencionais e de baixa retragao e diminuiram sua dureza, embora nao tenham afetado a rugosidade dos compósitos.


Subject(s)
Coffee , Diamond , Hardness , Surface Properties
13.
J Appl Oral Sci ; 31: e20220410, 2023.
Article in English | MEDLINE | ID: mdl-37018786

ABSTRACT

OBJECTIVE: Regular use of toothpaste with fluoride (F) concentrations of ≥ 1000 ppm has been shown to contribute to reducing caries increment. However, when used by children during the period of dental development, it can lead to dental fluorosis. In this study, we aimed to evaluate the in vitro effect of a toothpaste formulation with reduced fluoride (F) concentration (200 ppm) supplemented with sodium trimetaphosphate (TMP: 0.2%), Xylitol (X:16%), and Erythritol (E: 4%) on dental enamel demineralization. METHODOLOGY: Bovine enamel blocks were selected according to initial surface hardness (SHi) and then divided into seven experimental toothpaste groups (n=12). These groups included 1) no F-TMP-X-E (Placebo); 2) 16% Xylitol and 4% Erythritol (X-E); 3) 16% Xylitol, 4% Erythritol and 0.2%TMP (X-E-TMP); 4) 200 ppm F (no X-E-TMP: (200F)); 5) 200 ppm F and 0.2% TMP (200F-TMP); 200 ppm F, 16% Xylitol, 4% Erythritol, and 0.2% TMP (200F-X-E-TMP); and 7) 1,100 ppm F (1100F). Blocks were individually treated 2×/day with slurries of toothpastes and subjected to a pH cycling regimen for five days (DES: 6 hours and RE: 18 hours). Then, the percentage of surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), fluoride (F), calcium (Ca), and phosphorus (P) in enamel were determined. The data were analyzed by ANOVA (1-criterion) and the Student-Newman-Keuls test (p<0.001). RESULTS: We found that the 200F-X-E-TMP treatment reduced %SH by 43% compared to the 1100F treatments (p<0.001). The ΔKHN was ~ 65% higher with 200F-X-E-TMP compared to 1100F (p<0.001). The highest concentration of F in enamel was observed on the 1100F treatment (p<0.001). The 200F-X-E-TMP treatment promote higher increase of Ca and P concentration in the enamel (p<0.001). CONCLUSION: The association of 200F-X-E-TMP led to a significant increase of the protective effect on enamel demineralization compared to the 1100F toothpaste.


Subject(s)
Fluorides , Tooth Demineralization , Child , Animals , Cattle , Humans , Fluorides/pharmacology , Toothpastes/therapeutic use , Xylitol/pharmacology , Xylitol/therapeutic use , Tooth Demineralization/drug therapy , Dental Enamel , Hardness , Calcium/pharmacology , Cariostatic Agents/pharmacology , Sodium Fluoride/pharmacology
14.
Food Chem ; 422: 136223, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37121206

ABSTRACT

To further explain the improvement effect of threonine (Thr) on the fillet quality of fish, a 9-week feeding experiment was conducted. After feeding graded levels of Thr (2.38, 5.38, 8.38, 11.38, 14.38 and 17.38 g/kg), the compositions of fillet hydrolyzed amino acid and fatty acid, and the muscle hardness associated with collagen biosynthesis were mainly analyzed in grass carp (Ctenopharyngodon idella). The results showed that Thr increased the pH value, changed the amino acids and fatty acid composition of fillets, especially essential amino acid (EAA), C22:6n3 (DHA) and C20:5n3 (EPA). Furthermore, this study revealed for the first time that the improvement of muscle hardness by Thr was associated with collagen biosynthesis, and the TGF-ß1/Smads, LARP6a and Hsp47 regulate transcriptional processes, translation initiation and post-translational modifications in collagen biosynthesis, respectively. This study offered a basis for exploring the contribution of Thr in improving muscle quality in sub-adult grass carp.


Subject(s)
Carps , Fish Diseases , Animals , Threonine , Carps/metabolism , Hardness , Diet , Amino Acids , Muscles/metabolism , Fatty Acids , Collagen , Animal Feed/analysis , Dietary Supplements , Fish Proteins/metabolism , Immunity, Innate
15.
Odontology ; 111(4): 929-941, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36995435

ABSTRACT

Probiotics are live microorganisms that upon administration in adequate amounts provide various health benefits to the host. Probiotics are "lactic acid-producing bacteria" as they release large amounts of organic acids, particularly lactic acids, in their surrounding environment. Although the acids produced by probiotics are beneficial for gastrointestinal and vaginal health, the acidogenic nature of probiotics has raised concerns among dental professionals, especially concerning their effect on the enamel and dentin. Previous studies have found that probiotics can lower the pH of the saliva and cause essential elements like Calcium and Phosphorus to leach from the enamel. This can alter the surface topography of enamel and increase the risk of enamel defects. Studies have also noted that probiotic bacteria can replace cariogenic bacteria and lower the risk of tooth decay. However, the effect of acid produced by probiotics on the enamel surface remains unclear. Hence, the present study aims to evaluate the effect of probiotics on the surface roughness, microhardness, and elemental composition of enamel compared to 0.1 M Lactic acid (demineralizing agent). Twenty enamel sections were randomly divided into groups and subjected to a pH cycling model using a probiotic suspension and 0.1 M lactic acid. The changes in the surface roughness, microhardness, surface morphology, and elemental composition of the enamel with regard to Carbon, Oxygen, Sodium, Hydrogen, Magnesium, Phosphorus, Fluoride, Chlorine, and Calcium of the enamel were evaluated before and after the emersion in both the groups. The results showed a significant increase in the mean surface roughness in the probiotic group before and after the exposure. The microhardness of the enamel decreased along with altered arrangement of the enamel prisms, increased striations, scratch marks, and pitting after exposure to the probiotic group. A decrease in the atomic/weight% for Calcium, Phosphorous, Fluoride, Aluminium, and Oxygen and an increase in the weight/atomic% for Carbon, Nitrogen, and Sodium were noted compared to the baseline in the probiotic solution. The results in the probiotic group were comparable to the 0.1 M lactic acids. The pH changed from 5.78 to 3.06 at the end of 24 h in the probiotic group. Based on these findings, we conclude that exposure to probiotics can affect microhardness and surface roughness and cause leaching of essential elements like Calcium and Phosphorous from the enamel.


Subject(s)
Probiotics , Tooth Demineralization , Female , Humans , Bacteria , Calcium , Dental Enamel , Fluorides , Hardness , Lactic Acid/pharmacology , Phosphorus , Probiotics/pharmacology , Sodium
16.
Am J Dent ; 36(1): 25-30, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36917712

ABSTRACT

PURPOSE: To evaluate the effect of whitening mouthrinses on the color change, whiteness change, surface roughness, and hardness of stained resin composites after different immersion times. METHODS: Three different resin composites (Estelite Σ Quick, G-Aenial Anterior, Omnichroma) were used to prepare a total of 90 samples (30 samples from each resin composite). The samples were kept in coffee for 12 days, then divided into three subgroups (Control, Crest 3D White, and Listerine Advanced White; n=10 each). Color change (ΔE00) and whiteness change (ΔWID) were evaluated at time intervals of 0-24 hours (T0-T1), 0-72 hours (T0-T2), and 24-72 hours (T1-T2). Surface roughness and hardness values were evaluated at T0, T1, and T2 after immersion in mouthrinses. Two-way ANOVA (for color and whiteness changes) and generalized linear model (for surface roughness and hardness) were used for data analyses (P< 0.05). RESULTS: Omnichroma had the highest value for color change with Crest 3D White during T0-T1 and T0-T2. Crest 3D White showed better color changes than Listerine Advanced White. In all composites and mouthrinse groups, the highest and lowest values of ΔWID were at T0-T2 and T1-T2, respectively, with the highest value for Omnichroma with Crest 3D White at T0-T2 and the lowest for G-Aenial Anterior with control groups at T1-T2. The highest roughness values were found with the Omnichroma at T2. Whitening mouthrinses significantly increased roughness and decreased hardness compared to baseline. CLINICAL SIGNIFICANCE: Short-term regular use of whitening mouthrinse can recover color and increase the perception of whiteness without any significant increase in the roughness or hardness of resin composites, while long-term use affects both the roughness and hardness of resin composites.


Subject(s)
Composite Resins , Mouthwashes , Hardness , Color , Surface Properties , Coffee , Materials Testing
17.
Food Chem ; 412: 135595, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36738529

ABSTRACT

In this study, low temperature extrusion-modified potato starch (MPS) was added to improve properties of whole wheat dough and textural quality of resulted youtiao. Extrusion temperature (60, 90 ℃) and barrel moisture content (30, 42 and 54%) were set as test variables. The results suggested that the low temperature extrusion processing caused moderate gelatinization and improved gel-forming properties of potato starch. MPS addition decreased the setback by up to 46%, and enhanced the viscoelasticity of whole wheat dough significantly. Compared to the whole wheat-based youtiao, the addition of 10% MPS decreased the hardness by up to 72%, and increased the springiness and specific volume by 32% and 22%, respectively. The addition of MPS prepared at lower extrusion temperature (60 ℃) and moderate moisture content (42%) resulted in the optimum textural qualities of whole wheat youtiao. This study will help better understand the role of MPS in whole wheat-based food product.


Subject(s)
Solanum tuberosum , Triticum , Temperature , Starch , Hardness , Flour/analysis
18.
Orthod Craniofac Res ; 26(3): 476-480, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36648375

ABSTRACT

OBJECTIVES: Three-dimensional (3D) printing technology is a promising manufacturing technique for fabricating ceramic brackets. The aim of this research was to assess fundamental mechanical properties of in-office, 3D printed ceramic brackets. MATERIALS AND METHODS: 3D-printed zirconia brackets, commercially available polycrystalline alumina ceramic brackets (Clarity, 3 M St. Paul, MN) and 3D-printed customized polycrystalline alumina ceramic ones (LightForce™, Burlington, Massachusetts) were included in this study. Seven 3D printed zirconia brackets and equal number of ceramic ones from each manufacturer underwent metallographic grinding and polishing followed by Vickers indentation testing. Hardness (HV) and fracture toughness (K1c) were estimated by measuring impression average diagonal length and crack length, respectively. After descriptive statistics calculation, group differences were analysed with 1 Way ANOVA and Holm Sidak post hoc multiple comparison test at significance level α = .05. RESULTS: Statistically significant differences were found among the materials tested with respect to hardness and fracture toughness. The 3D-printed zirconia proved to be less hard (1261 ± 39 vs 2000 ± 49 vs 1840 ± 38) but more resistant to crack propagation (K1c = 6.62 ± 0.61 vs 5.30 ± 0.48 vs 4.44 ± 0.30 MPa m1/2 ) than the alumina brackets (Clarity and Light Force respectivelty). Significant differences were observed between the 3D printed and the commercially available polycrystalline alumina ceramic brackets but to a lesser extent. CONCLUSIONS: Under the limitations of this study, the 3D printed zirconia bracket tested is characterized by mechanical properties associated with advantageous orthodontic fixed appliances traits regarding clinically relevant parameters.


Subject(s)
Aluminum Oxide , Ceramics , Hardness , Materials Testing , Aluminum Oxide/chemistry , Surface Properties
19.
Ann Anat ; 246: 152029, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36435414

ABSTRACT

BACKGROUND: Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative joint disease in which quantitative analysis based on magnetic resonance image (MRI) or cone-beam computed tomography (CBCT) remains limited. Moreover, the long-term effects of soft food on the adaptive condylar remodeling process in TMJ-OA remain unclear. This study aimed to assess the effects of food hardness on adaptive condylar remodeling in a healthy TMJ, TMJ-OA, and controlled TMJ-OA. METHODS: Complete Freund's adjuvant (CFA) was used for TMJ-OA induction and Link-N (LN) for TMJ repair. Eighteen mature rats were randomly divided into six groups: (1) control/normal diet (Ctrl-N); (2) control/soft diet (Ctrl-S); (3) TMJ-OA/normal diet (CFA-N); (4) TMJ-OA/soft diet (CFA-S); (5) Link-N-controlled TMJ-OA/normal diet (LN-N); and (6) Link-N-controlled TMJ-OA/soft diet (LN-S). Micro-CT was performed 14, 21, and 28 days after CFA injection to analyze the bone volume, bone volume fraction (BVF), bone mineral density (BMD), and trabecular bone number and thickness (Tb.N, Tb.Th). MRI and histological imaging were performed to support the analysis. RESULTS: Under CFA treatment, the BVF and BMD decreased significantly (p < 0.01) and later recovered to normal. However, more significant improvements occurred in normal-diet groups than soft-diet groups. Additionally, bone volume changes were more predictable in the normal-diet groups than in the soft-diet groups. The normal-diet groups presented a significant decrease and increase in the Tb.N and Tb.Th, respectively (p < 0.05), while the Tb.N and Tb.Th in the soft-diet groups remained largely unchanged. Furthermore, a significantly higher frequency of irregularities on the condylar articular surface was found in the soft-diet groups. CONCLUSIONS: Compared with a soft diet, a normal diet may be beneficial for preserving condyle articular surface and directing bone remodeling in TMJ-OA rats.


Subject(s)
Osteoarthritis , Temporomandibular Joint Disorders , Rats , Animals , Temporomandibular Joint Disorders/diagnostic imaging , X-Ray Microtomography , Hardness , Temporomandibular Joint/diagnostic imaging , Freund's Adjuvant , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Mandibular Condyle/diagnostic imaging , Mandibular Condyle/pathology
20.
Food Chem ; 406: 135047, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36459801

ABSTRACT

Wheat is the staple crop for 35% of the world's population, providing a major source of calories, mainly in the form of starch. The digestibility of wheat starch varies between different flours and products. Wheat products that are rapidly digested elicit large post-prandial glucose peaks associated with metabolic disorders. We investigated the impact of protein on starch digestion in three commercial flours with different grain hardness. A soluble extract of wheat proteins reduced starch digestion, even following gastric proteolysis. This extract was enriched in proteinaceous α-amylase inhibitors which were partially degraded during gastric proteolysis. Starch digestion kinetic analysis was carried out for flour samples pre-treated with different pepsin activities. The rate of starch digestion was altered following pepsin pre-digestion, and the extent of starch digestion increased in response to pepsin pre-digestion. We conclude that soluble proteinaceous alpha-amylase inhibitors present in wheat can escape gastric digestion and significantly contribute to reducing starch digestion in the small intestine.


Subject(s)
Flour , Starch , Starch/metabolism , Flour/analysis , Digestion/physiology , Hardness , Pepsin A/metabolism , Triticum/metabolism , Kinetics , alpha-Amylases/metabolism , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL