Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646770

ABSTRACT

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Subject(s)
Diatoms , Dinoflagellida , Environmental Monitoring , Harmful Algal Bloom , Seawater , China , Dinoflagellida/growth & development , Seawater/analysis , Seawater/chemistry , Diatoms/growth & development , Oceans and Seas , Phosphorus/analysis , Nitrogen/analysis , Seasons
2.
Sci Total Environ ; 924: 171730, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38492603

ABSTRACT

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Subject(s)
Ecosystem , Lakes , Calcium , Soil , Eutrophication , Harmful Algal Bloom , Water , Chlorophyll , Chlorophyll A , Iron , Iron, Dietary , Phosphorus , Nitrogen/analysis
3.
Mar Environ Res ; 197: 106446, 2024 May.
Article in English | MEDLINE | ID: mdl-38518406

ABSTRACT

Rapid technological development in agriculture and fast urbanization have increased nutrient losses in Europe. High nutrient export to seas causes coastal eutrophication and harmful algal blooms. This study aims to assess the river exports of nitrogen (N) and phosphorus (P), and identify required reductions to avoid coastal eutrophication in Europe under global change. We modelled nutrient export by 594 rivers in 2050 for a baseline scenario using the new MARINA-Nutrients model for Europe. Nutrient export to European seas is expected to increase by 13-28% under global change. Manure and fertilizers together contribute to river export of N by 35% in 2050. Sewage systems are responsible for 70% of future P export by rivers. By 2050, the top ten polluted rivers for N and P host 42% of the European population. Avoiding future coastal eutrophication requires over 47% less N and up to 77% less P exports by these polluted rivers.


Subject(s)
Environmental Monitoring , Eutrophication , Oceans and Seas , Rivers , Harmful Algal Bloom , Nitrogen/analysis , Phosphorus/analysis , Europe , Nutrients
4.
J Environ Manage ; 355: 120480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430885

ABSTRACT

Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.


Subject(s)
Cyanobacteria , Ecosystem , Plants , Harmful Algal Bloom , Lakes , Plant Extracts
5.
Mar Environ Res ; 196: 106421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437778

ABSTRACT

Phosphorus and temperature play an important role in the succession of diatom-dinoflagellate blooms. However, there is little long-term research on interspecific competition based on phosphorus source and temperature. Here, interspecific competition among Skeletonema costatum, Prorocentrum donghaiense and Karenia mikimotoi was studied using trialgal laboratory co-cultures under different phosphorus and temperature conditions. These results suggest that S. costatum and P. donghaiense alternated as competing dominant species during the experimental period, which coincides with the different phosphorus conditions. However, K. mikimotoi growth was significantly inhibited throughout the experiment. We suggest that this may be due to different algal requirements for phosphorus, optimal growth temperatures, and possible allelopathic effects. This study provides a comprehensive mechanism of interspecific competition between diatom-dinoflagellate in response to phosphorus and temperature and elucidates the seasonal succession of diatom-dinoflagellate from late spring to early summer in the Changjiang River Estuary and the adjacent East China Sea.


Subject(s)
Diatoms , Dinoflagellida , Temperature , Phosphorus , Diatoms/physiology , China , Ecology , Harmful Algal Bloom
6.
Environ Sci Pollut Res Int ; 31(12): 18579-18592, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351353

ABSTRACT

Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.


Subject(s)
Dinoflagellida , Ginkgo biloba , Cytochromes b , Photosystem I Protein Complex , Harmful Algal Bloom , Photosynthesis , Gene Expression Profiling , Plant Extracts/pharmacology , Quinones/pharmacology
7.
Environ Monit Assess ; 196(3): 248, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332337

ABSTRACT

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or national context. Two systematic, quantitative approaches were developed to (1) identify basins that geospatial data suggest are most impacted by nutrients and (2) identify basins that have the most variability in factors affecting nutrient sources and transport in order to prioritize basins for studies that seek to understand the key drivers of nutrient impacts. The "impact" approach relied on geospatial variables representing surface-water and groundwater nutrient concentrations, sources of N and P, and potential impacts on receptors (i.e., ecosystems and human health). The "variability" approach relied on geospatial variables representing surface-water nutrient concentrations, factors affecting sources and transport of nutrients, model accuracy, and potential receptor impacts. One hundred and sixty-three drainage basins throughout the contiguous United States were ranked nationally and within 18 hydrologic regions. Nationally, the top-ranked basins from the impact approach were concentrated in the Midwest, while those from the variability approach were dispersed across the nation. Regionally, the top-ranked basin selected by the two approaches differed in 15 of the 18 regions, with top-ranked basins selected by the variability approach having lower minimum concentrations and larger ranges in concentrations than top-ranked basins selected by the impact approach. The highest ranked basins identified using the variability approach may have advantages for exploring how landscape factors affect surface-water quality and how surface-water quality may affect ecosystems. In contrast, the impact approach prioritized basins in terms of human development and nutrient concentrations in both surface water and groundwater, thereby targeting areas where actions to reduce nutrient concentrations could have the largest effect on improving water availability and reducing ecosystem impacts.


Subject(s)
Ecosystem , Rivers , Humans , Environmental Monitoring , Eutrophication , Harmful Algal Bloom , Nutrients , Phosphorus/analysis , Nitrogen/analysis
8.
Sci Total Environ ; 919: 170652, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38331282

ABSTRACT

The prevalence of harmful algal blooms (HABs), especially in mariculture waters, has become a concern for environmental and human health worldwide. Notably, the frequent occurrence of HABs relies upon a substantial supply of available nutrients, which are influenced by nutrient recycling. However, nutrient regeneration, transformation pattern, and their contribution to HABs in mariculture waters remain largely unknown. In this study, by combining field investigation and incubation experiments from June to September 2020, the temporal variations in nutrients and algal composition were revealed. In addition, the nutrient regeneration and assimilation rates in the water column during two continuous algal blooms were measured. The results indicated that organic nutrients, which were the dominant components, strongly stimulated nutrient regeneration. High regeneration rates were observed, with dissolved inorganic nitrogen (DIN) and phosphorous (DIP) regeneration rates ranging from 0.25 to 2.64 µmol/L·h and 0.01 to 0.09 µmol/L·h, respectively. Compared to the direct uptake of organic nutrients, the rapid regeneration of inorganic nutrients played a vital role in sustaining continuous algal blooms, as regenerated DIN contributed 100 % while regenerated DIP contributed 72-100 % of the algal assimilation demand. Furthermore, the redundancy analysis and inverse solution equations indicated that different N transformation patterns and utilization strategies occurred during Heterosigma and Nannochloris blooms. The shorter N recycling pathway and faster NH4+ supply rates provided favorable conditions for the dominance of Nannochloris over Heterosigma, which had a preference for the uptake of NO3-. In conclusion, we propose that nutrient regeneration is a key maintenance mechanism underlying the maintenance of continuous algal blooms, and different N transformation patterns and utilization strategies regulate algal communities in mariculture waters.


Subject(s)
Harmful Algal Bloom , Water , Humans , Nutrients/analysis , Nitrogen/analysis , Phosphorus/analysis
9.
Nat Commun ; 15(1): 809, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280872

ABSTRACT

Aquatic ecosystems are threatened by eutrophication from nutrient pollution. In lakes, eutrophication causes a plethora of deleterious effects, such as harmful algal blooms, fish kills and increased methane emissions. However, lake-specific responses to nutrient changes are highly variable, complicating eutrophication management. These lake-specific responses could result from short-term stochastic drivers overshadowing lake-independent, long-term relationships between phytoplankton and nutrients. Here, we show that strong stoichiometric long-term relationships exist between nutrients and chlorophyll a (Chla) for 5-year simple moving averages (SMA, median R² = 0.87) along a gradient of total nitrogen to total phosphorus (TN:TP) ratios. These stoichiometric relationships are consistent across 159 shallow lakes (defined as average depth < 6 m) from a cross-continental, open-access database. We calculate 5-year SMA residuals to assess short-term variability and find substantial short-term Chla variation which is weakly related to nutrient concentrations (median R² = 0.12). With shallow lakes representing 89% of the world's lakes, the identified stoichiometric long-term relationships can globally improve quantitative nutrient management in both lakes and their catchments through a nutrient-ratio-based strategy.


Subject(s)
Ecosystem , Lakes , Chlorophyll A , Environmental Monitoring , Eutrophication , Harmful Algal Bloom , Nutrients , Phosphorus/analysis , Nitrogen/analysis , China
10.
Mar Environ Res ; 195: 106378, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266549

ABSTRACT

The increasing prevalence of phosphorus limitation in coastal waters has drawn attention to the bioavailability of cellular surface-adsorbed phosphorus (SP) as a reservoir of phosphorus in phytoplankton. This study examined the storage, utilization, and regulation of SP in the coastal waters of the East China Sea, as well as three cultivated algal bloom species (Skeletonema marinoi, Prorocentrum shikokuense, and Karenia mikimotoi) prevalent in the area. SP accounted for 14.3%-45.5% of particulate phosphorus in the field and laboratory species. After the depletion of external phosphate, the studied species can rapidly transport SP within 3-24 h. The storage of SP is regulated by both external phosphate conditions and the internal growth stage of cells, but it is not influenced by the various cellular surface structures of the studied species. This study highlights the significance of SP as a crucial phosphorus reservoir and the potential use of the SP level as an indicator of phosphorus deficiency in phytoplankton.


Subject(s)
Dinoflagellida , Microalgae , Phosphates , Phytoplankton/physiology , Phosphorus , China , Harmful Algal Bloom
11.
Chemosphere ; 349: 140844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042419

ABSTRACT

Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.


Subject(s)
Dinoflagellida , Phosphorus , Phosphorus/metabolism , Membrane Lipids/metabolism , Dinoflagellida/metabolism , Harmful Algal Bloom , Phospholipids/metabolism , Autophagy
12.
Sci Total Environ ; 912: 169253, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101630

ABSTRACT

Coastal harmful algal blooms (HABs) have become one of the challenging environmental problems in the world's thriving coastal cities due to the interference of multiple stressors from human activities and climate change. Past HAB predictions primarily relied on single-source data, overlooked upstream land use, and typically used a single prediction algorithm. To address these limitations, this study aims to develop predictive models to establish the relationship between the HAB indicator - chlorophyll-a (Chl-a) and various environmental stressors, under appropriate lagging predictive scenarios. To achieve this, we first applied the partial autocorrelation function (PACF) to Chl-a to precisely identify two prediction scenarios. We then combined multi-source data and several machine learning algorithms to predict harmful algae, using SHapley Additive exPlanations (SHAP) to extract key features influencing output from the prediction models. Our findings reveal an apparent 1-month autoregressive characteristic in Chl-a, leading us to create two scenarios: 1-month lead prediction and current-month prediction. The Extra Tree Regressor (ETR), with an R2 of 0.92, excelled in 1-month lead predictions, while the Random Forest Regressor (RFR) was most effective for current-month predictions with an R2 of 0.69. Additionally, we identified current month Chl-a, developed land use, total phosphorus, and nitrogen oxides (NOx) as critical features for accurate predictions. Our predictive framework, which can be applied to coastal regions worldwide, provides decision-makers with crucial tools for effectively predicting and mitigating HAB threats in major coastal cities.


Subject(s)
Climate Change , Harmful Algal Bloom , Humans , Chlorophyll A , Cities , Phosphorus
13.
Ecotoxicol Environ Saf ; 268: 115703, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979364

ABSTRACT

Allelopathy has been demonstrated to be an environmentally friendly way to control harmful algal blooms. Allelochemicals of submerged plants have attracted extensive research due to their bioavailability. The dose-response of submerged plant extracts on algae growth is worth further study to improve the efficiency of bioremediation. In this study, the ultrasonic-enzymatic assistance method was utilized to extract allelochemicals from Ceratophyllum, Myriophyllum spicatum, and Vallisneria. The effects of low-dosage and high-dosage extracts on the growth of Microcystis aeruginosa were compared based on cell biomass and morphology, photosynthetic parameters, reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels. The results showed that the three submerged plant extracts exhibited hormetic effects at low dosages and inhibitory effects at high dosages on algal growth. Within 48 h of cultivation, the enzymatic activities of Microcystis aeruginosa fluctuated, suggesting that the extracts of the three submerged plants induced different oxidative reactions. After 120 h of cultivation with high-dosage extracts, the physiological and biochemical reactions of Microcystis aeruginosa significantly decreased, indicating the effectiveness of the allelopathy of Ceratophyllum, Myriophyllum spicatum, and Vallisneria extracts in controlling algal blooms. The phenomenon of hormesis and inhibition effect confirmed a significant dose-response relationship between the allelochemicals of submerged plant extracts and Microcystis aeruginosa, which could be attributed to the composition and content of allelochemicals. These findings highlight the importance of the relative concentration of the biological algaecide and will benefit other researchers in determining the safe dosage of plant allelochemicals when used in water.


Subject(s)
Microcystis , Hormesis , Plants , Plant Extracts/pharmacology , Harmful Algal Bloom , Pheromones/pharmacology
14.
Harmful Algae ; 129: 102532, 2023 11.
Article in English | MEDLINE | ID: mdl-37951614

ABSTRACT

Polyphosphate (polyP) has long been recognized as a crucial intracellular reservoir for phosphorus in microorganisms. However, the dynamics of polyP and its regulatory mechanism in eukaryotic phytoplankton in response to variations in external phosphorus conditions remain poorly understood. A comprehensive investigation was conducted to examine the intracellular polyP-associated metabolic response of the dinoflagellate Karenia mikimotoi, a harmful algal bloom species, through integrated physiological, biochemical, and transcriptional analyses under varying external phosphorus conditions. Comparable growth curves and Fv/Fm between phosphorus-replete conditions and phosphorus-depleted conditions suggested that K. mikimotoi has a strong capability to mobilize the intracellular phosphorus pool for growth under phosphorus deficiency. Intracellular phosphate (IPi) and polyP contributed approximately 6-23 % and 1-3 %, respectively, to the overall particulate phosphorus (PP) content under different phosphorus conditions. The significant decrease in PP and increase in polyP:PP suggested that cellular phosphorus components other than polyP are preferred for utilization under phosphorus deficiency. Genes involved in polyP synthesis and hydrolysis were upregulated to maintain phosphorus homeostasis in K. mikimotoi. These findings provide novel insights into the specific cellular strategies for phosphorus storage and the transcriptional response in intracellular polyP metabolism in K. mikimotoi. Additionally, these results also indicate that polyP may not play a crucial role in cellular phosphorus storage in phytoplankton, at least in dinoflagellates.


Subject(s)
Dinoflagellida , Dinoflagellida/genetics , Phosphorus , Polyphosphates , Harmful Algal Bloom , Phytoplankton , Gene Expression
15.
Ecotoxicol Environ Saf ; 265: 115531, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37778238

ABSTRACT

With changes in global climate, blooms are becoming more frequent and difficult to control. Therefore, the selection of algal suppressor agents with effective inhibition and environmental safety is of paramount importance. One of the main treatment strategies is to inhibit the release of harmful algal toxins. Tea polyphenols (TP) are natural products that have been widely used in medicine, the environment, and other fields due to their antibacterial and antioxidant properties. To investigate their potential application in the treatment of algal blooms, TP were applied to three different microalgae. TP exhibited strong inhibitory effects towards all three microalgae. They stimulate the accumulation of ROS in algal cells, leading to lipid peroxidation and subsequent damage to the cell membrane, resulting in the rupture and necrosis of Cyclotella sp. and Chlorella vulgaris cells. Remarkably, it was observed that lower concentrations of TP exhibited the ability to induce apoptosis in M. aeruginosa cells without causing any structural damage. This outcome is particularly significant as it reduces the potential risk of microcystin release resulting from cell rupture. Overall, blooms dominated by different algae can be treated by adjusting the concentration of TP, a new algal suppressor, indicating strong potential treatment applications.


Subject(s)
Chlorella vulgaris , Polyphenols , Polyphenols/pharmacology , Eukaryota , Eutrophication , Tea/chemistry , Harmful Algal Bloom
16.
Appl Environ Microbiol ; 89(11): e0086723, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37850723

ABSTRACT

IMPORTANCE: Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi. Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.


Subject(s)
Dinoflagellida , Phosphorus , Harmful Algal Bloom , Phytoplankton , Phosphates
17.
Harmful Algae ; 128: 102492, 2023 10.
Article in English | MEDLINE | ID: mdl-37714578

ABSTRACT

Harmful algal blooms (HABs) of the toxic marine dinoflagellate Karenia brevis, commonly called red tides, are an ongoing threat to human health and marine ecosystems in Florida. Clay flocculation is a standard control strategy for marine HABs in China and Korea and is currently being assessed for use in the United States. We evaluated the effects of a PAC-modified clay called Modified Clay II on mortality, eyestalk reflexes, and righting reflexes of 48 adult blue crabs (Callinectes sapidus). Crabs were exposed to clay alone (0.5 g L - 1), untreated K. brevis (1 × 106 cells L - 1), or a combination of K. brevis and clay for eight days. Clay treatment reduced cell concentrations in the water column by 95% after 24 h. We detected no significant differences in mortality, righting reflexes, or eyestalk reflexes between treatments. Our results indicate that the clay alone is not harmful to adult crabs at typical treatment concentrations within the measured time frame, and that treatment of K. brevis with this clay appears to have a negligible impact on crab mortality and the reflex variables we measured. These results suggest that Modified Clay II may be a viable option to treat K. brevis blooms without impacting adult blue crab populations. Additional controlled experiments and field tests are needed to further evaluate the impact of clay on natural benthic communities.


Subject(s)
Brachyura , Dinoflagellida , Humans , Animals , Clay , Ecosystem , Harmful Algal Bloom
18.
Sci Total Environ ; 900: 165781, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37499836

ABSTRACT

Harmful algal blooms of cyanobacteria (CyanoHAB) have emerged as a serious environmental concern in large and small water bodies including many inland lakes. The growth dynamics of CyanoHAB can be chaotic at very short timescales but predictable at coarser timescales. In Lake Erie, cyanobacteria blooms occur in the spring-summer months, which, at annual timescale, are controlled by the total spring phosphorus (TP) load into the lake. This study aimed to forecast CyanoHAB cell count at sub-monthly (e.g., 10-day) timescales. Satellite-derived cyanobacterial index (CI) was used as a surrogate measure of CyanoHAB cell count. CI was related to the in-situ measured chlorophyll-a and phycocyanin concentrations and Microcystis biovolume in the lake. Using available data on environmental and lake hydrodynamics as predictor variables, four statistical models including LASSO (Least Absolute Shrinkage and Selection Operator), artificial neural network (ANN), random forest (RF), and an ensemble average of the three models (EA) were developed to forecast CI at 10-, 20- and 30-day lead times. The best predictions were obtained by using the RF and EA algorithms. It was found that CyanoHAB growth dynamics, even at sub-monthly timescales, are determined by coarser timescale variables. Meteorological, hydrological, and water quality variations at sub-monthly timescales exert lesser control over CyanoHAB growth dynamics. Nutrients discharged into the lake from rivers other than the Maumee River were also important in explaining the variations in CI. Surprisingly, to forecast CyanoHAB cell count, average solar radiation at 30 to 60 days lags were found to be more important than the average solar radiation at 0 to 30 days lag. Other important variables were TP discharged into the lake during the previous 10 years, TP and TKN discharged into the lake during the previous 120 days, the average water level at 10-day lag and 60-day lag.


Subject(s)
Cyanobacteria , Harmful Algal Bloom , Lakes/microbiology , Remote Sensing Technology , Chlorophyll A , Phosphorus , Machine Learning
19.
Huan Jing Ke Xue ; 44(5): 2592-2600, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177933

ABSTRACT

Global warming has aggravated the problem of lake eutrophication. As a typical large, eutrophic, shallow lake in China, the issue of cyanobacterial harmful algal blooms (cyanoHABs) was particularly prominent in Lake Taihu. We took Lake Taihu as the study area, using the meteorological (temperature, wind speed, rainfall, and sunshine hours), water quality (total nitrogen, total phosphorus, conductivity, pH, and chemical oxygen demand), and biological (chlorophyll-a in phytoplankton) monitoring data from 1992 to 2020. We built a simulation model of chlorophyll-a based on the Bayesian network model with continuous variables to study the chlorophyll-a level of Lake Taihu under different meteorological and water quality conditions. The 75th percentile of chlorophyll-a concentration was used as the threshold to judge the risk of cyanobacterial bloom. When the probability of chlorophyll-a concentration below this threshold was greater than 75%, it was regarded as "low risk" of cyanobacterial bloom outbreak. The results showed that the average level of "temperature wind ratio" (ratio of air temperature to wind speed) in spring was 6.67℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.130 mg·L-1. The average "temperature wind ratio" level in summer was 10.52℃·s·m-1, and the probability of high chlorophyll-a was less than 75% when the total phosphorus concentration was less than 0.257 mg·L-1. The average level of total phosphorus concentration in autumn was 0.154 mg·L-1, and the probability of high chlorophyll-a was less than 75% when the "temperature wind ratio" was less than 6.30℃·s·m-1. Based on the above research, the chlorophyll-a model constructed by the Bayesian network model with continuous variables was further used to simulate the nutrient control objectives under different climate change backgrounds. In order to control chlorophyll-a in Lake Taihu at the:"low risk" level of cyanoHABs, the target concentration thresholds of total phosphorus needed to be controlled under the climate level background from 1992 to 2000, 2001 to 2010, and 2011 to 2020 were given. From 1992 to 2000, the threshold value of total phosphorus concentration was 0.135 mg·L-1 in spring, 0.174 mg·L-1 in summer, and 0.171 mg·L-1 in autumn. From 2001 to 2010, the threshold value of total phosphorus concentration was 0.115 mg·L-1 in spring, 0.164 mg·L-1 in summer, and 0.162 mg·L-1 in autumn. From 2011 to 2020, the threshold value of total phosphorus concentration was 0.059 mg·L-1 in spring, 0.145 mg·L-1 in summer, and 0.145 mg·L-1 in autumn. The results showed that the control of cyanoHABs in eutrophic lakes required more stringent nutrient control strategies with global warming. It provided a reference for preventing and controlling cyanoHABs and eutrophication in Lake Taihu. Previous studies have used multiple regression models, hydrodynamic numerical models, and other methods to predict chlorophyll-a concentrations or cyanobacterial blooms in lakes. However, there has been no study on the prediction of cyanoHABs in lakes based on the Bayesian network model with continuous variables and the "dynamic" evaluation of nutrient thresholds. Therefore, based on the seasonal meteorological, water quality, and biological monitoring data of Lake Taihu from 1992 to 2020, the chlorophyll-a model of Lake Taihu was constructed for the first time based on the Bayesian network model with continuous variables to simulate the chlorophyll-a concentration of Lake Taihu under different climate indicators and total phosphorus concentrations. The weight of its influencing factors was also analyzed, and the nutrient control objectives under different climate scenarios were "dynamically" evaluated.


Subject(s)
Cyanobacteria , Lakes , Chlorophyll A/analysis , Lakes/microbiology , Bayes Theorem , Chlorophyll/analysis , Eutrophication , Harmful Algal Bloom , Phosphorus/analysis , China , Environmental Monitoring
20.
Environ Sci Technol ; 57(9): 4003-4013, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802563

ABSTRACT

Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring data set covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Ecosystem , Eutrophication , Nutrients , Harmful Algal Bloom , Phosphorus/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL