Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Poult Sci ; 103(4): 103525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394866

ABSTRACT

The present study was conducted 1) to investigate the effects of gender and temperature on growth performance in broiler chickens and 2) to establish body protein and fat deposition curves and amino acid patterns for broilers of both genders at different ambient temperatures. A total of 432 1-day-old (d) Arbor Acres chickens with a male/female ratio of 1:1 were randomly divided into the following 4 treatment groups: the male thermoneutral group, the female thermoneutral group, the male heat stress group, and the female heat stress group. The chickens in the thermoneutral groups were kept at a comfortable temperature from 1 to 42 d, while chickens in the heat stress groups were kept at a comfortable temperature from 1 to 28 d and at a high ambient temperature from d 29 to 42. The body composition retention data were obtained by comparative slaughter method, and the models were constructed by the Gompertz model. The results revealed significant variation in body protein content (BPC) and body fat deposition efficiency (BFE) between both genders and the 2 temperatures. Moreover, a noteworthy interaction between gender and temperature was observed in terms of the BPC and protein deposition efficiency (BPE). The following equations for body protein and body fat deposition in the thermoneutral groups were obtained: Body protein weight of male broilers: [Formula: see text] ; Body protein weight of female broilers: [Formula: see text] ; Body fat weight of male broilers: [Formula: see text] ; Body fat weight of female broilers: [Formula: see text] . Where t means age (d). The following equations for body protein and body fat deposition in the heat stress groups were obtained: Body protein weight of male broilers: [Formula: see text] ; Body protein weight of female broilers: [Formula: see text] ; Body fat weight of male broilers: [Formula: see text] ; Body fat weight of female broilers: [Formula: see text] . Where t means age (d). In addition, no significant difference in amino acid content was found between different genders and temperatures. The amino acid pattern could be divided into 2 stages: 0 to 14 d and 15 to 42 d. Our equations and patterns enable a deeper understanding of the nutritional requirements in broiler chickens under various temperature conditions. This enables researchers to develop more accurate feeding programs to fulfill the growth and health requirements of broiler chickens.


Subject(s)
Chickens , Heat Stress Disorders , Female , Animals , Male , Temperature , Proteins/metabolism , Adipose Tissue/metabolism , Amino Acids/metabolism , Heat Stress Disorders/veterinary , Hot Temperature , Dietary Supplements/analysis
2.
Poult Sci ; 103(3): 103391, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242055

ABSTRACT

Over the past decades, global climate change has led to a significant increase in the average ambient temperature causing heat stress (HS) waves. This increase has resulted in more frequent heat waves during the summer periods. HS can have detrimental effects on poultry, including growth retardation, imbalance in immune/antioxidant pathways, inflammation, intestinal dysfunction, and economic losses in the poultry industry. Therefore, it is crucial to find an effective, safe, applicable, and economically efficient method for reducing these negative influences. Medicinal plants (MPs) contain various bioactive compounds with antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory effects. Due to the biological activities of MPs, it could be used as promising thermotolerance agents in poultry diets during HS conditions. Nutritional supplementation with MPs has been shown to improve growth performance, antioxidant status, immunity, and intestinal health in heat-exposed chickens. As a result, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. Therefore, several types of herbs have been supplemented to mitigate the harmful effects of heat stress in chickens. This review aims to discuss the negative consequences of HS in poultry and explore the use of different traditional MPs to enhance the health status of chickens.


Subject(s)
Heat Stress Disorders , Thermotolerance , Animals , Chickens , Antioxidants , Dietary Supplements , Health Status , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary
3.
J Therm Biol ; 119: 103752, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38194751

ABSTRACT

Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.


Subject(s)
Antioxidants , Heat Stress Disorders , Rabbits , Animals , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1 , Oxidative Stress , Heat-Shock Response , Inflammation , Heat Stress Disorders/veterinary
4.
J Therm Biol ; 118: 103739, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926009

ABSTRACT

Exposing pigs to heat stress (HS) provokes higher death of intestinal cells, resulting in elevated endogenous intestinal losses (EIL) of amino acids (AA) and damage to intestinal epithelia. Arginine (Arg) is precursor for the synthesis of polyamines, which are involved in proliferation of intestinal cells and restoration of the intestinal epithelia. Thus the effect of adding L-Arg to diets for HS pigs on the EIL of AA was analyzed. Twelve pigs (23.1 ± 1.1 kg body weight) implanted with T-type cannulas at the end of ileum were individually housed and allowed 15-days for surgery recovery under thermoneutral (TN) conditions (22 ± 2 °C). Following, the pigs were randomly assigned to one of three treatments: TN pigs fed a semi-purified, corn starch-3% casein basal diet (TN-B); HS pigs with the basal diet (HS-B); HS pigs consuming the basal diet supplemented with 0.20% L-Arg (HS-Arg). The experiment consisted of two 9-day periods; each period included 7-days of adaptation to their respective diet, followed by a 2-day ileal digesta collection period. Digesta was collected during 12 consecutive hours each day. The pigs were fed twice a-day. Ambient temperature (AT) inside the TN and HS rooms ranged from 18.6 to 27.6 °C and from 29.5 to 40.7 °C, respectively. Body temperature followed a pattern similar to that of AT. The daily EIL of indispensable AA increased (P < 0.01) in the HS-B pigs compared to both the TN-B and the HS-Arg pigs, however, there was no EIL difference between the TN-B and the HS-Arg pigs (P > 0.05). Likewise, with the exception of serine, daily losses of endogenous dispensable AA in the HS-B pigs were higher (P < 0.01) in comparison with those of TN-B and HS-Arg pigs. In summary, HS exposure compared to TN conditions increases the loss of endogenous AA, but dietary supplementation with L-Arg helped to counteract the negative HS effect.


Subject(s)
Amino Acids , Heat Stress Disorders , Animals , Amino Acids/metabolism , Animal Feed/analysis , Arginine/pharmacology , Dietary Supplements , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat Stress Disorders/metabolism , Heat-Shock Response , Swine
5.
J Dairy Sci ; 106(4): 2904-2918, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797185

ABSTRACT

To evaluate the effects of heat stress environmental conditioning and dietary supplementation with organic acid and pure botanicals (OA/PB) on growth in dairy calves, we enrolled 62 bull (noncastrated) and heifer calves in a study with a completely randomized design. Calves were assigned to 1 of 5 groups (n = 11 to 14/group): (1) thermoneutral conditions (TN-Con), (2) HS conditions (HS-Con), (3) thermoneutral conditions and pair-fed to match nutrient intake with HS-Con (TN-PF), (4) HS with low-dose OA/PB [75 mg/kg of body weight (BW); 25% citric acid, 16.7% sorbic acid, 1.7% thymol, 1.0% vanillin, and 55.6% triglyceride; HS-Low], or (5) HS with high-dose OA/PB (150 mg/kg of BW; HS-High). Supplements were delivered as a twice-daily bolus via the esophagus from wk 1 through 13 of life; all calves, including those on the control treatments, received an equivalent amount of triglyceride used for microencapsulation. Calves were raised in TN conditions from birth until weaning. After weaning, calves (62 ± 2 d; 91 ± 10.9 kg of BW) were transported to a new facility and remained in TN conditions [temperature-humidity index (THI): 60 to 69] for a 7-d covariate period. Thereafter, calves remained in TN or were moved to HS conditions (THI: diurnal change 75 to 83 during night and day, respectively) for 19 d. Clinical assessments were performed thrice daily, BW was recorded weekly, and blood was sampled on d 1, 2, 3, 8, 15, and 19. Upon experiment completion, calves from HS-Con and TN-Con were euthanized, and hot carcass and visceral organ weights were recorded. The mixed model included calf as a random effect; treatment, day, hour (when appropriate) as fixed effects, and the interactions of treatment × day and treatment × hour (when appropriate). Rectal and skin temperatures and respiration rates were greater in HS-Con than in TN-Con. During heat stress exposure, dry matter intake (DMI), average daily gain (ADG), and gain to feed (G:F) were lower in HS-Con relative to TN-Con. Comparing HS-Con and TN-PF, ADG and G:F were similar. Plasma fatty acid concentrations were elevated in TN-PF compared with HS-Con and TN-Con. Despite tendencies for increased aspartate aminotransferase, HS conditions did not overtly influence liver and inflammation markers. Liver weights were lower in HS-Con relative to TN-Con. During the first week of heat exposure, DMI was greater for HS-Low relative to HS-Con. Supplementation of OA/PB at low and high levels had a similar G:F to HS-Con. We conclude that reductions in DMI accounted for production losses during HS conditioning and that dietary OA/PB supplementation was not able to improve growth performance in heat-stressed calves.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Cattle , Female , Male , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Eating , Heat Stress Disorders/veterinary , Heat-Shock Response , Skin Temperature
6.
J Dairy Sci ; 106(2): 1441-1452, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543647

ABSTRACT

Heat-stress-induced inflammation may be ameliorated by antioxidant supplementation due to the purported effects of increased production of reactive oxygen species or oxidative stress on the gastrointestinal tract barrier. Thus, study objectives were to evaluate whether antioxidant supplementation [AGRADO Plus 2.0 (AP); EW Nutrition] affects metabolism and inflammatory biomarkers in heat-stressed lactating dairy cows. Thirty-two mid-lactation multiparous Holstein cows were assigned to 1 of 4 dietary-environmental treatments: (1) thermoneutral (TN) conditions and fed a control diet (TN-CON; n = 8), (2) TN and fed a diet with AP (10 g antioxidant; n = 8), (3) heat stress (HS) and fed a control diet (HS-CON; n = 8), or (4) HS and fed a diet with AP (HS-AP; n = 8). The trial consisted of a 23-d prefeeding phase and 2 experimental periods (P). Respective dietary treatments were top-dressed starting on d 1 of the prefeeding period and continued daily throughout the duration of the experiment. During P1 (4 d), baseline data were collected. During P2 (7 d), HS was artificially induced using an electric heat blanket (Thermotex Therapy Systems Ltd.). During P2, the effects of treatment, day, and treatment-by-day interaction were assessed using PROC MIXED of SAS (SAS Institute Inc.). Heat stress (treatments 3 and 4) increased rectal, vaginal, and skin temperatures (1.2°C, 1.1°C, and 2.0°C, respectively) and respiration rate (33 breaths per minute) relative to TN cows. As expected, HS decreased dry matter intake, milk yield, and energy-corrected milk yield (32%, 28%, and 28% from d 4 to 7, respectively) relative to TN. There were no effects of AP on body temperature indices or production. Milk fat, protein, and lactose concentrations remained unaltered by HS or AP; however, milk urea nitrogen was increased during HS regardless of AP supplementation (26% relative to TN). Circulating glucose remained unchanged by HS, AP, or time. Additionally, HS decreased circulating glucagon (29% from d 3 to 7 relative to TN), but there was no additional effect of AP. There was a tendency for nonesterified fatty acid concentrations to be increased in HS-AP cows throughout P2 (60% relative to TN-CON), whereas it remained similar in all other treatments. Blood urea nitrogen increased for both HS treatments from d 1 to 3 before steadily decreasing from d 5 to 7, with the overall increase being most pronounced in HS-CON cows (27% relative to TN-CON). Further, supplementing AP decreased blood urea nitrogen in HS-AP on d 3 relative to HS-CON (15%). Circulating serum amyloid A tended to be and lipopolysaccharide binding protein was increased by HS, but neither acute-phase protein was affected by AP. Overall, AP supplementation appeared to marginally alter metabolism but did not meaningfully alter inflammation during HS.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Cattle , Female , Antioxidants/pharmacology , Antioxidants/metabolism , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Heat Stress Disorders/veterinary , Heat-Shock Response , Lactation , Milk/metabolism
7.
Front Immunol ; 14: 1308907, 2023.
Article in English | MEDLINE | ID: mdl-38259441

ABSTRACT

Zinc (Zn), an essential trace element for poultry, plays a crucial role in promoting growth, improving feed conversion efficiency, enhancing antioxidant activity, and preventing disease. This study investigated the impact of different levels and sources of dietary Zn supplementation on the growth performance, intestinal morphology and antioxidant activity of broiler chickens under heat stress conditions. In this experiment, 1024 Xueshan chickens were divided into eight groups and subjected to heat stress conditions with different levels of Zn supplementation (30 mg/kg, 60 mg/kg, and 90 mg/kg) using organic or inorganic sources. Our findings indicated that dietary Zn supplementation significantly increased the feed-to-weight ratio of broilers during the experimental period under heat stress. Moreover, Zn supplementation positively increased the villus height and villus width in the jejunum and ileum at 74 and 88 days old, with the 60 and 90 mg/kg groups outperforming other groups, and organic Zn was more effective than inorganic Zn. Furthermore, Zn supplementation significantly increased serum antioxidant levels, with higher superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-px) activities, and organic Zn was more effective than inorganic Zn. This study concludes that Zn supplementation is beneficial in mitigating the detrimental impacts of heat stress on broilers. The findings suggest that employing Zn as a strategy can enhance productivity in the poultry industry by positively influencing intestinal morphology and bolstering antioxidant activity to counteract potential stress.


Subject(s)
Chickens , Heat Stress Disorders , Animals , Antioxidants/pharmacology , Oxidative Stress , Zinc/pharmacology , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat-Shock Response
8.
BMC Vet Res ; 18(1): 430, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503512

ABSTRACT

BACKGROUND: Natural feed additives play an important role in poultry production due to their safety and potential properties as an antioxidant and antimicrobial, as well as a growth stimulant. The present research was designed to assess the influence of dietary supplementation of either garlic, lemon essential oil, or their mixture on performance, nutrient digestibility, plasma constituents, immunity, and oxidative status, as well as intestinal development assessed by microbiota-histomorphology development in broilers under environmental heat stress. METHODS: A total of 480 broiler chicks (Ross 308) at one-day-old were randomly divided into four groups (120 chicks/ group). The control group received the basal diet (CON), while the other three groups received the basal diet supplemented with 200 mg/kg garlic essential oil (GEO), 200 mg/kg lemon essential oil (LEO), and their mixture (GLO) 200 mg/kg diet, respectively for 35 days. RESULTS: The obtained results revealed that broilers fed essential oils as a mixture or individually had an improvement in average body weight, feed conversion ratio, carcass dressing, and an increase in digestive enzymes activities compared to the control group, furthermore, there was a reduction in the mortality rate and abdominal fat content. Adding essential oils as a mixture or individually led to a decrease in (P < 0.05) blood plasma triglycerides, cholesterol, low-density lipoprotein, and an increase in high-density lipoprotein. Broilers fed diets supplemented with essential oils as a mixture or individually had higher values of superoxide dismutase and glutathione peroxidase; while plasma malondialdehyde was lower (P < 0.05) compared to the control diet. Moreover, there was a significant enhancement in intestinal microbial content, and intestinal histological status of chickens fed with essential oils. CONCLUSIONS: Conclusively, including the mixture of essential oils improved performance, nutrient digestibility, and digestive enzymes activities. It also enhanced immunity, antioxidant state, and lipid profile, and gut microbiota- histomorphology in broilers. It was proposed that the broilers diet be supplemented with a mixture of essential oils to a mitigation of the effects of heat stress.


Subject(s)
Garlic , Heat Stress Disorders , Oils, Volatile , Animals , Chickens , Oils, Volatile/pharmacology , Garlic/metabolism , Antioxidants/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response , Plasma/metabolism
9.
Reprod Domest Anim ; 57(11): 1418-1427, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36317482

ABSTRACT

The present study sought to intensify oestrus symptoms in heat-stressed pre-pubertal Murrah buffalo heifers. The first experiment aimed at lowering the blood cortisol level. Twenty pre-pubertal buffalo heifers approximately 36-40 months of age were randomly allocated to four groups of five buffaloes. Group Gly received 100 ml glycerol orally for 8 days (day 0 is the start of treatments), group Gly-E received intra-muscular injections of 500 mg tocopherol (vitamin E activity) and 150 mg sodium selenite on alternate days (four treatments) in addition to treatments received by group Gly, group Gly-E + B-Ch received intra-muscular injections of vitamin B-complex and choline daily for 8 days in addition to the treatments received by group Gly-E. The control group Co-1 did not received any treatments. Blood cortisol and glucose level was measured on day 7 post-treatment. The second experiment sought to test the effect of lowering the blood cortisol level and progesterone priming on the intensity of oestrus symptoms in heat-stressed pre-pubertal buffalo heifers. Eighty buffaloes were allocated into four groups of twenty buffaloes. P4 group received intra-vaginal progesterone CIDR for 5 days (day 0 is the day of start of treatment). Gly-E group received the same treatment as in the first experiment for 7 days (day 0-6) and P4 + Gly-E received the combination of P4 and Gly-E groups. The control group Co-2 did not receive any treatments; however, on day 6, all groups received intra-muscular injection of 2 mg estradiol benzoate. The buffaloes were graded for oestrus symptoms on the basis of mucus discharge (A-scanty and B-copious), vulvar redness (slightly pink and moist-A and deep red and moist-B), ferning (nil or poor-A and good with arborization-B) and cellularity of cervical mucus (Type A goblet cells with round nucleus and abundant cytoplasm and Type B goblet cells with cylindrical nucleus and scanty cytoplasm). The blood glucose level (mean ± SEM) of Gly group on day 7 of treatment in experiment 1 was 58.3 ± 0.4 mg/dl that was significantly greater than Co-1 (52.4 ± 0.4 mg/dl), Gly-E (53.5 ± 0.8 mg/dl) and Gly-E + B-Ch (52.7 ± 0.6 mg/dl) groups; however, the difference was found to be non-significant among Co-1, Gly-E and Gly-E + B-Ch groups. The cortisol level (mean ± SEM) on day 7 in groups Gly (11.4 ± 0.6 ng/ml), Gly-E (8.1 ± 0.5 ng/ml) and Gly-E + B-Ch (7.5 ± 0.4 ng/ml) was significantly lower than groups Co-1 (15.5 ± 0.3 ng/ml), though the difference between groups Gly-E and Gly-E + B-Ch was non-significant and the level in group Gly-E significantly lower than Gly. Thus, the combination of vitamin E and selenium along with glycerol had the best effect in the reduction of blood cortisol level in heat-stressed buffaloes. In the second experiment the blood estradiol level on day 7 in all groups was around 40 pg/ml. Cortisol reduction (group Gly-E) improved oestrus symptoms (mucus discharge and ferning) compared to control, but when compared to group P4 showed non-significant difference with respect to mucus discharge, vulvar redness and ferning of cervical mucus. However, when cortisol reduction treatments were combined with progesterone priming (group P4 + Gly-E) oestrus symptoms were improved with respect to mucus discharge and ferning thus, combination treatment had synergistic effect. This effect was also observed with cellularity of cervical mucus, where combination treatment group P4 + Gly-E produced cervical mucus with significantly lower percentage of Type B cells compared to group P4 and group Gly-E. Thus, administration glycerol and vitamin E selenium combination reduces blood cortisol level and along with progesterone priming can be effective to improve the oestrus symptoms of buffaloes during the hot summer months.


Subject(s)
Bison , Cattle Diseases , Heat Stress Disorders , Selenium , Cattle , Animals , Female , Progesterone , Buffaloes , Hydrocortisone , Glycerol , Estradiol , Heat Stress Disorders/drug therapy , Heat Stress Disorders/veterinary , Vitamin E , Estrus Synchronization/methods
10.
Sci Rep ; 12(1): 19704, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385125

ABSTRACT

Improving the availability of underutilized waste for the economic use of livestock feed can be important in countries where feed grain production is scarce. Modulating the gut microbiota through the fibrous content present in these wastes may help mitigate the adverse effects of heat stress (HS). Here, we investigated the effects of dietary steam-exploded pine particle (SPP), a value-added waste product, on the performance, gut health, and cecum microbiota in heat-stressed broilers. Ross 308 broilers (n = 180) at 29 days of age were distributed into three dietary treatment groups (0%, 1%, and 2% SPP) and two temperature conditions (NT: 21 °C; CHS: 31 °C) and grown for seven days. CHS, but not SPP, adversely affected performance parameters, but SPP did not interactively modulate these results. On the contrary, both differently affected other parameters. CHS resulted in increased rectal temperature, total protein in serum, and Nox4 gene expression, whereas 2% SPP increased GLP-2 and the Nox4 gene expression in the duodenum in comparison to 0% and 1% SPP. CHS significantly modified the beta-diversity of cecal microbiota while 1% SPP supplementation in diets increased the abundance of the favorable bacterial genera in chicken. Concludingly, CHS adversely affects growth performances, gut health, stress-related genes, and cecal microbiota while dietary 1% SPP may facilitate the proliferation of beneficial microorganisms in the cecum of broilers.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Heat Stress Disorders , Pinus , Animals , Chickens/microbiology , Steam , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat-Shock Response , Dietary Supplements/analysis
11.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36206013

ABSTRACT

Prenatal hyperthermia has immediate and long-term consequences on dairy cattle growth, immunity, and productivity. While changes in the molecular architecture are reported in the mature mammary gland (MG), any influence on early-life mammary development is unknown. Herein, we characterize the impact of late-gestation in utero heat stress on heifer mammary gross and cellular morphology at early-life developmental stages (i.e., birth and weaning). During summer, pregnant dams were exposed to environmental heat stress (shade of a free-stall barn) or offered active cooling (shade, fans, and water soakers) for 54 ± 5 d before parturition (avg. temperature-humidity index = 79). Heifer calves born to these dams were either in utero heat-stressed (IU-HT; n = 36) or in utero cooled (IU-CL; n = 37) and were managed as a single cohort thereafter. A subset of heifers was euthanized at birth (d0; n = 8/treatment; 4.6 ± 2.3 h after birth) and after weaning (d63; n = 8/treatment; 63.0 ± 1.5 d) to harvest the whole MG. An ultrasound of rear mammary parenchyma (MPAR) was taken prior to d63 and correlated to harvested MPAR cross-sectional area and weight. Portions of mammary fat pad (MFP) and MPAR were preserved for compositional and histological analysis, including ductal structure number and cross-sectional area, connective tissue area, and adipocyte number and cross-sectional area. Cellular proliferation in MPAR was assessed via Ki-67 immunohistochemistry. Relative to IU-CL heifers, the MGs of IU-HT heifers were shorter in length at d0 and d63 (P ≤ 0.02). There were moderate correlations between d63 ultrasound and harvest measures. The IU-HT heifers had reduced MG and MFP mass at d0 and d63 (P ≤ 0.05), whereas MPAR mass was reduced only at d0 (P = 0.01). IU-HT heifers had greater MPAR protein and DNA content at d63 (P ≤ 0.04), but there were no MFP compositional differences (P ≥ 0.12). At d0, IU-HT heifers had fewer MPAR ductal structures (P ≤ 0.06), but there were no differences at d63. Yet, MPAR luminal and total ductal structure cross-sectional areas of IU-HT heifers were reduced at both d0 and d63 (P ≤ 0.01). The MFP adipocytes of IU-HT heifers were smaller at d0 (P ≤ 0.01), but differences were not detected at d63. The IU-HT heifers had diminished MPAR total, stromal, and epithelial cellular proliferation at both d0 and d63 (P < 0.01). Prenatal hyperthermia derails dairy calf early-life mammary development with potential carry-over consequences on future synthetic capacity.


Late-gestation in utero heat stress in dairy cattle negatively affects the mammary microstructure and milk yield at maturity, but investigation into early-life windows of mammary development is needed to fully characterize the lifelong consequences of intrauterine heat stress on the mammary gland (MG). The present study quantified mammary gross morphology and mammary fat pad and parenchyma composition, tissue microstructure, and cellular proliferation at birth and after weaning from heifers exposed to late-gestation prenatal hyperthermia. The whole MGs and fat pads of in utero heat-stressed heifers are lighter across early life relative to in utero cooled heifers. The mammary parenchyma is smaller at birth with stunted ductal development and cellular proliferation at birth and after weaning. These impairments may limit later mammary epithelial development and impact long-term productivity.


Subject(s)
Heat Stress Disorders , Hyperthermia, Induced , Animals , Cattle , DNA , Female , Heat Stress Disorders/veterinary , Hot Temperature , Hyperthermia, Induced/veterinary , Ki-67 Antigen/metabolism , Lactation , Milk/metabolism , Parturition , Pregnancy , Water/metabolism
12.
Poult Sci ; 101(12): 102215, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36288626

ABSTRACT

Brown seaweed (Ascophyllum nodosum) is an exceptional bioactive substance known for its excellent antioxidant ability. Given the potential benefits of brown seaweed, the current study was conducted to determine its efficacy on growth performance, blood biochemistry, immunoglobulins (IgG and IgM), and the antioxidant capacity of broiler chickens challenged with heat stress (HS). A total of 336 mixed-sex Ross 308 broiler chicks (one-day-old) were randomly assigned into two groups; The thermoneutral group (TN, broilers were raised at 24 ± 1°C); and the heat stress group (HS; broilers were exposed to 32°C to 34°C, 8 h/d from day 21 to 27; the temperature in the remaining time was same as TN group). All birds in each group were randomly allotted to 4 dietary treatments-Negative control (NC) (without seaweed), NC + 1 mL seaweed extract (SWE) in drinking water, NC + 2 mL SWE in drinking water, and NC + 2% seaweed meal (SWM) in feed. Each treatment was assigned to six replicates with 7 broilers/replicate. Average body weight gain (ABWG), average feed intake (AFI), average water intake (AWI), feed conversion ratio (FCR), and mortality were determined weekly. On day 28, two male birds/cage were euthanized to collect blood and immune organs for subsequent biochemical, antioxidant, and immune status analysis. Data were analyzed as a 4 × 2  factorial analysis of variance using the GLM procedure of Minitab software. Overall, 2% SWM inclusion significantly increased (P < 0.05) the AFI, ABWG, and AWI of broiler chickens irrespective of HS. HS significantly reduced (P < 0.05) AFI and increased (P < 0.05) the bird's rectal temperature, plasma concentrations of sodium, chloride, glucose, amylase, and uric acid compared to TN birds. HS increased (P < 0.05) serum IgM and IgG and decreased plasma glutathione reductase and glutathione peroxidase compared to TN birds, while the activity of superoxide dismutase was not affected by HS and dietary treatments. 1 mL SWE in water and 2% SWM in feed significantly reduced (P < 0.05) the plasma activity of alanine aminotransferase and gamma-glutamyl transferase of heat-stressed broilers, respectively compared to other treatments. Conclusively, dietary supplementation of brown seaweed improved the growth performance of birds irrespective of HS and may help to reduce the negative effects of HS by improving the plasma enzyme activities of heat-stressed birds.


Subject(s)
Drinking Water , Heat Stress Disorders , Seaweed , Animals , Male , Chickens/physiology , Antioxidants/metabolism , Seaweed/metabolism , Drinking Water/analysis , Dietary Supplements/analysis , Hot Temperature , Heat Stress Disorders/veterinary , Heat-Shock Response , Diet/veterinary , Immunity , Immunoglobulin M , Immunoglobulin G , Animal Feed/analysis
13.
J Dairy Sci ; 105(10): 8586-8589, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055830

ABSTRACT

Environmental effects on pathogen abundance and access are precursors to mastitis. Indeed, high heat and humidity, and unsanitary housing and equipment, are associated with greater pathogen load and exposure. Although less is known about effects of environment on a cow's ability to resist infection, several indicators suggest that it can affect pathogen responses. Mastitis incidence and bulk tank somatic cell count vary with season, typically peaking in summer. Recent controlled studies have revealed that heat stress exposure results in changes in the microbiome of the cow and her environment, which may relate to negative effects on milk quality and cow health. Alternatively, specific pathogen loads may vary based on housing dynamics rather than associations with physical environment. Indeed, housing-related stressors, such as overcrowding and social group challenge, influence secretion of glucocorticoids, thus affecting pathogen resistance in the cow. Two key seasonal variables are photoperiod and temperature, specifically the heat stress consequent to elevated temperature and humidity. Shifts in light duration regulate immune function in other species, but apparently have limited effect on udder health of lactating cows. In contrast, in dry cows, short days increase peripheral blood mononuclear cell number and are associated with lower somatic cell count in the next lactation, compared with long days. With heat stress, elevated body temperature directly affects expression of immune-related genes in mammary tissue. Responses depend on duration of exposure and feature acute upregulation of immune-signaling pathways, followed by enrichment of other immune-related pathways after prolonged exposure. Most responses are transient and recover within 1 wk. Functionally, heat stress impairs some aspects of acquired immunity in dry cows, including antigen responses and lymphocyte proliferation, but apparently not innate immune function. However, heat stress in late gestation reduces neutrophil phagocytosis and killing in vitro, and neutrophils in circulation are reduced in vivo as are responses to pathogen challenge in the subsequent lactation. A holistic understanding of the complex interplay of environment, pathogens, and host is needed to inform advances in this area.


Subject(s)
Heat Stress Disorders , Mastitis, Bovine , Animals , Cattle , Female , Heat Stress Disorders/veterinary , Lactation/physiology , Leukocytes, Mononuclear , Mammary Glands, Animal/physiology , Mastitis, Bovine/epidemiology , Milk/metabolism , Pregnancy
14.
Trop Anim Health Prod ; 54(5): 324, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36169771

ABSTRACT

The study evaluated effects of L-serine on lipid profile, performance, carcass weight and small intestinal parameters in heat-stressed broiler chickens subjected to feed restriction. Broiler chickens were divided into four groups, comprising 30 each. Group 1, feed restriction (FR); Group 2, feed restriction + L-serine (200 mg/kg) (FR + L-serine); Group 3, ad libitum (AL); Group 4, ad libitum + L-serine (200 mg/kg) (AL + L-serine). L-serine was administered orally from days 1 to 14, and feed restriction was performed on days 7-14. Serum harvested from blood samples on days 21, 28 and 35 was evaluated for lipid profile. Feed and water intake, live weight gain, organ and carcass weight were measured. At 35 days old, broiler chickens (n = 7) per group were sacrificed to evaluate small intestinal morphology. Temperature-humidity index in the pen (30.88 ± 0.81) was above thermoneutral zone, indicating that chickens were subjected to heat stress. Concentrations of low-density lipoprotein, total cholesterol and total triglycerides were lower (p < 0.05), while higher concentration of high-density lipoprotein was recorded in L-serine groups than in the controls. Feed intake and live weight gain on day 35 in L-serine groups were higher (p < 0.05) than in controls. In L-serine groups, liver, spleen, pancreas and heart weight were higher, but abdominal fat was lower than in FR and AL groups. Villus height:crypt height ratio and area of villus surface were highest in L-serine groups than any other group. In conclusion, L-serine decreased low-density lipoprotein, increased feed intake, live weight, organ and carcass weight, villus height:crypt height ratio and villus surface area.


Subject(s)
Chickens , Heat Stress Disorders , Animal Feed/analysis , Animals , Cholesterol , Diet/veterinary , Dietary Supplements , Heat Stress Disorders/veterinary , Lipoproteins, HDL , Lipoproteins, LDL , Seasons , Serine , Triglycerides , Weight Gain
15.
J Dairy Sci ; 105(9): 7842-7860, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931486

ABSTRACT

To evaluate the effects of heat stress (HS) conditions and dietary organic acid and pure botanical (OA/PB) supplementation on gut permeability and milk production, we enrolled 46 multiparous Holstein cows [208 ± 4.65 dry matter intake (DMI; mean ± SD), 3.0 ± 0.42 lactation, 122 ± 4.92 d pregnant, and 39.2 ± 0.26 kg of milk yield] in a study with a completely randomized design. Cows were assigned to 1 of 4 groups: thermoneutral conditions (TN-Con, n = 12), HS conditions (HS-Con, n = 12), thermoneutral conditions pair-fed to HS-Con (TN-PF, n = 12), or HS supplemented with OA/PB [75 mg/kg of body weight (BW); 25% citric acid, 16.7% sorbic acid, 1.7% thymol, 1.0% vanillin, and 55.6% triglyceride; HS-OAPB, n = 10]. Supplements were delivered twice daily by top-dress; all cows not supplemented with OA/PB received an equivalent amount of the triglyceride used for microencapsulation of the OA/PB supplement as a top-dress. Cows were maintained in thermoneutrality [temperature-humidity index (THI) = 68] during a 7-d acclimation and covariate period. Thereafter, cows remained in thermoneutral conditions or were moved to HS conditions (THI: diurnal change 74 to 82) for 14 d. Cows were milked twice daily. Clinical assessments and BW were recorded, blood was sampled, and gastrointestinal permeability measurements were repeatedly evaluated. The mixed model included fixed effects of treatment, time, and their interaction. Rectal and skin temperatures and respiration rates were greater in HS-Con and HS-OAPB relative to TN-Con. Dry matter intake, water intake, and yields of energy-corrected milk (ECM), protein, and lactose were lower in HS-Con relative to HS-OAPB. Nitrogen efficiency was improved in HS-OAPB relative to HS-Con. Compared with TN-Con and TN-PF, milk yield and ECM were lower in HS-Con cows. Total-tract gastrointestinal permeability measured at d 3 of treatment was greater in HS-Con relative to TN-Con or TN-PF. Plasma total fatty acid concentrations were reduced, whereas insulin concentrations were increased in HS-Con relative to TN-PF. We conclude that exposure to a heat-stress environment increases total-tract gastrointestinal permeability. This study highlights important mechanisms that might account for milk production losses caused by heat stress, independent of changes in DMI. Our observations also suggest that dietary supplementation of OA/PB is a means to partly restore ECM production and improve nitrogen efficiency in dairy cattle experiencing heat stress.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Body Weight , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Female , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Lactation , Milk/metabolism , Nitrogen/metabolism , Permeability , Pregnancy , Triglycerides/metabolism
16.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908791

ABSTRACT

Substantial economic losses in animal agriculture result from animals experiencing heat stress (HS). Pigs are especially susceptible to HS, resulting in reductions in growth, altered body composition, and compromised substrate metabolism. In this study, an artificial high-intensity sweetener and capsaicin (CAPS-SUC; Pancosma, Switzerland) were supplemented in combination to mitigate the adverse effects of HS on pig performance. Forty cross-bred barrows (16.2 ± 6 kg) were assigned to one of five treatments: thermal neutral controls (TN) (22 ± 1.2 °C; 38%-73% relative humidity) with ad libitum feed, HS conditions with ad libitum feed with (HS+) or without (HS-) supplementation, and pair-fed to HS with (PF+) or without supplementation (PF-). Pigs in heat-stressed treatments were exposed to a cyclical environmental temperature of 12 h at 35 ± 1.2 °C with 27%-45% relative humidity and 12 h at 30 ± 1.1 °C with 24%-35% relative humidity for 21 d. Supplementation (0.1 g/kg feed) began 7 d before and persisted through the duration of environmental or dietary treatments (HS/PF), which lasted for 21 d. Rectal temperatures and respiration rates (RR; breaths/minute) were recorded thrice daily, and feed intake (FI) was recorded daily. Before the start and at the termination of environmental treatments (HS/PF), a muscle biopsy of the longissimus dorsi was taken for metabolic analyses. Blood samples were collected weekly, and animals were weighed every 3 d during treatment. Core temperature (TN 39.2 ± 0.02 °C, HS- 39.6 ± 0.02 °C, and HS+ 39.6 ± 0.02 °C, P < 0.001) and RR (P < 0.001) were increased in both HS- and HS+ groups, but no difference was detected between HS- and HS+. PF- pigs exhibited reduced core temperature (39.1 ± 0.02 °C, P < 0.001), which was restored in PF+ pigs (39.3 ± 0.02 °C) to match TN. Weight gain and feed efficiency were reduced in PF- pigs (P < 0.05) but not in the PF+ or the HS- or HS+ groups. Metabolic flexibility was decreased in the HS- group (-48.4%, P < 0.05) but maintained in the HS+ group. CAPS-SUC did not influence core temperature or weight gain in HS pigs but did restore core temperature, weight gain, and feed efficiency in supplemented PF pigs. In addition, supplementation restored metabolic flexibility during HS and improved weight gain and feed efficiency during PF, highlighting CAPS-SUC's therapeutic metabolic effects.


Heat stress reduces pig performance due to metabolic responses to heat. During heat stress, pigs lose the ability to metabolize fatty acids for energy and rely on carbohydrates to fuel growth. Evidence has shown that capsaicin, the active ingredient in chili peppers, interacts with heat-sensing receptors to protect against heat stress by preventing changes to metabolism. Artificial sweeteners can also preserve fat metabolism by inducing the secretion of metabolic regulatory hormones from the gut. This study examined a combination of capsaicin and artificial sweetener to restore growth and maintain metabolism during 3 wk of heat stress. As pigs often reduce their feed intake during heat stress, a group of pigs was feed restricted to match the reduced feeding observed in the heat-stressed pigs. Pigs given the feed supplement during heat stress maintained their metabolic flexibility, a measure of metabolic health. In agreement with previous short-term studies, the capsaicin and artificial sweetener supplement improved feed efficiency and weight gain in feed-restricted pigs. This study demonstrated that supplementation with capsaicin and artificial sweetener may prevent metabolic dysfunction during heat stress. This study also confirmed that supplementation with capsaicin and artificial sweetener does improve feed-restricted pigs' growth and feed efficiency.


Subject(s)
Heat Stress Disorders , Swine Diseases , Animal Feed/analysis , Animals , Body Temperature/physiology , Capsaicin/analysis , Capsaicin/pharmacology , Dietary Supplements/analysis , Heat Stress Disorders/veterinary , Heat-Shock Response/physiology , Hot Temperature , Sweetening Agents , Swine , Weight Gain
17.
J Dairy Sci ; 105(9): 7787-7804, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35879168

ABSTRACT

We investigated effects of rumen-protected Met (RPM) during a heat stress (HS) challenge on (1) hepatic abundance of mTOR, insulin, and antioxidant signaling proteins, (2) enzymes in 1-carbon metabolism, and (3) innate immunity. Holstein cows (n = 32; mean ± standard deviation, 184 ± 59 d in milk) were randomly assigned to 1 of 2 environmental groups, and 1 of 2 diets [total mixed ration (TMR) with RPM (Smartamine M; 0.105% dry matter as top-dress) or TMR without (CON); n = 16/diet] in a split-plot crossover design. There were 2 periods with 2 phases. During phase 1 (9 d), all cows were in thermoneutral conditions (TN; temperature-humidity index = 60 ± 3) and fed ad libitum. During phase 2 (9 d), half the cows (n = 8/diet) were exposed to HS using electric heat blankets. The other half (n = 8/diet) remained in TN, but was pair-fed to HS counterparts. After a 14-d washout and 7-d adaptation period, the study was repeated (period 2) and environmental treatments were inverted relative to phase 2, but dietary treatments were the same. Blood was collected on d 6 of each phase 2 to measure immune function and isolate whole-blood RNA. Liver biopsies were performed at the end of each period for cystathione ß-synthase (CBS) and methionine adenosyltransferase activity, glutathione concentration, and protein abundance. Data were analyzed using PROC MIXED in SAS. Abundance of CUL3, inhibitor of antioxidant responses, tended to be downregulated by HS suggesting increased oxidative stress. Heat-shock protein 70 abundance was upregulated by HS. Phosphorylated mTOR abundance was greater overall with RPM, suggesting an increase in pathway activity. An environment × diet (E × D) effect was observed for protein kinase B (AKT), whereas there was a tendency for an interaction for phosphorylated AKT. Abundance of AKT was upregulated in CON cows during HS versus TN, this was not observed in RPM cows. For phosphorylated AKT, tissue from HS cows fed CON had greater abundance compared with all other treatments. The same effect was observed for EIF2A (translation initiation) and SLC2A4 (insulin-induced glucose uptake). An E × D effect was observed for INSR due to upregulation in CON cows during HS versus TN cows fed CON or RPM. There was an E × D effect for CBS, with lower activity in RPM versus CON cows during HS. The CON cows tended to have greater CBS during HS versus TN. An E × D effect was observed for methionine adenosyltransferase, with lower activity in RPM versus CON during HS. Although activity increased in CON during HS versus TN, RPM cows tended to have greater activity during TN. Neutrophil and monocyte oxidative burst and monocyte phagocytosis decreased with HS. An (E × D) effect was observed for whole-blood mRNA abundance of CBS, SOD1 and CSAD; RPM led to upregulation during TN versus HS. Regardless of diet, CDO1, CTH, and SOD1 decreased with HS. Although HS increased hepatic HSP70 and seemed to alter antioxidant signaling, feeding RPM may help cows maintain homeostasis in mTOR, insulin signaling, and 1-carbon metabolism. Feeding RPM also may help maintain whole-blood antioxidant response during HS, which is an important aspect of innate immune function.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Antioxidants/metabolism , Carbon/metabolism , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Female , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response , Insulin/metabolism , Lactation/physiology , Liver/metabolism , Methionine/metabolism , Methionine Adenosyltransferase , Milk/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rumen/metabolism , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases/metabolism
18.
Poult Sci ; 101(7): 101952, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35688032

ABSTRACT

Chronic heat stress can result in oxidative damage from increased reactive oxygen species. One proposed method to alleviate the chronic effects of HS is the supplementation of sulfur amino acids (SAA) which can be metabolized to glutathione, an important antioxidant. Therefore, the objective of this experiment was to determine the effects of dietary SAA content on broiler chickens exposed to HS from 28 to 35 d on broiler performance, body temperature, intestinal permeability, and oxidative status. Four experimental treatments were arranged as a 2 × 2 factorial consisting of HS (6 h at 33.3°C followed by 18 h at 27.8°C from 28 to 35 d of age) and Thermoneutral (TN- 22.2°C continuously from 28 to 35 d) and 2 dietary concentrations of SAA formulated at 100% (0.95, 0.87, and 0.80% for starter, grower, and finisher diets) or 130% SAA (1.24, 1.13, and 1.04% for starter, grower, and finisher diets). A total of 648-day-old, male Ross 708 chicks were placed in 36 pens with 18 chicks/pen and 9 replicates per treatment. Data were analyzed as a 2 × 2 factorial in JMP 14 (P ≤ 0.05). No interaction effects were observed on broiler live performance (P > 0.05). As expected, HS reduced BWG by 92 g and increased FCR by 11 points from 28 to 35 d of age compared to TN, respectively (P ≤ 0.05). The supplementation of SAA had no effect on live performance (P > 0.05). Cloacal temperatures were increased by 1.7, 1.4, and 1.2°C with HS at 28, 31, and 35 d compared to TN, respectively (P ≤ 0.05) and dietary SAA did not alter cloacal temperatures. At 28 d of age, supplementation of SAA to birds exposed to HS interacted as serum FITC-dextran (an indicator of intestinal permeability) was reduced to that of the TN group (P ≤ 0.05). The interaction was lost at 31 d, but HS still increased intestinal permeability (P ≤ 0.05). By 35 d, broilers were able to adapt to the HS conditions and intestinal permeability was unaffected (P > 0.05). Potential oxidative damage was reduced by increased SAA supplementation as indicated by an improvement in the reduced glutathione to oxidized glutathione ratio of 5 and 45 % at 28 (P = 0.08) and 35 d (P ≤ 0.05). These data suggest that intestinal permeability is compromised initially and to at least three d of heat exposure before the bird can adjust. However, oxidative damage in the liver of broilers exposed to HS is more chronic, building over the entire 7 d HS period and increased dietary SAA might have some protective effects on both broiler intestinal permeability and oxidative stress responses to HS.


Subject(s)
Amino Acids, Sulfur , Heat Stress Disorders , Amino Acids, Sulfur/metabolism , Animal Feed/analysis , Animals , Chickens/physiology , Diet/veterinary , Dietary Supplements , Glutathione/metabolism , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Male
19.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35553680

ABSTRACT

The first objective was to investigate the effects of feeding rumen-protected methionine (RPM) during a heat stress (HS) challenge on abundance and phosphorylation of mechanistic target of rapamycin (mTOR)-related signaling proteins in mammary gland. The second objective was to investigate how HS and RPM may modulate the response of mammary gland explants to an inflammatory challenge using lipopolysaccharide (LPS). Thirty-two multiparous, lactating Holstein cows (184 ± 59 DIM) were randomly assigned to 1 of 2 environmental treatment groups, and 1 of 2 dietary treatments [TMR with RPM (Smartamine M; Adisseo Inc.; 0.105% DM as top dress) or TMR without RPM (CON)] in a crossover design. There were two periods with two phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9 d), group 1 (n = 16) cows were exposed to HS using electric heat blankets, whereas group 2 cows (n = 16) remained in TN but were pair-fed to HS counterparts to control for DMI decreases associated with HS. After a washout period (14 d), the study was repeated (period 2). Environmental treatments were inverted in period 2 (sequence), whereas dietary treatments remained the same. Mammary tissue was harvested via biopsy at the end of both periods. Tissue was used for protein abundance analysis and also for incubation with 0 or 3 µg/mL of LPS for 2 h and subsequently used for mRNA abundance. Data were analyzed using PROC MIXED in SAS. Analysis of protein abundance data included the effects of diet, environment and their interaction, and period and sequence to account for the crossover design. The explant data model also included the effect of LPS and its interaction with environment and diet. Abundance of phosphorylated mTOR and ratio of phosphorylated eukaryotic translation elongation factor 2 (p-EEF2) to total EEF2 in non-challenged tissue was greater with RPM supplementation (P = 0.04 for both) and in both cases tended to be greater with HS (P = 0.08 for both). Regardless of RPM supplementation, incubation with LPS upregulated mRNA abundance of IL8, IL6, IL1B, CXCL2, TNF, NFKB1, and TLR2 (P < 0.05). An environment × LPS interaction was observed for NFKB1 (P = 0.03); abundance was greater in LPS-treated explants from non-HS compared with HS cows. Abundance of CXCL2, NFKB1, NOS2, NOS1, and SOD2 was lower with HS (P < 0.05). Although LPS did not alter mRNA abundance of the antioxidant transcription factor NFE2L2 (P = 0.59), explants from HS cows had lower abundance of NFE2L2 (P < 0.001) and CUL3 (P = 0.04). Overall, RPM supplementation may alter mTOR activation in mammary tissue. Additionally, although HS reduced explant immune and antioxidant responses, RPM did not attenuate the inflammatory response induced by LPS in vitro.


Heat stress (HS) is an environmental issue worldwide and occurs when animals experience a heat load that exceeds their thermoregulatory capacity. Milk protein synthesis and overall production often decrease when cows are exposed to HS conditions, in part due to lower feed intake and a limit in the mammary supply of amino acids. Increasing post-ruminal supply of methionine to late-lactation cows upregulated abundance of p-mTOR in mammary tissue, providing a link with the greater milk protein production. Exposure of cows to a HS challenge also increased abundance of p-mTOR, but did not alter milk protein suggesting this response might have been associated with synthesis of other proteins. Further work at a translational level is needed to understand potential mechanisms whereby methionine may modulate mammary metabolism during periods of HS.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Antioxidants/metabolism , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Female , Heat Stress Disorders/metabolism , Heat Stress Disorders/veterinary , Heat-Shock Response , Lactation , Lipopolysaccharides/metabolism , Methionine/pharmacology , Milk/metabolism , RNA, Messenger/metabolism , Rumen/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
J Therm Biol ; 106: 103230, 2022 May.
Article in English | MEDLINE | ID: mdl-35636882

ABSTRACT

The effects of heat stress and dietary betaine and zinc on growth, weight of organs and plasma biochemistry in growing Iberian pigs are of special importance. Forty Iberian barrows (43.8 kg BW) were assigned to five treatments for 28-d: 1.-thermoneutral (20 °C)-ad libitum fed a control diet (TN-CON); 2.-heat stress (30 °C)-ad libitum fed a control diet (HS-CON); 3.-thermoneutral-pair-fed a control diet (TN-CON-PF) on the basis of intake of HS-CON; 4.-heat stress-ad libitum fed a betaine-supplemented diet (HS-BET); 5.-heat stress-ad libitum fed a zinc-supplemented diet (HS-ZN). Heat stress increased rectal temperature and decreased feed intake. As a result, weight gain under TN-CON was greater than under heat stress or TN-CON-PF. Temperature did not affect gain to feed ratio. Heat stress decreased empty BW, kidneys and spleen weights, and tended to decrease total viscera weight compared to thermoneutral counterparts fed ad libitum, but when organ weight was related to empty BW, only spleen tended to decrease. At identical intake, heat stress tended to decrease heart weight. Betaine and zinc had no effect on organs weight under heat stress. Heat stress decreased albumin and the homeostasis model assessment index for estimating ß-cell function (HOMA-%B), increased glucose, and tended to increase urea compared with the TN pair-fed group. Betaine and zinc decreased plasma glucose under heat stress and increased HOMA-%B suggesting improved ß-cell function. Insulin, quantitative insulin sensitivity check index, homeostasis model assessment index for estimating insulin resistance percentage and the rest of biochemical parameters were not affected by treatments. Decreased intake explained the consistent negative effects on performance of pigs after long-term heat stress. Furthermore, it elicited a glucose sparing effect without affecting insulin concentration and increased protein catabolism. Betaine or zinc supplementation did not prevent the negative effect of heat stress on growth performance of Iberian pigs.


Subject(s)
Heat Stress Disorders , Thermotolerance , Animals , Betaine/pharmacology , Diet/veterinary , Glucose , Heat Stress Disorders/prevention & control , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Insulin , Swine , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL