Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Nutrients ; 15(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37836550

ABSTRACT

As an important resource insect, the Cryptotympana atrata is widely distributed in the eastern and central parts of China. The cicada slough is one of the traditional crude drugs in East Asia, and the main component is polysaccharide, which has the functions of anti-convulsion, relieving asthma and improving lipid metabolism. The parasitoid fungus Cordyceps cicadae, which grows inside the cicada nymphs and forms the fruiting bodies on the surface of the host's carcass, is also known as the "cicada flower" in China. The Cordyceps cicadae is another old, traditional Chinese medicine, which has been used as a tonic and medicine to nourish and regulate human immunity for centuries. For the further development and utilization of the golden cicada, this paper summarized the C. atrata from the aspects of their biological characteristics, distribution area, life cycle, history of edible and medicinal use, edible methods and nutritional compositions; emphatically introduced the edible and potential medicinal value of the C. atrata; and specifically expounded the research progress of its application. As one popular insect food, the prospects for the development of C. atrata have also been put forward, especially in artificial breeding technology, food safety risk assessment and medicinal value utilization.


Subject(s)
Cordyceps , Hemiptera , Animals , Humans , Plant Breeding , Hemiptera/metabolism , Hemiptera/microbiology , China
2.
ISME J ; 17(12): 2221-2231, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37833524

ABSTRACT

Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.


Subject(s)
Burkholderia , Hemiptera , Animals , Hemiptera/microbiology , Tryptophan/genetics , Burkholderia/genetics , Phylogeny , Dietary Supplements , Vitamin B 12 , Nutrients , Symbiosis/genetics , Genome, Bacterial
3.
Am Nat ; 202(3): 288-301, 2023 09.
Article in English | MEDLINE | ID: mdl-37606951

ABSTRACT

AbstractAgricultural pests are increasingly appreciated as subjects of ecology. One particular case, a pest in coffee production, is analyzed here using the conceptual framework of complex systems, increasingly acknowledged as having an obvious home in the field of ecology, notorious for its complex structures. The particular case analyzed here arguably falls under the control of the complexity of the ecological system rather than of a simple magic bullet of population regulation. The system, which has been under study in southern Mexico for the past quarter century, is analyzed through the lens of neutral oscillations of the classical nondissipative Lotka-Volterra system. Based on three consumer/resource pairs (populations of [1] an ant, [2] a scale insect, [3] a beetle predator of the scale insect, [4] a fungal pathogen of the scale insect, and [5] a fly parasitoid of the ant), this five-dimensional system is well known qualitatively. Coupling all agents through both direct effects and trait-mediated indirect effects, the behavior of the neutral oscillation form of the system reveals a complex set of behaviors, including harmonized invariant sets, chaos, and/or quasiperiodicity. Such behaviors are well-known subjects in the science of complex systems and, it is argued, are ultimately sufficient to effect a degree of regulation on the pest, independent of explicit density-dependent feedback. Control of the system is thus seen as arguably actuated through its complexity, independent of any classic dissipative force.


Subject(s)
Coffee , Crops, Agricultural , Ecosystem , Hemiptera , Hemiptera/microbiology , Hemiptera/physiology , Ants/physiology , Coleoptera/physiology , Mathematical Concepts
4.
Sci Rep ; 13(1): 1433, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697493

ABSTRACT

Rubbery taproot disease (RTD) of sugar beet was recently associated with the plant pathogenic bacterium 'Candidatus Phytoplasma solani' (CaPsol) and reported throughout the Pannonian Plain with variations in severity. Tracing CaPsol epidemiological pathways was performed in the experimental sugar beet field in Rimski Sancevi (Serbia) in 2020-2021, where an RTD outbreak was recently recorded. A molecular epidemiology approach was applied to the study of three RTD occurrence scenarios: epidemic, non-epidemic and 'absence of RTD'. As a result, Hyalesthes obsoletus ex Convolvulus arvensis was detected as a CaPsol vector to sugar beet, while two other cixiids were identified for the first time as vectors of the CaPsol-induced plant disease in crops: Reptalus quinquecostatus and R. cuspidatus. R. quinquecostatus was proposed culpable for the 2020 RTD epidemic outbreak in Rimski Sancevi when dSTOLg CaPsol strain predominated in the RTD-affected sugar beet, whereas R. cuspidatus had a negligible role in RTD occurrence and displayed ambiguous involvement in CaPsol epidemiology on a wider scale. The temporal discrepancy of the offset of CaPsol dissemination and disease occurrence is the main obstacle in predicting CaPsol-induced diseases. Predicting disease occurrence and severity can only be achieved by gaining a better understanding of CaPsol epidemiological pathways and insect vectors involved in disease outbreaks.


Subject(s)
Beta vulgaris , Hemiptera , Animals , Serbia/epidemiology , Phylogeny , Molecular Epidemiology , Vegetables , Hemiptera/microbiology , Sugars
5.
Plant Dis ; 107(8): 2440-2445, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36691279

ABSTRACT

'Candidatus Liberibacter solanacearum' (Lso) causes disease symptoms and economic losses in potato, tomato, and other solanaceous crops in North America. Lso is transmitted to plants by the potato psyllid, Bactericera cockerelli, which occurs as distinct haplotypes named western, central, and northwestern that differ in the presence or absence of the bacterial endosymbiont, Wolbachia. Previous work showed that all three vector haplotypes can transmit Lso, but it was not clear whether acquisition and transmission rates of Lso were equal among the haplotypes. The goal of our study was to compare Lso infection rates among psyllids of the western, central, and northwestern haplotypes. Using data collected from several years of periodic testing of Lso infection of laboratory-reared potato psyllid colonies, we showed that psyllids of the western and central haplotypes are more likely to harbor Lso than are psyllids of the northwestern haplotype. We then used greenhouse assays to demonstrate that psyllids of the northwestern haplotype are less likely to acquire and transmit Lso than those of the western haplotype. Lso infection rates corresponded with Wolbachia infection among the three psyllid haplotypes. The Wolbachia-infected central and western haplotypes were more likely to harbor and transmit Lso than the Wolbachia-free northwestern haplotype. Results demonstrate that potato psyllids of the western and central haplotypes pose a greater risk for spread of Lso in crops and suggest a pattern between infection with Lso and Wolbachia in potato psyllid.


Subject(s)
Hemiptera , Solanum tuberosum , Animals , Liberibacter , Haplotypes , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Hemiptera/microbiology
6.
J Econ Entomol ; 116(1): 78-89, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36516405

ABSTRACT

Huanglongbing (HLB), or citrus greening, is the most destructive disease of cultivated citrus worldwide. Candidatus Liberibacter asiaticus (CLas), the putative causal agent of HLB, is transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). In Florida, D. citri was first reported in 1998, and CLas was confirmed in 2005. Management of HLB relies on the use of insecticides to reduce vector populations. In 2016, antibiotics were approved to manage CLas infection in citrus. Diaphorina citri is host to several bacterial endosymbionts and reducing endosymbiont abundance is known to cause a corresponding reduction in host fitness. We hypothesized that applications of oxytetracycline and streptomycin would reduce: CLas populations in young and mature citrus trees, CLas acquisition by D. citri, and D. citri abundance. Our results indicate that treatment of citrus with oxytetracycline and streptomycin reduced acquisition of CLas by D. citri adults and emerging F1 nymphs as compared with that observed in trees treated only with insecticides, but not with antibiotics. However, under field conditions, neither antibiotic treatment frequency tested affected CLas infection of young or mature trees as compared with insecticide treatment alone (negative control); whereas trees enveloped with mesh screening that excluded vectors did prevent bacterial infection (positive control). Populations of D. citri were not consistently affected by antibiotic treatment under field conditions, as compared with an insecticide only comparison. Collectively, our results suggest that while foliar application of oxytetracycline and streptomycin to citrus reduces acquisition of CLas bacteria by the vector, even high frequency applications of these formulations under field conditions do not prevent or reduce tree infection.


Subject(s)
Citrus , Hemiptera , Insecticides , Oxytetracycline , Rhizobiaceae , Animals , Citrus/microbiology , Liberibacter , Trees , Hemiptera/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Anti-Bacterial Agents , Streptomycin
7.
FEMS Microbiol Ecol ; 99(1)2022 12 14.
Article in English | MEDLINE | ID: mdl-36416808

ABSTRACT

Transmission of insect-borne pathogens is mediated by interactions between insects and plants across variable environments. Water stress, for example, affects the physiology, defense, chemistry, and nutritional balance of plants in ways that alter their tolerance to herbivores and pathogens. However, few studies have explored interactions between water stress and insect-borne pathogens as well as the molecular mechanisms mediating these interactions. Here, we address these knowledge gaps by assessing effects of plant water stress on the transmission of a bacterial pathogen, Candidatus Liberibacter solanacearum (CLs), by the vector Bactericera cockerelli Sulc (potato psyllid). We hypothesized that plant water stress would promote pathogen transmission by inducing plant gene transcripts and phytohormones involved in defense. Our results showed water stress was associated with decreased CLs titer with two psyllid haplotypes. Our analysis of plant gene transcripts suggested water stress affected phytohormone pathways in ways that altered plant tolerance to the CLs pathogen. Our study shows that abiotic stressors like drought may mediate the spread of plant pathogens by altering plant signaling pathways in ways that affect pathogen transmission.


Subject(s)
Hemiptera , Rhizobiaceae , Solanum tuberosum , Animals , Hemiptera/microbiology , Solanum tuberosum/microbiology , Rhizobiaceae/genetics , Droughts , Dehydration , Plant Diseases/microbiology
8.
Appl Environ Microbiol ; 88(3): e0208921, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818107

ABSTRACT

Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly Bemisia tabaci MEAM1 hosts "Candidatus Portiera aleyrodidarum" (here, "Ca. Portiera") and "Candidatus Hamiltonella defensa" (here, "Ca. Hamiltonella") bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression, and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that "Ca. Portiera" and "Ca. Hamiltonella" evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. IMPORTANCE Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-"Ca. Portiera"/"Ca. Hamiltonella" endosymbiosis, we demonstrate autophagy regulates the symbiont titers and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, "Ca. Portiera" and "Ca. Hamiltonella" alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide a new avenue for whitefly control via regulating autophagy in the future.


Subject(s)
Halomonadaceae , Hemiptera , Vitamin B Complex , Animals , Autophagy , Halomonadaceae/genetics , Hemiptera/microbiology , Symbiosis/genetics , Vitamin B Complex/metabolism
9.
Environ Entomol ; 51(1): 94-107, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34864906

ABSTRACT

Insects harbor bacterial endosymbionts that provide their hosts with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, or abiotic stresses. We used directed sequencing of 16S rDNA to identify and compare endosymbionts of Bactericera maculipennis (Crawford) and the western, central, and northwestern haplotypes of B. cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Both species are native to North America, are known to harbor the plant pathogen 'Candidatus Liberibacter solanacearum' and develop on shared host plants within the Convolvulaceae. The Old-World species Heterotrioza chenopodii (Reuter) (Psylloidea: Triozidae), now found in North America, was included as an outgroup. 16S sequencing confirmed that both Bactericera species harbor 'Candidatus Liberibacter solanacearum' and revealed that both species harbor unique strains of Wolbachia and Sodalis. However, the presence of Wolbachia and Sodalis varied among haplotypes of B. cockerelli. The central and western haplotypes harbored the same strains of Wolbachia, which was confirmed by Sanger sequencing of the wsp and ftsZ genes. Wolbachia was also detected in very low abundance from the northwestern haplotype by high-throughput sequencing of 16S but was not detected from this haplotype by PCR screening. The northwestern and central haplotypes also harbored Sodalis, which was not detected in the western haplotype. Heterotrioza chenopodii harbored an entirely different community of potential endosymbionts compared with the Bactericera spp. that included Rickettsia and an unidentified bacterium in the Enterobacteriaceae. Results of this study provide a foundation for further research on the interactions between psyllids and their bacterial endosymbionts.


Subject(s)
Hemiptera , Rhizobiaceae , Solanum tuberosum , Animals , Bacteria/genetics , Haplotypes , Hemiptera/microbiology , Plant Diseases/microbiology , Solanum tuberosum/microbiology
10.
mBio ; 12(4): e0122821, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465022

ABSTRACT

Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis, acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the "symbiont ball" formed by late-invading Sulcia and Vidania. Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis. IMPORTANCE Sup-sucking hemipterans host ancient heritable microorganisms that supplement their unbalanced diet with essential nutrients and have repeatedly been complemented or replaced by other microorganisms. These symbionts need to be reliably transmitted to subsequent generations through the reproductive system, and often they end up using the same route as the most ancient ones. We show for the first time that in a single family of planthoppers, the complementing symbionts that have established infections independently utilize different transmission strategies, one of them novel, with the transmission of different microbes separated spatially and temporally. These data show how newly arriving microbes may utilize different strategies to establish long-term heritable symbioses.


Subject(s)
Betaproteobacteria/metabolism , Gammaproteobacteria/metabolism , Hemiptera/microbiology , Nutrients/metabolism , Symbiosis , Animals , Betaproteobacteria/genetics , Female , Gammaproteobacteria/genetics , Hemiptera/anatomy & histology , High-Throughput Nucleotide Sequencing/methods , Microscopy/methods , Phylogeny
11.
Plant J ; 105(5): 1309-1325, 2021 03.
Article in English | MEDLINE | ID: mdl-33617106

ABSTRACT

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Subject(s)
Hemiptera/metabolism , Monocyclic Sesquiterpenes/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Solanum/metabolism , Animals , Botrytis/drug effects , Botrytis/pathogenicity , Hemiptera/genetics , Hemiptera/microbiology , Monocyclic Sesquiterpenes/toxicity , NADPH-Ferrihemoprotein Reductase/genetics , Phytophthora infestans/drug effects , Phytophthora infestans/pathogenicity , Solanum/genetics
12.
Fitoterapia ; 144: 104606, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32376482

ABSTRACT

Six new compounds [ascherlactones A (1) and B (2), ascherchromanone A (3), phenethyl 4'-O-methylglucoside (8), 4'-O-methylpleoside (10), and 4'-O-methyltorachrysone 8-O-glucoside (11)] and one naturally new compound [4'-O-methyl-ß-d-benzylglucoside (9)] together with fourteen known compounds, including paecilodepsipeptides A (5), B (7), and D (4), conoideocrellide A (6), eugenin (12), 5-hydroxy-2,3-dimethyl-7-methoxychromone (13), (S)-1-phenyl-1,2-ethanediol (14), (2S)-l-3-phenyllactic acid (15), papuline [or (2S)-l-3-phenyllactic acid methyl ester, 16], 2'-epi terpendole A (17), terpendoles C (18) and D (19), cholic acid, and zeorin were isolated from the entomopathogenic fungus Aschersonia confluens BCC53152. Their chemical structures were elucidated on the basis of NMR spectroscopic and mass spectrometric analyses. The absolute configurations were determined by using the evidence from NOESY correlations, chemical means, optical rotation values together with comparison of ECD spectroscopic data with the calculated ECD spectra. The plausible biosynthetic pathway of compounds 1-3 was also proposed. Moreover, antimicrobial activity such as antimalarial, antitubercular, antifungal, and antibacterial activities and cytotoxicity against cancerous (MCF-7, KB, and NCI-H187) and non-cancerous (Vero) cells of the isolated compounds were evaluated.


Subject(s)
Chromones/pharmacology , Glucosides/pharmacology , Hypocreales/chemistry , Animals , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antimalarials/isolation & purification , Antimalarials/pharmacology , Antineoplastic Agents/isolation & purification , Chlorocebus aethiops , Chromones/isolation & purification , Glucosides/isolation & purification , Hemiptera/microbiology , Humans , MCF-7 Cells , Molecular Structure , Thailand , Vero Cells
13.
J Insect Sci ; 20(2)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32294181

ABSTRACT

The potato/tomato psyllid Bactericera cockerelli (Sulc) transmits 'Candidatus Liberibacter solanacearum' (Lso) (also known as 'Candidatus Liberibacter psyllaurous'), the bacterium associated with zebra chip disease (ZC) in potato. When disease incidence is high, ZC causes large economic losses through reductions in potato yield and tuber quality. No commercial potato variety has been found totally resistant to the pathogen. We evaluated host acceptance behaviors using no-choice assays on three breeding clones derived from Solanum chacoense Bitter with putative tolerance to Lso and/or ZC as part of an effort to determine whether the disease tolerance observed in those breeding clones was related to effects on psyllid settling behavior. We also counted the number of eggs laid and nymphs hatched on the different genotypes to observe any differences in reproduction. The potato variety 'Russet Burbank' was used as a susceptible control. Probing frequency and female walking duration were greater on Russet Burbank than the other genotypes. Oviposition did not differ among genotypes. However, female psyllids on two of the Lso-tolerant genotypes displayed reduced fertility 18-24 d after confinement with a male, relative to females on Russet Burbank. These results suggest that although the germplasms display minor abiotic activity on psyllid fertility, tolerance to Lso may be more strongly linked with plant tolerance to the pathogen rather than effects on host acceptance behaviors.


Subject(s)
Hemiptera/physiology , Plant Diseases/microbiology , Rhizobiaceae/physiology , Solanum tuberosum , Animals , Antibiosis/genetics , Female , Genotype , Hemiptera/microbiology , Locomotion , Male , Solanum tuberosum/genetics
14.
Plant Physiol Biochem ; 148: 70-79, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31945669

ABSTRACT

Citrus greening, also called Huanglongbing (HLB), is one of the most destructive citrus diseases worldwide. It is caused by the fastidious gram-negative α-proteobacteria bacterium Candidatus Liberibacter asiaticus (CLas) and vectored by the Asian citrus psyllid (ACP), Diaphorina citri. Currently, there is no cure for HLB, no compounds have been successful in controlling HLB, and no sustainable management practices have been established for the disease. Thus, searching for alternative citrus greening disease mitigation strategies is considered an urgent priority for a sustainable citrus industry. The aim of this study was to use compounds extracted from oak, Quercus hemisphaerica, and to assess the antibacterial effects of these against CLas-infected citrus plants. The application of aqueous oak leaf extracts showed substantial inhibitory effects against CLas in citrus plants and the activity of genes related to starch. Significant differences were also observed in plant phenotypic and physiological traits after treatments. Citrus plants treated with oak extracts displayed an increase in stomatal conductance, chlorophyll content and nutrient uptake concurrently with a reduction of CLas titer, when compared to citrus plants treated with just water. The information provided from this study suggests a new management treatment program to effectively deal with the HLB disease.


Subject(s)
Citrus , Plant Extracts , Plant Leaves , Quercus , Rhizobiaceae , Animals , Anti-Bacterial Agents/pharmacology , Citrus/drug effects , Citrus/microbiology , Hemiptera/microbiology , Plant Extracts/pharmacology , Plant Leaves/drug effects , Plant Leaves/microbiology , Quercus/chemistry , Rhizobiaceae/drug effects , Rhizobiaceae/physiology
15.
ISME J ; 14(3): 676-687, 2020 03.
Article in English | MEDLINE | ID: mdl-31767943

ABSTRACT

Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.


Subject(s)
Biotin/metabolism , Hemiptera/microbiology , Hemiptera/physiology , Riboflavin/metabolism , Wolbachia/metabolism , Animals , Fertility , Genomics , Reproduction , Symbiosis , Vitamin B Complex/metabolism , Wolbachia/genetics
16.
Biomolecules ; 9(12)2019 11 30.
Article in English | MEDLINE | ID: mdl-31801241

ABSTRACT

When insects attack plants, insect-derived elicitors and mechanical damage induce the formation and emission of plant volatiles that have important ecological functions and flavor properties. These events have mainly been studied in model plants, rather than crop plants. Our study showed that tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda), a major pest infesting tea attack significantly induced the emission of geraniol from tea leaves, but did not affect the crude enzyme activity of geraniol synthase in tea leaves. An enzyme extract of E. (M.) onukii specifically produced geraniol from geraniol diphosphate. Furthermore, a terpene synthase (EoTPS) was isolated from E. (M.) onukii. This terpene synthase was able to convert geraniol diphosphate to geraniol in vitro. In addition, geraniol had in vitro ability to inhibit the growth of Acinetobacter johnsonii that is endobacterial isolated from E. (M.) onukii. This information illustrates that elicitors from piercing-sucking insects can induce the formation of volatiles from crop plants and advances our understanding of the roles of plant volatiles in the interaction among crops-insects-microorganisms.


Subject(s)
Acyclic Monoterpenes/metabolism , Alkyl and Aryl Transferases/metabolism , Camellia sinensis/metabolism , Hemiptera/enzymology , Host-Parasite Interactions , Plant Leaves/metabolism , Acinetobacter/drug effects , Acinetobacter/genetics , Acinetobacter/isolation & purification , Acyclic Monoterpenes/pharmacology , Alkyl and Aryl Transferases/genetics , Animals , Camellia sinensis/parasitology , Escherichia coli/genetics , Hemiptera/microbiology , Hemiptera/physiology , Phosphoric Monoester Hydrolases/metabolism , Phylogeny , Plant Leaves/parasitology , Recombinant Proteins/metabolism , Sf9 Cells
17.
Infect Immun ; 88(1)2019 12 17.
Article in English | MEDLINE | ID: mdl-31611278

ABSTRACT

"Candidatus Liberibacter solanacearum" is a pathogen transmitted by the potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in a persistent manner. In this study, we investigated the molecular interaction between "Ca. Liberibacter solanacearum" and the potato psyllid at the gut interface. Specifically, we focused on the apoptotic response of potato psyllids to the infection by two "Ca. Liberibacter solanacearum" haplotypes, LsoA and LsoB. To this end, we first quantified and localized "Ca. Liberibacter solanacearum" in the gut of adult psyllids. We then evaluated the existence of an apoptotic response in the insect gut using microscopy analyses to visualize the nuclei and the actin cytoskeleton of the gut cells and DNA fragmentation analyses by agarose gel electrophoresis. We also performed annexin V cell death assays to detect apoptosis. Finally, we annotated apoptosis-related genes from the potato psyllid transcriptome and evaluated their expression in response to "Ca. Liberibacter solanacearum" infection. The results showed no cellular markers of apoptosis despite the large amount of "Ca. Liberibacter solanacearum" present in the psyllid gut. In addition, only three genes potentially involved in apoptosis were regulated in the psyllid gut in response to "Ca. Liberibacter solanacearum": the apoptosis-inducing factor AIF3 was downregulated in LsoA-infected psyllids, while the inhibitor of apoptosis IAPP5 was downregulated and IAP6 was upregulated in LsoB-infected psyllids. Overall, no evidence of apoptosis was observed in the gut of potato psyllid adults in response to either "Ca. Liberibacter solanacearum" haplotype. This study represents a first step toward understanding the interactions between "Ca. Liberibacter solanacearum" and the potato psyllid, which is crucial to developing approaches to disrupt their transmission.


Subject(s)
Apoptosis , Hemiptera/microbiology , Host-Pathogen Interactions , Rhizobiaceae/growth & development , Animals , Annexin A5/analysis , DNA Fragmentation , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Gene Expression Profiling , Insect Vectors/microbiology , Solanum tuberosum/parasitology
18.
Plant Dis ; 103(10): 2587-2591, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31432751

ABSTRACT

'Candidatus Liberibacter solanacearum' (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.


Subject(s)
Hemiptera , Rhizobiaceae , Solanum tuberosum , Animals , Haplotypes , Hemiptera/microbiology , Idaho , Rhizobiaceae/physiology , Solanum tuberosum/microbiology
19.
PLoS One ; 14(6): e0218190, 2019.
Article in English | MEDLINE | ID: mdl-31181122

ABSTRACT

Diaphorin is a polyketide produced by Candidatus Profftella armatura (Betaproteobacteria), an organelle-like defensive symbiont harbored by a plant sap-sucking insect, Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). Diaphorin belongs to the pederin family, a group of compounds that share much of their core structure with that of pederin, which is characterized by two dihydropyran rings bridged by an N-acyl aminal. Most members of this family have potent antitumor activity, making them promising anticancer drug candidates. The present study assessed the therapeutic potential of diaphorin for its antitumor activity against 39 human cancer cell lines including those from breast, brain, colon, lung, skin, ovary, kidney, stomach, and prostate. The results showed that diaphorin had inhibitory activity against all 39 cancer cell lines tested. The GI50, TGI, and LC50 values ranged from 0.28 µM- 2.4 µM, 1.6 µM -11 µM, and 7.5 µM-> 100 µM, respectively. These values are among the highest in the pederin family, indicating that the anticancer activity of diaphorin is milder than those of other pederin congeners. The inhibitory effects of diaphorin significantly differed among the distinct cancer types. The maximum difference was about 10-fold, which was similar to those of most other pederin congeners.


Subject(s)
Betaproteobacteria/metabolism , Hemiptera/chemistry , Polyketides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Hemiptera/microbiology , Humans , Inhibitory Concentration 50 , Polyketides/pharmacology , Symbiosis
20.
Environ Entomol ; 47(5): 1184-1193, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30020444

ABSTRACT

The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), had been known for nearly a century to cause psyllid yellows of solanaceous crops. However, it has only been a decade since the insect was discovered to transmit the bacterium 'Candidatus Liberibacter solanacearum' (Lso), which putatively causes potato zebra chip disease. This project was initiated to quantify temporal incidences of haplotypes of the psyllid (Central, Southwestern, and Western) and Lso (A, B) in potato fields and in native vegetation. Psyllids were collected from native vegetation in Texas (2011-2014), and from potato fields in Texas and New Mexico (2014-2017). Psyllids were tested for Lso and haplotypes of both psyllid and Lso. In Texas, the Central psyllid haplotype was overwhelmingly dominant both in potato fields and in native vegetation regardless of location and time of collection. However, in New Mexico potato fields, although the Southwestern haplotype was overall dominant, the ratios of individual haplotypes varied among years and within a season. The Southwestern psyllid haplotype was greater in incidence than the Central early but declined later in the season in each of the 4 yr, while the Central haplotype was low in incidence early but increased over time. Lso was detected in all three psyllid haplotypes representing the first report in Southwestern psyllid haplotype. In Texas, Lso haplotype A was more frequently detected than B, but in New Mexico the incidence of positive psyllids was not high enough to make definitive conclusions regarding predominant Lso haplotype.


Subject(s)
Hemiptera/microbiology , Insect Vectors/microbiology , Phyllobacteriaceae/genetics , Animals , Haplotypes , Hemiptera/genetics , Insect Vectors/genetics , Plant Diseases/microbiology , Population Dynamics , Solanum tuberosum
SELECTION OF CITATIONS
SEARCH DETAIL