Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34874003

ABSTRACT

Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.


The ability of animals to replace damaged or lost tissue (or 'regenerate') is a sliding scale, with some animals able to regenerate whole limbs, while others can only scar. But why some animals can regenerate while others have more limited capabilities has puzzled the scientific community for many years. The likes of Charles Darwin and August Weismann suggested regeneration only evolves in a particular organ. In contrast, Thomas Morgan suggested that all animals are equipped with the tools to regenerate but differ in whether they are able to activate these processes. If the latter were true, it could be possible to 'switch on' regeneration. Animals that keep growing throughout their life and do not regulate their body temperatures are more likely to be able to regenerate. But what do growth and temperature regulation have in common? Both are highly energy-intensive, with temperature regulation potentially diverting energy from other processes. A question therefore presents itself: could limb regeneration be switched on by supplying animals with more energy, either in the form of nutrients like sugars or amino acids, or by giving them growth hormones such as insulin? Abrams, Tan, Li et al. tested this hypothesis by amputating the limbs of jellyfish, flies and mice, and then supplementing their diet with sucrose (a sugar), leucine (an amino acid) and/or insulin for eight weeks while they healed. Typically, jellyfish rearrange their remaining arms when one is lost, while fruit flies are not known to regenerate limbs. House mice are usually only able to regenerate the very tip of an amputated digit. But in Abrams, Tan, Li et al.'s experiments, leucine and insulin supplements stimulated limb regeneration in jellyfish and adult fruit flies, and leucine and sucrose supplements allowed mice to regenerate digits from below the second knuckle. Although regeneration was not observed in all animals, these results demonstrate that regeneration can be induced, and that it can be done relatively easily, by feeding animals extra sugar and amino acids. These findings highlight increasing the energy supplies of different animals by manipulating their diets while they are healing from an amputated limb can aid in regeneration. This could in the future pave the way for new therapeutic approaches to tissue and organ regeneration.


Subject(s)
Amputation, Surgical/methods , Drosophila/physiology , Extremities/physiology , Hindlimb/physiology , Regeneration , Scyphozoa/physiology , Animals , Mice
2.
Cereb Cortex ; 31(11): 5165-5187, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34165153

ABSTRACT

Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.


Subject(s)
Motor Cortex , Animals , Hindlimb/physiology , Motor Cortex/physiology , Rats , Somatosensory Cortex/physiology , Thalamus/physiology , Wakefulness
3.
Ultrasound Med Biol ; 47(4): 998-1013, 2021 04.
Article in English | MEDLINE | ID: mdl-33455808

ABSTRACT

Ultrasound can modulate activity in the central nervous system, including the induction of motor responses in rodents. Recent studies investigating ultrasound-induced motor movements have described mostly bilateral limb responses, but quantitative evaluations have failed to reveal lateralization or differences in response characteristics between separate limbs or how specific brain targets dictate distinct limb responses. This study uses high-resolution focused ultrasound (FUS) to elicit motor responses in anesthetized mice in vivo and four-limb electromyography (EMG) to evaluate the latency, duration and power of paired motor responses (n = 1768). The results indicate that FUS generates target-specific differences in electromyographic characteristics and that brain targets separated by as little as 1 mm can modulate the responses in individual limbs differentially. Exploiting these differences may provide a tool for quantifying the susceptibility of underlying neural volumes to FUS, understanding the functioning of the targeted neuroanatomy and aiding in mechanistic studies of this non-invasive neuromodulation technique.


Subject(s)
Brain/radiation effects , Movement/radiation effects , Ultrasonic Waves , Acoustic Stimulation , Animals , Electromyography , Forelimb/physiology , Hindlimb/physiology , Mice , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Reaction Time
4.
Mol Med Rep ; 22(2): 751-762, 2020 08.
Article in English | MEDLINE | ID: mdl-32468009

ABSTRACT

Abnormal microRNA (miRNA) expression has been implicated in spinal cord injury (SCI), but the underlying mechanisms are poorly understood. To observe the effect of electroacupuncture (EA) on miRNA expression profiles in SCI rats and investigate the potential mechanisms involved in this process, Sprague­Dawley rats were divided into sham, SCI and SCI+EA groups (n=6 each). Basso, Beattie and Bresnahan (BBB) scoring and hematoxylin­eosin staining of cortical tissues were used to evaluate spinal cord recovery with EA treatment 21 days post­surgery across the three groups. To investigate miRNA expression profiles, 6 Sprague­Dawley rats were randomly divided into SCI and SCI+EA groups (n=3 in each group) and examined using next­generation sequencing. Integrated miRNA­mRNA­pathway network analysis was performed to elucidate the interaction network of the candidate miRNAs, their target genes and the involved pathways. Behavioral scores suggested that hindlimb motor functions improved with EA treatments. Apoptotic indices were lower in the SCI+EA group compared with the SCI group. It was also observed that 168 miRNAs were differentially expressed between the SCI and SCI+EA groups, with 29 upregulated and 139 downregulated miRNAs in the SCI+EA group. Changes in miRNA expression are involved in SCI physiopathology, including inflammation and apoptosis. Reverse transcription­quantitative PCR measurement of the five candidate miRNAs, namely rno­miR­219a­5p, rno­miR­486, rno­miR­136­5p, rno­miR­128­3p, and rno­miR­7b, was consistent with RNA sequencing data. Integrated miRNA­mRNA­pathway analysis suggested that the MAPK, Wnt and NF­κB signaling pathways were involved in EA­mediated recovery from SCI. The present study evaluated the miRNA expression profiles involved in EA­treated SCI rats and demonstrated the potential mechanism and functional role of miRNAs in SCI in rats.


Subject(s)
MicroRNAs/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Wounds, Penetrating/complications , Animals , Apoptosis/genetics , Computational Biology , Databases, Genetic , Disease Models, Animal , Electroacupuncture , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Hindlimb/physiology , Inflammation/genetics , Male , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord/chemistry , Spinal Cord/cytology , Spinal Cord/metabolism , Spinal Cord Injuries/etiology , Spinal Cord Injuries/metabolism , Transcriptome
5.
Sci Adv ; 5(4): eaav3816, 2019 04.
Article in English | MEDLINE | ID: mdl-31001585

ABSTRACT

Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.


Subject(s)
Brain Mapping/methods , Brain/physiology , Acoustic Stimulation , Animals , Electric Stimulation , Forelimb/physiology , Hindlimb/physiology , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Thalamus/physiology
6.
J Steroid Biochem Mol Biol ; 189: 187-194, 2019 05.
Article in English | MEDLINE | ID: mdl-30853652

ABSTRACT

We have previously shown that expression of the androgen receptor (AR) in neurons within the brain positively regulates hind-limb muscle mass and physical activity in male mice. To further investigate the region of the brain responsible for mediating these effects of testosterone and to determine whether they are only important for muscle mass accrual during development or whether they are also important for the maintenance of muscle mass in the adult, we deleted the AR specifically in the hypothalamus of adult male mice (Hyp-ARKOs). Hyp-ARKO mice were generated by bilateral stereotaxic microinjection of an adeno-associated virus (AAV) expressing GFP and iCre recombinase under the control of the e-synapsin promoter into the hypothalamus of 10-week-old exon 3-AR floxed male mice. AR mRNA was deleted by 45% in the hypothalamus of Hyp-ARKOs at 5 weeks post-AAV-eSyn-iCre injection. This led to an increase in the mass of the androgen-dependent organs, seminal vesicles and kidneys, by 30% (P < 0.01) and 10% (P < 0.05) respectively, and an increase in serum luteinizing hormone (LH) by 2 fold (P < 0.05). Whilst the mean value for serum testosterone was higher in the Hyp-ARKOs, this did not reach statistical significance. Despite a phenotype consistent with increased androgen bioactivity in Hyp-ARKOs, which would be expected to increase muscle mass, the mass of the hind-limb muscles, gastrocnemius (Gast) (P = 0.001), extensor digitorum longus (EDL) (P < 0.001) and soleus (Sol) (P < 0.01) were paradoxically decreased by 12-19% compared to controls. Voluntary physical activity was reduced by 65% (P < 0.05) in Hyp-ARKO male mice and was associated with a reduction in gene expression of Drd1a and Maob (P ≤ 0.05) in the hypothalamus, suggesting involvement of the brain dopaminergic system. These data provide compelling evidence that androgen signalling via the AR in the hypothalamus acts to positively regulate the maintenance of hind-limb muscle mass and voluntary activity in adult male mice, independent of AR signalling in peripheral tissues.


Subject(s)
Hypothalamus/physiology , Muscle, Skeletal/physiology , Receptors, Androgen/metabolism , Animals , Hindlimb/physiology , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal
7.
Bioelectromagnetics ; 39(8): 569-584, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30350869

ABSTRACT

Microgravity is one of the main threats to the health of astronauts. Pulsed electromagnetic fields (PEMFs) have been considered as one of the potential countermeasures for bone loss induced by space flight. However, the optimal therapeutic parameters of PEMFs have not been obtained and the action mechanism is still largely unknown. In this study, a set of optimal therapeutic parameters for PEMFs (50 Hz, 0.6 mT 50% duty cycle and 90 min/day) selected based on high-throughput screening with cultured osteoblasts was used to prevent bone loss in rats induced by hindlimb suspension, a commonly accepted animal model to simulate the space environment. It was found that hindlimb suspension for 4 weeks led to significant decreases in femoral and vertebral bone mineral density (BMD) and their maximal loads, severe deterioration in bone micro-structure, and decreases in levels of bone formation markers and increases in bone resorption markers. PEMF treatment prevented about 50% of the decreased BMD and maximal loads, preserved the microstructure of cancellous bone and thickness of cortical bone, and inhibited decreases in bone formation markers. Histological analyses revealed that PEMFs significantly alleviated the reduction in osteoblast number and inhibited the increase in adipocyte number in the bone marrow. PEMFs also blocked decreases in serum levels of parathyroid hormone and its downstream signal molecule cAMP, and maintained the phosphorylation levels of protein kinase A (PKA) and cAMP response element-binding protein (CREB). The expression level of soluble adenylyl cyclases (sAC) was also maintained. It therefore can be concluded that PEMFs partially prevented the bone loss induced by weightless environment by maintaining bone formation through signaling of the sAC/cAMP/PKA/CREB pathway. Bioelectromagnetics. 39:569-584, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Adenylyl Cyclases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Electromagnetic Fields , Hindlimb/physiology , Osteogenesis/radiation effects , Adipocytes/cytology , Adipocytes/radiation effects , Animals , Biomechanical Phenomena/radiation effects , Body Weight/radiation effects , Bone Density/radiation effects , Bone Resorption/metabolism , Bone Resorption/prevention & control , Female , Femur/cytology , Femur/diagnostic imaging , Femur/physiology , Femur/radiation effects , Hindlimb/radiation effects , Osteoblasts/cytology , Osteoblasts/radiation effects , Rats , Rats, Wistar , Signal Transduction/radiation effects , Spine/cytology , Spine/diagnostic imaging , Spine/physiology , Spine/radiation effects , Suspensions , X-Ray Microtomography
8.
Sci Rep ; 8(1): 12719, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143710

ABSTRACT

In order to screen out an effective bone loss protectant from natural plant polyphenol and to elucidate the mechanism of the plant polyphenols that alleviate bone loss under simulated microgravity, the proliferation activities of 9 total polyphenol extracts from natural product (TPENP) on osteoblasts were measured. Polyphenols (S3) was isolated from total polyphenols of cone scales from pinus koraiensis (Korean pine). ALP activity in osteoblasts and MDA level in femur were measured. Mechanical properties and microstructure of the distal cancellous region of the femur in rat were tested. Various bone metabolism markers, enzymes activity and genes expression were also analyzed. The results showed that S3 has the highest activity of osteoblast proliferation. S3 promoted ALP activity in osteoblasts, enhanced mechanical properties and microstructure of the distal cancellous region of femur in rat, decreased MDA level, elevated the serum concentration of BALP, PINP and activities of SOD, CAT, GSH-Px in femur under simulated microgravity. In addition, S3 enhanced the expression of NRF-2, ß-catenin, p-GSK3-ß, OSX, RUNX2, Osteonectin, Osteocalcin, ALP and collagen I. These results indicated that S3 can alleviated bone loss induced by simulated microgravity through abate the inhibition of the oxidative stress on Wnt/ß-catenin signaling pathway.


Subject(s)
Osteogenesis/drug effects , Pinus/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Weightlessness Simulation , Alkaline Phosphatase/metabolism , Animals , Biological Products/pharmacology , Biomarkers/blood , Bone Resorption/blood , Bone Resorption/pathology , Cancellous Bone/drug effects , Cancellous Bone/physiology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Femur/drug effects , Hindlimb/physiology , Malondialdehyde/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/enzymology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Weight-Bearing
9.
Phys Med Biol ; 63(3): 035011, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29214985

ABSTRACT

Focused ultrasound (FUS) has been employed on a wide range of clinical applications to safely and non-invasively achieve desired effects that have previously required invasive and lengthy procedures with conventional methods. Conventional electrical neuromodulation therapies that are applied to the peripheral nervous system (PNS) are invasive and/or non-specific. Recently, focused ultrasound has demonstrated the ability to modulate the central nervous system and ex vivo peripheral neurons. Here, for the first time, noninvasive stimulation of the sciatic nerve eliciting a physiological response in vivo is demonstrated with FUS. FUS was applied on the sciatic nerve in mice with simultaneous electromyography (EMG) on the tibialis anterior muscle. EMG signals were detected during or directly after ultrasound stimulation along with observable muscle contraction of the hind limb. Transecting the sciatic nerve downstream of FUS stimulation eliminated EMG activity during FUS stimulation. Peak-to-peak EMG response amplitudes and latency were found to be comparable to conventional electrical stimulation methods. Histology along with behavioral and thermal testing did not indicate damage to the nerve or surrounding regions. The findings presented herein demonstrate that FUS can serve as a targeted, safe and non-invasive alternative to conventional peripheral nervous system stimulation to treat peripheral neuropathic diseases in the clinic.


Subject(s)
Electric Stimulation Therapy , Peripheral Nerves/physiology , Transcutaneous Electric Nerve Stimulation/methods , Ultrasonography/methods , Animals , Electromyography , Hindlimb/diagnostic imaging , Hindlimb/physiology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Peripheral Nerves/diagnostic imaging
10.
J Physiol ; 596(1): 83-103, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29090454

ABSTRACT

KEY POINTS: Muscle fibre cross sectional area is enhanced with massage in the form of cyclic compressive loading during regrowth after atrophy. Massage enhances protein synthesis of the myofibrillar and cytosolic, but not the mitochondrial fraction, in muscle during regrowth. Focal adhesion kinase activation and satellite cell number are elevated in muscles undergoing massage during regrowth. Muscle fibre cross sectional area and protein synthesis of the myofibrillar fraction, but not DNA synthesis, are elevated in muscle of the contralateral non-massaged limb. Massage in the form of cyclic compressive loading is a potential anabolic intervention during muscle regrowth after atrophy. ABSTRACT: Massage, in the form of cyclic compressive loading (CCL), is associated with multiple health benefits, but its potential anabolic effect on atrophied muscle has not been investigated. We hypothesized that the mechanical activity associated with CCL induces an anabolic effect in skeletal muscle undergoing regrowth after a period of atrophy. Fischer-Brown Norway rats at 10 months of age were hindlimb unloaded for a period of 2 weeks. The rats were then allowed reambulation with CCL applied at a 4.5 N load at 0.5 Hz frequency for 30 min every other day for four bouts during a regrowth period of 8 days. Muscle fibre cross sectional area was enhanced by 18% with massage during regrowth compared to reloading alone, and this was accompanied by elevated myofibrillar and cytosolic protein as well as DNA synthesis. Focal adhesion kinase phosphorylation indicated that CCL increased mechanical stimulation, while a higher number of Pax7+ cells likely explains the elevated DNA synthesis. Surprisingly, the contralateral non-massaged limb exhibited a comparable 17% higher muscle fibre size compared to reloading alone, and myofibrillar protein synthesis, but not DNA synthesis, was also elevated. We conclude that massage in the form of CCL induces an anabolic response in muscles regrowing after an atrophy-inducing event. We suggest that massage can be used as an intervention to aid in the regrowth of muscle lost during immobilization.


Subject(s)
Hindlimb/physiology , Massage/methods , Muscle, Skeletal/growth & development , Muscular Atrophy/therapy , Satellite Cells, Skeletal Muscle/cytology , Animals , Cells, Cultured , Male , Rats , Rats, Inbred BN , Rats, Inbred F344
11.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Article in English | MEDLINE | ID: mdl-28299842

ABSTRACT

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Subject(s)
Central Nervous System/cytology , Electroacupuncture , Mesenchymal Stem Cells/cytology , Achilles Tendon/pathology , Acupuncture Points , Adipocytes/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Animals , Antigens, CD/metabolism , Forelimb/physiology , Hindlimb/physiology , Humans , Hyperalgesia/therapy , Hypothalamus/cytology , Interleukin-10/blood , Macrophages/cytology , Mice , Nerve Net/physiology , Rats , Rupture , Sensory Receptor Cells/metabolism , Uncoupling Protein 1/metabolism
12.
J Orthop Res ; 35(6): 1226-1236, 2017 06.
Article in English | MEDLINE | ID: mdl-27431941

ABSTRACT

Pathological conditions with refractory skeletal pain are often characterized by regional osteoporotic changes such as transient osteoporosis of the hip, regional migratory osteoporosis, or complex regional pain syndrome (CRPS). Our previous study demonstrated that the acidic microenvironment created by osteoclast activation under high bone turnover conditions induced pain-like behaviors in ovariectomized mice through the stimulation of acid-sensing nociceptors. The aim of the present study was to examine whether regional transient osteoporotic changes are related to pain-like behaviors in the hind limb using tail-suspended model mice. The hind limbs of tail-suspended mice were unloaded for 2 weeks, during which time the mice revealed significant regional osteoporotic changes in their hind limbs accompanied by osteoclast activation. In addition, these changes were significantly recovered by the resumption of weight bearing on the hind limbs for 4 weeks. Consistent with the pathological changes in the hind limbs, pain-like behaviors in the mice were induced by tail suspension and recovered by the resumption of weight bearing. Moreover, treatment with bisphosphonate significantly prevented the triggering of the regional osteoporosis and pain-like behaviors, and antagonists of the acid-sensing nociceptors, such as transient receptor potential channel vanilloid subfamily member 1 and acid-sensing ion channels, significantly improved the pain-like behaviors in the tail-suspended mice. We, therefore, believe that regional transient osteoporosis due to osteoclast activation might be a trigger for the pain-like behaviors in tail-suspended model mice. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1226-1236, 2017.


Subject(s)
Osteoporosis/complications , Pain/etiology , Acid Sensing Ion Channel Blockers , Anilides/pharmacology , Anilides/therapeutic use , Animals , Cinnamates/pharmacology , Cinnamates/therapeutic use , Cnidarian Venoms/pharmacology , Cnidarian Venoms/therapeutic use , Drug Evaluation, Preclinical , Hindlimb/physiology , Hindlimb Suspension , Male , Mice, Inbred C57BL , Pain/drug therapy , Pain Management , TRPV Cation Channels/antagonists & inhibitors , Weight-Bearing
13.
PLoS One ; 11(12): e0167707, 2016.
Article in English | MEDLINE | ID: mdl-27973615

ABSTRACT

Aging is associated with a loss of muscle mass and functional capacity. Present study was designed to compare the impact of specific dairy proteins on muscular function with or without a low-intensity physical activity program on a treadmill in an aged rat model. We investigated the effects of nutritional supplementation, five days a week over a 2-month period with a slow digestible protein, casein or fast digestible proteins, whey or soluble milk protein, on strength and locomotor parameters in sedentary or active aged Wistar RjHan rats (17-19 months of age). An extensive gait analysis was performed before and after protein supplementation. After two months of protein administration and activity program, muscle force was evaluated using a grip test, spontaneous activity using an open-field and muscular mass by specific muscle sampling. When aged rats were supplemented with proteins without exercise, only minor effects of different diets on muscle mass and locomotion were observed: higher muscle mass in the casein group and improvement of stride frequencies with soluble milk protein. By contrast, supplementation with soluble milk protein just after physical activity was more effective at improving overall skeletal muscle function in old rats compared to casein. For active old rats supplemented with soluble milk protein, an increase in locomotor activity in the open field and an enhancement of static and dynamic gait parameters compared to active groups supplemented with casein or whey were observed without any differences in muscle mass and forelimb strength. These results suggest that consumption of soluble milk protein as a bolus immediately after a low intensity physical activity may be a suitable nutritional intervention to prevent decline in locomotion in aged rats and strengthen the interest to analyze the longitudinal aspect of locomotion in aged rodents.


Subject(s)
Aging/physiology , Dietary Supplements , Milk Proteins/chemistry , Muscle Strength/physiology , Muscle, Skeletal/physiology , Physical Conditioning, Animal , Animals , Gait , Hand Strength , Hindlimb/physiology , Male , Movement , Rats , Rats, Wistar , Sedentary Behavior
14.
PLoS One ; 10(10): e0140156, 2015.
Article in English | MEDLINE | ID: mdl-26452224

ABSTRACT

Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone. Given that regeneration is dependent on a dynamic and changing oxygen environment, a better understanding of the effects of oxygen during wounding, scarring, and regeneration, and better ways to artificially generate both hypoxic and oxygen replete microenvironments are essential to promote regeneration beyond wounding or scarring. To explore the influence of increased oxygen on digit regeneration in vivo daily treatments of hyperbaric oxygen were administered to mice during all phases of the entire regenerative process. Micro-Computed Tomography (µCT) and histological analysis showed that the daily application of hyperbaric oxygen elicited the same enhanced bone degradation response as two individual pulses of oxygen applied during the blastema phase. We expand past these findings to show histologically that the continuous application of hyperbaric oxygen during digit regeneration results in delayed blastema formation at a much more proximal location after amputation, and the deposition of better organized collagen fibers during bone formation. The application of sustained hyperbaric oxygen also delays wound closure and enhances bone degradation after digit amputation. Thus, hyperbaric oxygen shows the potential for positive influential control on the various phases of an epimorphic regenerative response.


Subject(s)
Bone Regeneration , Collagen/metabolism , Hindlimb/physiology , Hyperbaric Oxygenation , Animals , Female , Hindlimb/metabolism , Mice , Wound Healing
15.
PLoS One ; 10(7): e0131666, 2015.
Article in English | MEDLINE | ID: mdl-26147771

ABSTRACT

Electrical stimulation is used in order to restore nerve mediated functions in patients with neurological disorders, but its applicability is constrained by the invasiveness of the systems required to perform it. As an alternative to implantable systems consisting of central stimulation units wired to the stimulation electrodes, networks of wireless microstimulators have been devised for fine movement restoration. Miniaturization of these microstimulators is currently hampered by the available methods for powering them. Previously, we have proposed and demonstrated a heterodox electrical stimulation method based on electronic rectification of high frequency current bursts. These bursts can be delivered through textile electrodes on the skin. This approach has the potential to result in an unprecedented level of miniaturization as no bulky parts such as coils or batteries are included in the implant. We envision microstimulators designs based on application-specific integrated circuits (ASICs) that will be flexible, thread-like (diameters < 0.5 mm) and not only with controlled stimulation capabilities but also with sensing capabilities for artificial proprioception. We in vivo demonstrate that neuroprostheses composed of addressable microstimulators based on this electrical stimulation method are feasible and can perform controlled charge-balanced electrical stimulation of muscles. We developed miniature external circuit prototypes connected to two bipolar probes that were percutaneously implanted in agonist and antagonist muscles of the hindlimb of an anesthetized rabbit. The electronic implant architecture was able to decode commands that were amplitude modulated on the high frequency (1 MHz) auxiliary current bursts. The devices were capable of independently stimulating the target tissues, accomplishing controlled dorsiflexion and plantarflexion joint movements. In addition, we numerically show that the high frequency current bursts comply with safety standards both in terms of tissue heating and unwanted electro-stimulation. We demonstrate that addressable microstimulators powered by rectification of epidermically applied currents are feasible.


Subject(s)
Electric Stimulation/instrumentation , Equipment Design/instrumentation , Miniaturization/instrumentation , Skin/physiopathology , Animals , Electric Power Supplies , Electric Stimulation/methods , Electrodes, Implanted , Hindlimb/physiology , Male , Muscles/physiology , Rabbits , Software
16.
Neuropeptides ; 48(4): 239-47, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24836602

ABSTRACT

This study evaluated the effects Governor Vessel electroacupuncture (GVEA) on the systematic regulation of neurotrophic factors (NTFs) in the spinal segments caudal (CSS) to the site of transection in rats subjected to spinal cord transection (SCT). Using RT-PCR, we amazingly found the gene expressions of NGF, IGF-1, FGF-2, CNTF, PDGF, TGF-ß1, TrkA, TrkB and TrkC were downregulated following GVEA treatment. However, the number of GAP-43 and Synaptophysin profiles in the CSS in the GVEA rats showed a significant increase, compared with non-EA animals, although both the 5-HT and corticospinal fibers have no statistical differences in the CSS. Simultaneously, there was significant recovery in hindlimb locomotor and sensory functions after GVEA treatment. Therefore, these findings challenge the past view that GVEA promotes functional restoration, which is linking to the up-regulation of NTFs in rats subjected to SCT. The present findings may give some novel indication on the mechanism of acupuncture for the treatment of SCI.


Subject(s)
Blood Vessels/physiology , Electroacupuncture/methods , Nerve Growth Factors/biosynthesis , Spinal Cord Injuries/physiopathology , Spinal Cord/metabolism , Animals , Evoked Potentials, Somatosensory/physiology , Gene Expression/physiology , Hindlimb/physiology , Locomotion/physiology , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Receptors, Nerve Growth Factor/metabolism
17.
J Acupunct Meridian Stud ; 7(1): 25-32, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24513345

ABSTRACT

The longitudinal distribution of the cord dorsum potentials (CDPs) produced by electroacupuncture (EA) stimulation at acupuncture points (APs) located on the hind limbs of rats was analyzed in this study. Single electrical pulses (0.05 ms, 1 Hz) applied to the bladder (BL) and the gallbladder (GB) APs produced CDPs on several spinal segments and were composed of the following four components: an afferent volley, two negative components (N1 and N2), and one positive component (P wave). The larger evoked CDPs differed in their rostrocaudal distributions depending on the stimulated AP site, with those evoked by GB32-33 (at L3) and GB36-37 (at L4) being more caudal than those generated by BL58-59 (at L5) and BL37-38 (at L6). The CDPs produced by stimulating nonacupoints (NAPs) showed similar components and rostrocaudal distributions that were smaller in amplitude than those evoked by stimulating APs. The CDPs produced by stimulating NAPs located on a meridian acupuncture area were similar in amplitude and longitudinal distribution to those produced by stimulating APs. Our results suggest that the specificity of EA stimulation for CDPs responses is mainly related to an activation of meridian pathways associated with peripheral nerve routes rather than to a restricted point specificity of APs.


Subject(s)
Action Potentials/physiology , Electroacupuncture/methods , Hindlimb/physiology , Spinal Cord/physiology , Acupuncture Points , Animals , Male , Rats , Rats, Wistar
18.
PLoS One ; 9(1): e85095, 2014.
Article in English | MEDLINE | ID: mdl-24416346

ABSTRACT

Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min - 2 h in three brain regions --frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain.


Subject(s)
Brain Stem/metabolism , Hindlimb/physiology , RNA, Messenger/genetics , Signal Transduction/physiology , Tryptophan Hydroxylase/genetics , Animals , Exercise Test , Female , Frontal Lobe/metabolism , Gene Expression , Hindlimb Suspension , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Serotonin/metabolism , Stress, Physiological , Tryptophan Hydroxylase/metabolism , Weight-Bearing
19.
Am J Physiol Regul Integr Comp Physiol ; 304(11): R1024-35, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23552494

ABSTRACT

The purpose of the present study was to partially phenotype male and female rats from generations 8-10 (G8-G10) that had been selectively bred to possess low (LVR) vs. high voluntary running (HVR) behavior. Over the first 6 days with wheels, 34-day-old G8 male and female LVRs ran shorter distances (P < 0.001), spent less time running (P < 0.001), and ran slower (P < 0.001) than their G8 male and female HVR counterparts, respectively. HVR and LVR lines consumed similar amounts of standard chow with or without wheels. No inherent difference existed in PGC-1α mRNA in the plantaris and soleus muscles of LVR and HVR nonrunners, although G8 LVR rats inherently possessed less NADH-positive superficial plantaris fibers compared with G8 HVR rats. While day 28 body mass tended to be greater in both sexes of G9-G10 LVR nonrunners vs. G9-G10 HVR nonrunners (P = 0.06), body fat percentage was similar between lines. G9-G10 HVRs had fat mass loss after 6 days of running compared with their prerunning values, while LVR did not lose or gain fat mass during the 6-day voluntary running period. RNA deep sequencing efforts in the nucleus accumbens showed only eight transcripts to be >1.5-fold differentially expressed between lines in HVR and LVR nonrunners. Interestingly, HVRs presented less Oprd1 mRNA, which ties in to potential differences in dopaminergic signaling between lines. This unique animal model provides further evidence as to how exercise may be mechanistically regulated.


Subject(s)
Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Running/physiology , Absorptiometry, Photon , Animals , Body Composition/genetics , Body Composition/physiology , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Eating/genetics , Eating/physiology , Female , Hindlimb/physiology , Male , Muscle Fibers, Skeletal/physiology , NAD/metabolism , Nucleus Accumbens/metabolism , Organ Size/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenotype , Physical Conditioning, Animal , RNA, Messenger/biosynthesis , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/metabolism , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Running/psychology , Sex Characteristics , Transcription Factors/biosynthesis , Transcription Factors/metabolism
20.
PLoS One ; 8(2): e30243, 2013.
Article in English | MEDLINE | ID: mdl-23405058

ABSTRACT

BACKGROUND: We previously demonstrated that dietary vitamin D(3) at 10x the adequate intake (AI) attenuates the decline in functional capacity in the G93A mouse model of ALS. We hypothesized that higher doses would elicit more robust changes in functional and disease outcomes. OBJECTIVE: To determine the effects of dietary vitamin D(3) at 50xAI on functional outcomes (motor performance, paw grip endurance) and disease severity (clinical score), as well as disease onset, disease progression and lifespan in the transgenic G93A mouse model of ALS. METHODS: Starting at age 25 d, 100 G93A mice (55 M, 45 F) were provided ad libitum with either an adequate (AI; 1 IU D(3)/g feed) or high (HiD; 50 IU D(3)/g feed) vitamin D(3) diet. RESULTS: HiD females consumed 9% less food corrected for body weight vs. AI females (P = 0.010). HiD mice had a 12% greater paw grip endurance over time between age 60-141 d (P = 0.015), and a 37% greater score during disease progression (P = 0.042) vs. AI mice. Although HiD females had a non-significant 31% greater CS prior to disease onset vs. AI females, they exhibited a significant 20% greater paw grip endurance AUC (P = 0.020) when corrected for clinical score. CONCLUSION: Dietary D(3) supplementation at 50x the adequate intake attenuated the decline in paw grip endurance, but did not influence age at disease onset, hindlimb paralysis or endpoint in the transgenic G93A mouse model of ALS. Furthermore, females may have reached the threshold for vitamin D(3) toxicity as evidence by reduced food intake and greater disease severity prior to disease onset.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/physiopathology , Cholecalciferol/pharmacology , Eating/physiology , Hand Strength/physiology , Physical Endurance/drug effects , Animals , Body Weight/physiology , Dietary Supplements , Disease Models, Animal , Disease Progression , Eating/drug effects , Female , Hindlimb/physiology , Male , Mice , Mice, Transgenic , Physical Endurance/physiology , Psychomotor Performance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL