Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Comput Math Methods Med ; 2022: 3179200, 2022.
Article in English | MEDLINE | ID: mdl-35309841

ABSTRACT

Human immunodeficiency virus (HIV) infection is characterized not only by severe immunodeficiency but also by persistent inflammation and immune activation. These characteristics persist in people living with HIV (PLHIV) receiving effective antiretroviral therapy (ART) and are associated with morbidity and mortality in nonacquired immunodeficiency syndrome (AIDS) events. ART can inhibit HIV replication and promote immune reconstitution, which is currently the most effective way to control AIDS. However, despite effective long-term ART and overall suppression of plasma HIV RNA level, PLHIV still shows chronic low-level inflammation. The exact mechanisms that trigger chronic inflammation are unknown. Activation of the inflammasome is essential for the host response to pathogens, and some recent studies have confirmed the role of the inflammasome in the pathogenesis of inflammatory diseases. The NLRP3 inflammasome has been widely studied, which is a pyrin domain-containing protein 3 belonging to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent studies suggest that inflammasome-mediated pyroptosis is associated with CD4+ T cell loss in the absence of persistent infectious HIV replication. This article reviews the mechanism of the NLRP3 inflammasome and its correlation with immune reconstitution in PLHIV treated with ART.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Computational Biology , HIV Infections/pathology , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Reconstitution , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Pyroptosis/drug effects , Pyroptosis/immunology
2.
Sci Rep ; 12(1): 857, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039591

ABSTRACT

Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.


Subject(s)
Antifungal Agents , Fusarium/drug effects , Fusarium/pathogenicity , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Lavandula/chemistry , Oils, Volatile/pharmacology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Oils/pharmacology , Sorghum/genetics , Sorghum/microbiology , Transcription Factors/genetics , Drug Resistance, Fungal , Gene Expression/genetics , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Transcription Factors/metabolism
3.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684786

ABSTRACT

Two targeted sets of novel 1,5-diaryl-1H-imidazole-4-carboxylic acids 10 and carbohydrazides 11 were designed and synthesized from their corresponding ester intermediates 17, which were prepared via cycloaddition of ethyl isocyanoacetate 16 and diarylimidoyl chlorides 15. Evaluation of these new target scaffolds in the AlphaScreenTM HIV-1 IN-LEDGF/p75 inhibition assay identified seventeen compounds exceeding the pre-defined 50% inhibitory threshold at 100 µM concentration. Further evaluation of these compounds in the HIV-1 IN strand transfer assay at 100 µM showed that none of the compounds (with the exception of 10a, 10l, and 11k, with marginal inhibitory percentages) were actively bound to the active site, indicating that they are selectively binding to the LEDGF/p75-binding pocket. In a cell-based HIV-1 antiviral assay, compounds 11a, 11b, 11g, and 11h exhibited moderate antiviral percentage inhibition of 33-45% with cytotoxicity (CC50) values of >200 µM, 158.4 µM, >200 µM, and 50.4 µM, respectively. The antiviral inhibitory activity displayed by 11h was attributed to its toxicity. Upon further validation of their ability to induce multimerization in a Western blot gel assay, compounds 11a, 11b, and 11h appeared to increase higher-order forms of IN.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/drug effects , Transcription Factors/antagonists & inhibitors , Catalytic Domain , Cell Line , Computer Simulation , Drug Design , Drug Evaluation, Preclinical , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , Host Microbial Interactions/drug effects , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Docking Simulation , Molecular Structure , Protein Multimerization/drug effects
4.
PLoS Comput Biol ; 17(9): e1009418, 2021 09.
Article in English | MEDLINE | ID: mdl-34555024

ABSTRACT

Increasing body of experimental evidence suggests that anticancer and antimicrobial therapies may themselves promote the acquisition of drug resistance by increasing mutability. The successful control of evolving populations requires that such biological costs of control are identified, quantified and included to the evolutionarily informed treatment protocol. Here we identify, characterise and exploit a trade-off between decreasing the target population size and generating a surplus of treatment-induced rescue mutations. We show that the probability of cure is maximized at an intermediate dosage, below the drug concentration yielding maximal population decay, suggesting that treatment outcomes may in some cases be substantially improved by less aggressive treatment strategies. We also provide a general analytical relationship that implicitly links growth rate, pharmacodynamics and dose-dependent mutation rate to an optimal control law. Our results highlight the important, but often neglected, role of fundamental eco-evolutionary costs of control. These costs can often lead to situations, where decreasing the cumulative drug dosage may be preferable even when the objective of the treatment is elimination, and not containment. Taken together, our results thus add to the ongoing criticism of the standard practice of administering aggressive, high-dose therapies and motivate further experimental and clinical investigation of the mutagenicity and other hidden collateral costs of therapies.


Subject(s)
Drug Resistance, Microbial/genetics , Drug Resistance, Neoplasm/genetics , Anti-Infective Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Computational Biology , Computer Simulation , Dose-Response Relationship, Drug , Evolution, Molecular , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Models, Biological , Mutation/drug effects , Mutation Rate , Neoplasms/drug therapy , Neoplasms/genetics , Phenotype , Stochastic Processes
5.
J Hepatol ; 75(6): 1452-1464, 2021 12.
Article in English | MEDLINE | ID: mdl-34453966

ABSTRACT

Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by neuropsychiatric and motor dysfunction. Microbiota-host interactions play an important role in HE pathogenesis. Therapies targeting microbial community composition and function have been explored for the treatment of HE. Prebiotics, probiotics and faecal microbiota transplant (FMT) have been used with the aim of increasing the abundance of potentially beneficial taxa, while antibiotics have been used to decrease the abundance of potentially harmful taxa. Other microbiome therapeutics, including postbiotics and absorbents, have been used to target microbial products. Microbiome-targeted therapies for HE have had some success, notably lactulose and rifaximin, with probiotics and FMT also showing promise. However, there remain several challenges to the effective application of microbiome therapeutics in HE, including the resilience of the microbiome to sustainable change and unpredictable clinical outcomes from microbiota alterations. Future work in this space should focus on rigorous trial design, microbiome therapy selection, and a personalised approach to HE.


Subject(s)
Hepatic Encephalopathy/drug therapy , Microbiota/drug effects , Fecal Microbiota Transplantation/methods , Fecal Microbiota Transplantation/statistics & numerical data , Host Microbial Interactions/drug effects , Humans , Prebiotics/administration & dosage , Probiotics/therapeutic use
6.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1290-1298, 2021.
Article in English | MEDLINE | ID: mdl-34081583

ABSTRACT

An outbreak of COVID-19 that began in late 2019 was caused by a novel coronavirus(SARS-CoV-2). It has become a global pandemic. As of June 9, 2020, it has infected nearly 7 million people and killed more than 400,000, but there is no specific drug. Therefore, there is an urgent need to find or develop more drugs to suppress the virus. Here, we propose a new nonlinear end-to-end model called LUNAR. It uses graph convolutional neural networks to automatically learn the neighborhood information of complex heterogeneous relational networks and combines the attention mechanism to reflect the importance of the sum of different types of neighborhood information to obtain the representation characteristics of each node. Finally, through the topology reconstruction process, the feature representations of drugs and targets are forcibly extracted to match the observed network as much as possible. Through this reconstruction process, we obtain the strength of the relationship between different nodes and predict drug candidates that may affect the treatment of COVID-19 based on the known targets of COVID-19. These selected candidate drugs can be used as a reference for experimental scientists and accelerate the speed of drug development. LUNAR can well integrate various topological structure information in heterogeneous networks, and skillfully combine attention mechanisms to reflect the importance of neighborhood information of different types of nodes, improving the interpretability of the model. The area under the curve(AUC) of the model is 0.949 and the accurate recall curve (AUPR) is 0.866 using 10-fold cross-validation. These two performance indexes show that the model has superior predictive performance. Besides, some of the drugs screened out by our model have appeared in some clinical studies to further illustrate the effectiveness of the model.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Drug Evaluation, Preclinical/methods , Neural Networks, Computer , SARS-CoV-2/drug effects , COVID-19/epidemiology , Computational Biology , Databases, Pharmaceutical/statistics & numerical data , Drug Development/methods , Drug Development/statistics & numerical data , Drug Evaluation, Preclinical/statistics & numerical data , Drug Repositioning/methods , Drug Repositioning/statistics & numerical data , Host Microbial Interactions/drug effects , Humans , Nonlinear Dynamics , Pandemics
7.
Nature ; 593(7859): 362-371, 2021 05.
Article in English | MEDLINE | ID: mdl-34012080

ABSTRACT

Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Gene Expression Regulation, Viral/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Virus Diseases/drug therapy , Virus Diseases/virology , Animals , Frameshifting, Ribosomal/drug effects , Frameshifting, Ribosomal/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/drug effects , Genome, Viral/genetics , Humans , RNA Splicing/drug effects , RNA Splicing/genetics
8.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1281-1289, 2021.
Article in English | MEDLINE | ID: mdl-33914685

ABSTRACT

The novel SARS-CoV-2 uses ACE2 (Angiotensin-Converting Enzyme 2) receptor as an entry point. Insights on S protein receptor-binding domain (RBD) interaction with ACE2 receptor and drug repurposing has accelerated drug discovery for the novel SARS-CoV-2 infection. Finding small molecule binding sites in S protein and ACE2 interface is crucial in search of effective drugs to prevent viral entry. In this study, we employed molecular dynamics simulations in mixed solvents together with virtual screening to identify small molecules that could be potential inhibitors of S protein -ACE2 interaction. Observation of organic probe molecule localization during the simulations revealed multiple sites at the S protein surface related to small molecule, antibody, and ACE2 binding. In addition, a novel conformation of the S protein was discovered that could be stabilized by small molecules to inhibit attachment to ACE2. The most promising binding site on RBD-ACE2 interface was targeted with virtual screening and top-ranked compounds (DB08248, DB02651, DB03714, and DB14826) are suggested for experimental testing. The protocol described here offers an extremely fast method for characterizing key proteins of a novel pathogen and for the identification of compounds that could inhibit or accelerate spreading of the disease.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Binding Sites , COVID-19/metabolism , Computational Biology , Computer Simulation , Crystallography, X-Ray , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Drug Repositioning , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , Solvents , User-Computer Interface , COVID-19 Drug Treatment
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1271-1280, 2021.
Article in English | MEDLINE | ID: mdl-33891554

ABSTRACT

COVID-19 is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The case-fatality rate is significantly higher in older patients and those with diabetes, cancer or cardiovascular disorders. The human proteins, angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2) and basigin (BSG), are involved in high-confidence host-pathogen interactions with SARS-CoV-2 proteins. We considered these three proteins as seed nodes and applied the random walk with restart method on the human interactome to construct a protein-protein interaction sub-network, which captures the effects of viral invasion. We found that 'Insulin resistance', 'AGE-RAGE signaling in diabetic complications' and 'adipocytokine signaling' were the common pathways associated with diabetes, cancer and cardiovascular disorders. The association of these critical pathways with aging and its related diseases explains the molecular basis of COVID-19 fatality. We further identified drugs that have effects on these proteins/pathways based on gene expression studies. We particularly focused on drugs that significantly downregulate ACE2 along with other critical proteins identified by the network-based approach. Among them, COL-3 had earlier shown activity against acute lung injury and acute respiratory distress, while entinostat and mocetinostat have been investigated for non-small-cell lung cancer. We propose that these drugs can be repurposed for COVID-19.


Subject(s)
COVID-19/mortality , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/therapy , Cardiovascular Diseases/epidemiology , Comorbidity , Computational Biology , Drug Repositioning , Gastrointestinal Diseases/epidemiology , Gene Expression Profiling/statistics & numerical data , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Pandemics , Protein Interaction Maps/drug effects , Respiratory Tract Diseases/epidemiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , COVID-19 Drug Treatment
10.
PLoS Comput Biol ; 17(3): e1008752, 2021 03.
Article in English | MEDLINE | ID: mdl-33647008

ABSTRACT

Repurposed drugs that are safe and immediately available constitute a first line of defense against new viral infections. Despite limited antiviral activity against SARS-CoV-2, several drugs are being tested as medication or as prophylaxis to prevent infection. Using a stochastic model of early phase infection, we evaluate the success of prophylactic treatment with different drug types to prevent viral infection. We find that there exists a critical efficacy that a treatment must reach in order to block viral establishment. Treatment by a combination of drugs reduces the critical efficacy, most effectively by the combination of a drug blocking viral entry into cells and a drug increasing viral clearance. Below the critical efficacy, the risk of infection can nonetheless be reduced. Drugs blocking viral entry into cells or enhancing viral clearance reduce the risk of infection more than drugs that reduce viral production in infected cells. The larger the initial inoculum of infectious virus, the less likely is prevention of an infection. In our model, we find that as long as the viral inoculum is smaller than 10 infectious virus particles, viral infection can be prevented almost certainly with drugs of 90% efficacy (or more). Even when a viral infection cannot be prevented, antivirals delay the time to detectable viral loads. The largest delay of viral infection is achieved by drugs reducing viral production in infected cells. A delay of virus infection flattens the within-host viral dynamic curve, possibly reducing transmission and symptom severity. Thus, antiviral prophylaxis, even with reduced efficacy, could be efficiently used to prevent or alleviate infection in people at high risk.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2 , Antiviral Agents/administration & dosage , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/virology , Computational Biology , Drug Repositioning , Drug Therapy, Combination , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Models, Biological , Pandemics/prevention & control , Primary Prevention/methods , Risk Factors , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Stochastic Processes , Time Factors , Treatment Outcome , Viral Load/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects
11.
PLoS Comput Biol ; 17(2): e1008686, 2021 02.
Article in English | MEDLINE | ID: mdl-33544720

ABSTRACT

The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity (i.e., SARS), comorbidity (e.g., cardiovascular diseases), or for their association to drugs tentatively repurposed to treat COVID-19 (e.g., malaria, HIV, rheumatoid arthritis). Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments (e.g., chloroquine, hydroxychloroquine, tocilizumab, heparin), as well as a new combination therapy of 5 drugs (hydroxychloroquine, chloroquine, lopinavir, ritonavir, remdesivir), actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies (e.g., anti-IFNγ, anti-TNFα, anti-IL12, anti-IL1ß, anti-IL6), and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.


Subject(s)
Algorithms , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning/methods , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Clinical Trials as Topic , Comorbidity , Computational Biology , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/statistics & numerical data , Drug Repositioning/statistics & numerical data , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects
12.
Infect Immun ; 89(9): e0066520, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33526567

ABSTRACT

Immunotherapy has become a new paradigm in oncology, improving outcomes for several types of cancer. However, there are some aspects about its management that remain uncertain. One of the key points that needs better understanding is the interaction between immunotherapy and gut microbiome and how modulation of the microbiome might modify the efficacy of immunotherapy. Consequently, the negative impact of systemic antibiotics and corticosteroids on the efficacy of immunotherapy needs to be clarified.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Anti-Bacterial Agents/pharmacology , Host Microbial Interactions , Immune Checkpoint Inhibitors/therapeutic use , Microbiota , Neoplasms/drug therapy , Probiotics , Adrenal Cortex Hormones/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunomodulation/drug effects , Microbial Interactions/drug effects , Microbial Interactions/immunology , Microbiota/drug effects , Neoplasms/etiology , Treatment Outcome
13.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557246

ABSTRACT

Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Orthomyxoviridae/drug effects , Animals , Host Microbial Interactions/drug effects , Humans , Orthomyxoviridae/physiology , Virus Replication/drug effects
14.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33400687

ABSTRACT

Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Antigens/immunology , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Adult , Aged , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cohort Studies , Female , Granzymes/metabolism , HIV Infections/virology , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Evasion , Interferon-gamma/metabolism , Longitudinal Studies , Male , Middle Aged , T-Lymphocytes/drug effects , Viral Load , Young Adult
15.
Antiviral Res ; 185: 104997, 2021 01.
Article in English | MEDLINE | ID: mdl-33326835

ABSTRACT

Hepatitis E virus (HEV) causes 14 million infections and 60,000 deaths per year globally, with immunocompromised persons and pregnant women experiencing severe symptoms. Although ribavirin can be used to treat chronic hepatitis E, toxicity in pregnant patients and the emergence of resistant strains are major concerns. Therefore there is an imminent need for effective HEV antiviral agents. The aims of this study were to develop a drug screening platform and to discover novel approaches to targeting steps within the viral life cycle. We developed a screening platform for molecules inhibiting HEV replication and selected a candidate, isocotoin. Isocotoin inhibits HEV replication through interference with heat shock protein 90 (HSP90), a host factor not previously known to be involved in HEV replication. Additional work is required to understand the compound's translational potential, however this suggests that HSP90-modulating molecules, which are in clinical development as anti-cancer agents, may be promising therapies against HEV.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hepatitis E virus/drug effects , High-Throughput Screening Assays/methods , Host Microbial Interactions/drug effects , Antiviral Agents/isolation & purification , Cell Line, Tumor , Drug Evaluation, Preclinical , HSP90 Heat-Shock Proteins/metabolism , Hepatitis E/drug therapy , Hepatitis E virus/chemistry , Humans , Protein Binding , Virus Replication/drug effects
16.
Article in English | MEDLINE | ID: mdl-32723230

ABSTRACT

The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.


Subject(s)
Anti-Bacterial Agents/chemistry , Biomarkers/metabolism , Enzyme Inhibitors/chemistry , Host Microbial Interactions/drug effects , Inflammation/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Antimalarials/pharmacology , Antiviral Agents/pharmacology , Cytokines/metabolism , Drug Development , Drug Resistance, Multiple/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , HIV/drug effects , Hepacivirus/drug effects , Humans , Mycobacterium tuberculosis/drug effects , Signal Transduction
17.
Med Hypotheses ; 146: 110394, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33239231

ABSTRACT

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Subject(s)
COVID-19 Drug Treatment , Models, Biological , alpha 1-Antitrypsin/therapeutic use , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antithrombins/therapeutic use , Antiviral Agents/therapeutic use , Apoptosis/drug effects , COVID-19/physiopathology , Extracellular Traps/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Leukocyte Elastase/antagonists & inhibitors , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/drug effects , Serine Endopeptidases/physiology , Virus Internalization/drug effects , alpha 1-Antitrypsin/administration & dosage
18.
Viruses ; 12(11)2020 11 10.
Article in English | MEDLINE | ID: mdl-33182673

ABSTRACT

Dengue is an acute viral disease caused by Dengue virus (DENV) and is considered to be the most common arbovirus worldwide. The clinical characteristics of dengue may vary from asymptomatic to severe complications and severe organ impairment, particularly affecting the liver. Dengue treatment is palliative with acetaminophen (APAP), usually known as Paracetamol, being the most used drug aiming to relieve the mild symptoms of dengue. APAP is a safe and effective drug but, like dengue, can trigger the development of liver disorders. Given this scenario, it is necessary to investigate the effects of combining these two factors on hepatocyte homeostasis. Therefore, this study aimed to evaluate the molecular changes in hepatocytes resulting from the association between DENV infection and treatment with sub-toxic APAP concentrations. Using an in vitro experimental model of DENV-2 infected hepatocytes (AML-12 cells) treated with APAP, we evaluated the influence of the virus and drug association on the transcriptome of these hepatocytes by RNA sequencing (RNAseq). The virus-drug association was able to induce changes in the gene expression profile of AML-12 cells and here we highlight and explore these changes and its putative influence on biological processes for cellular homeostasis.


Subject(s)
Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Dengue Virus/drug effects , Hepatocytes/drug effects , Hepatocytes/virology , Host Microbial Interactions , Transcriptome , Animals , Cell Line , Homeostasis/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Liver/cytology , Liver/drug effects , Liver/virology , Mice , Sequence Analysis, RNA , Virus Replication/drug effects
19.
Intervirology ; 63(1-6): 2-9, 2020.
Article in English | MEDLINE | ID: mdl-33099545

ABSTRACT

BACKGROUND: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease CO-VID-19 has strongly encouraged the search for antiviral compounds. Most of the evaluated drugs against SARS-CoV-2 derive from drug repurposing of Food and Drug Administration-approved molecules. These drugs have as target three major processes: (1) early stages of virus-cell interaction, (2) viral proteases, and (3) the viral RNA-dependent RNA polymerase. SUMMARY: This review focused on the basic principles of virology and pharmacology to understand the importance of early stages of virus-cell interaction as therapeutic targets and other main processes vital for SARS-CoV-2 replication. Furthermore, we focused on describing the main targets associated with SARS-CoV-2 antiviral therapy and the rationale of drug combinations for efficiently suppressing viral replication. Key Messages: We hypothesized that blocking of both entry mechanisms could allow a more effective antiviral effect compared to the partial results obtained with chloroquine or its derivatives alone. This approach, already used to achieve an antiviral effect higher than that offered by every single drug administered separately, has been successfully applied in several viral infections such as HIV and HCV. This review will contribute to expanding the perception of the possible therapeutic targets in SARS-CoV-2 infection and highlight the benefits of using combination therapies.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects , COVID-19/virology , Clinical Trials as Topic , Drug Design , Drug Therapy, Combination , Host Microbial Interactions/drug effects , Humans , Virus Internalization/drug effects , COVID-19 Drug Treatment
20.
Comput Math Methods Med ; 2020: 1352982, 2020.
Article in English | MEDLINE | ID: mdl-32908574

ABSTRACT

The current emergence of coronavirus (SARS-CoV-2) puts the world in threat. The structural research on the receptor recognition by SARS-CoV-2 has identified the key interactions between SARS-CoV-2 spike protein and its host (epithelial cell) receptor, also known as angiotensin-converting enzyme 2 (ACE2). It controls both the cross-species and human-to-human transmissions of SARS-CoV-2. In view of this, we propose and analyze a mathematical model for investigating the effect of CTL responses over the viral mutation to control the viral infection when a postinfection immunostimulant drug (pidotimod) is administered at regular intervals. Dynamics of the system with and without impulses have been analyzed using the basic reproduction number. This study shows that the proper dosing interval and drug dose both are important to eradicate the viral infection.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Models, Biological , Pneumonia, Viral/drug therapy , Pyrrolidonecarboxylic Acid/analogs & derivatives , Thiazolidines/administration & dosage , Angiotensin-Converting Enzyme 2 , Basic Reproduction Number , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Dose-Response Relationship, Drug , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Mathematical Concepts , Mutation , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pyrrolidonecarboxylic Acid/administration & dosage , Receptors, Virus/physiology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL