Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Publication year range
1.
Drug Chem Toxicol ; 46(3): 491-502, 2023 May.
Article in English | MEDLINE | ID: mdl-35373681

ABSTRACT

We aimed to determine the phytochemical contents of the aerial part M. neglectum aerial part (MAP) and M. neglectum bulb (MB) ethanolic extract of Muscari neglectum and to investigate their protective effects on gastric damage induced by carbon tetrachloride (CCl4) in rats. After the toxicity testing, 42 female Wistar albino rats were divided into 7 groups, Control, MAP, MB, CCl4, CCl4 + MAP, CCl4 + MB, and CCl4 + Silymarin groups. At the end of the experiment, the serum biochemical parameters, antioxidant defense enzymes, and malondialdehyde (MDA) contents in the stomach tissue were evaluated to determine the antioxidant role of the M. neglectum extracts. According to the gas chromatography-mass spectroscopy, fatty acid analysis, octadecadienoic, and 9,12,15 octadecatrienoic fatty acids were found as major fatty acids in the MAP, whereas 9,12 octadecadienoic and octadecanoic acids were the major fatty acids in the MB. According to the liquid chromatography-tandem mass spectrometry, quinic acid, fumaric acid, gentisic acid, caffeic acid, kaempferol, and apigenin were found in the MAP, while quinic acid, fumaric acid, caffeic acid, and kaempferol were found in the MB. The total phenolic and flavonoid contents in the extract were determined in the MAP and MB. The MAP and MB extracts generally caused a statistically significant decrease in the MDA content and increase in the antioxidant parameters in the stomach tissue. It was concluded that MAP and MB extracts may have antioxidant and gastric protective effects due to the phytochemical content of M. neglectum.HighlightsAccording to LC-MS/MS results, quinic acid, fumaric acid, chemferol, apigenin, and caffeic acid were determined as major compounds in M. neglectum extracts.According to GC-MS results, octadecadienoic, octadecatrienoic, and octadecanoic methyl esters were the major fatty acids of the M. neglectum extracts.The M. neglectum extracts regulated the levels of stomach damage and biochemical parameters.The M. neglectum extracts extract might have pharmaceutical-nutritional potential.


Subject(s)
Antioxidants , Hyacinthus , Animals , Rats , Antioxidants/metabolism , Carbon Tetrachloride/toxicity , Kaempferols/metabolism , Kaempferols/pharmacology , Plant Extracts/chemistry , Hyacinthus/metabolism , Chromatography, Liquid , Apigenin/metabolism , Apigenin/pharmacology , Quinic Acid/metabolism , Quinic Acid/pharmacology , Rats, Wistar , Tandem Mass Spectrometry , Oxidative Stress , Phytochemicals/pharmacology , Fatty Acids/metabolism , Fatty Acids/pharmacology , Caffeic Acids/metabolism , Liver
2.
Sci Rep ; 8(1): 7875, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29777196

ABSTRACT

Pollen tubes are used as models in studies on the type of tip-growth in plants. They are an example of polarised and rapid growth because pollen tubes are able to quickly invade the flower pistil in order to accomplish fertilisation. How different ionic fluxes are perceived, processed or generated in the pollen tube is still not satisfactorily understood. In order to measure the H+, K+, Ca2+ and Cl- fluxes of a single pollen tube, we developed an Electrical Lab on a Photovoltaic-Chip (ELoPvC) on which the evolving cell was immersed in an electrolyte of a germination medium. Pollen from Hyacinthus orientalis L. was investigated ex vivo. We observed that the growing cell changed the (redox) potential in the medium in a periodic manner. This subtle measurement was feasible due to the effects that were taking place at the semiconductor-liquid interface. The experiment confirmed the existence of the ionic oscillations that accompany the periodic extension of pollen tubes, thereby providing - in a single run - the complete discrete frequency spectrum and phase relationships of the ion gradients and fluxes, while all of the metabolic and enzymatic functions of the cell life cycle were preserved. Furthermore, the global 1/fα characteristic of the power spectral density, which corresponds to the membrane channel noise, was found.


Subject(s)
Electrolytes/analysis , Hyacinthus/metabolism , Pollen/chemistry , Semiconductors , Calcium/chemistry , Calcium/metabolism , Chlorides/chemistry , Chlorides/metabolism , Electrolytes/chemistry , Electrolytes/metabolism , Germination , Ions/metabolism , Lab-On-A-Chip Devices , Oxidation-Reduction , Pollen/growth & development , Pollen/metabolism , Pollen Tube/chemistry , Pollen Tube/metabolism , Potassium/chemistry , Potassium/metabolism
3.
Plant Cell Rep ; 34(1): 97-109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25292437

ABSTRACT

KEY MESSAGE: The composition of homogalacturonans (HGs) in the ovule and the female gametophyte cell walls was shown to be rearranged dynamically during sexual reproduction of H. orientalis. In angiosperms, homogalacturonans (HGs) play an important role in the interaction between the male gametophyte and the pistil transmitting tract, but little is known about the participation of these molecules at the final stage of the progamic phase and fertilization. The aim of our study was to perform immunocytochemical localization of highly (JIM7 MAb) and weakly (JIM5 MAb) methyl esterified and Ca(2+)-associated HG (2F4 MAb) in the ovule and female gametophyte cells of Hyacinthus orientalis before and after fertilization. It was found that pollination induced the rearrangement of HG in (1) the micropylar canal of the ovule, (2) the filiform apparatus of the synergids, and (3) the region of fusion between sperm cells and their target cells. Fertilization led to further changes in pectin composition of these three regions of the ovule. A new cell wall was synthesized around the zygote with a characteristic pattern of localization of all examined HG fractions, which we called "sporoderm-like". The developing endosperm prepared for cellularization by synthesizing highly methyl-esterified HG, which was stored in the cytoplasm. Pollination- and fertilization-induced changes in the composition of the HG in the micropyle of the ovule and the apoplast of female gametophyte cells are discussed in the context of: (1) micropylar pollen tube guidance, (2) preparation of the egg cell and the central cells for fusion with sperm cells, and (3) the polyspermy block.


Subject(s)
Hyacinthus/metabolism , Ovule/metabolism , Pectins/metabolism , Pollination , Endosperm/growth & development , Endosperm/metabolism , Immunohistochemistry , Microscopy, Fluorescence , Pollen/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Seeds/metabolism , Time Factors
4.
Huan Jing Ke Xue ; 32(5): 1299-305, 2011 May.
Article in Chinese | MEDLINE | ID: mdl-21780583

ABSTRACT

Using water hyacinth and other fast-growing and high biomass of floating plants to purify polluted water has become an efficient and effective ecological restoration method at present. Effects of nutrients adsorption and water purification of planting water hyacinth on water quality in Zhushan Bay were studied. The results indicated that no anoxia was observed in water hyacinth planting areas because of wave disturbance and strong water exchange. Concentrations of TN and TP in water hyacinth planting areas were higher than that in the outside of stocking area (the content ranged 3.03-7.45 mg/L and 0.15-0.38 mg/L, respectively), and the content changes ranged 3.37-8.02 mg/L and 0.15-0.36 mg/L,respectively. The higher concentration of TN and TP in water indicated the water body was heavily polluted. Water hyacinth roots have a strong ability to adsorb suspended solids and algae cells, the concentration of Chl-a in stocking areas was higher than that in stocking fringe and outside, the maximum Chlorophyll in the stocking region in August was 177.01 mg/m3, and at the same time the concentrations in planting fringe and outside were 101.53 mg/m3 and 76.96 mg/m, respectively. Higher Chl-a content on water hyacinth roots indicated that water hyacinth had strong blocking effects on algae cells, and demonstrated it had a great purification effects on eutrophicated water, and it also provides a basis for the larger polluted water bodies purification in using water hyacinth.


Subject(s)
Hyacinthus/metabolism , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biodegradation, Environmental , China , Fresh Water/analysis , Hyacinthus/growth & development , Nitrogen/isolation & purification , Nitrogen/metabolism , Phosphorus/isolation & purification , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism
5.
Protoplasma ; 227(2-4): 95-103, 2006 May.
Article in English | MEDLINE | ID: mdl-16736251

ABSTRACT

The localization of poly(A) mRNA and molecules participating in pre-mRNA splicing, i.e., small nuclear ribonucleoproteins (snRNPs) and the SC35 protein, in mature Hyacinthus orientalis L. pollen grains before anthesis and pollen tubes germinating in vitro were analyzed. The observations indicated a pattern of poly(A) mRNA distribution in mature pollen grains before anthesis which differed from that in germinating pollen grains. Directly before anthesis, poly(A) mRNA was homogeneously distributed throughout the whole cytoplasm, whereas after rehydration, it accumulated at one of the pollen poles. In the pollen tube, poly(A) mRNA was present in the cytoplasm, mainly in the areas beneath the cell membrane and the apical zone. Both before anthesis and during growth of the pollen tube, splicing snRNPs and SC35 protein were localized mainly in the area of the pollen nuclei. During anthesis and just after rehydration of the pollen grains, the pattern of labeling and the levels of the investigated antigens in the areas of the vegetative and generative nuclei were similar. During growth of the pollen tube, a change was observed in the distribution and an increase in the levels of trimethylguanosine snRNA and SC35 protein in the vegetative nucleus. Such a pattern of localization of the splicing machinery suggests resumption of transcription and/or maturation of pre-mRNA in the growing pollen tube.


Subject(s)
Hyacinthus/metabolism , Pollen/metabolism , RNA Splicing/genetics , RNA, Messenger/metabolism , Guanosine/analogs & derivatives , Guanosine/metabolism , Nuclear Proteins/metabolism , Pollen/cytology , Protein Transport , RNA Transport
SELECTION OF CITATIONS
SEARCH DETAIL