Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 729
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Hazard Mater ; 470: 134182, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38583202

ABSTRACT

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Subject(s)
Carbamazepine , Hydrogen Peroxide , Iron , Oxidation-Reduction , Sewage , Tea , Water Pollutants, Chemical , Carbamazepine/chemistry , Hydrogen Peroxide/chemistry , Tea/chemistry , Sewage/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Polyphenols/chemistry
2.
Sci Total Environ ; 914: 169820, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199363

ABSTRACT

The conventional ZVI/H2O2 technology suffers from poor reagent utilization, excess iron sludge generation, and strong low pH dependence. Therefore, eucalyptus leaf extract (ELE) was introduced to improve ZVI/H2O2 technology, and the efficacy and mechanism of ELE promoting ZVI/H2O2 technology were deeply explored. The results showed that the norfloxacin (NOR) removal and kobs of the ZVI/H2O2/ELE process were enhanced by 35.64 % and 3.27 times, respectively, compared to the ZVI/H2O2 process. In the ZVI/H2O2 process, the production of three reactive oxygen species (ROS: 1O2,·O2-,·OH) was effectively promoted by ELE so that the reaction efficacy was significantly enhanced. Moreover, the attack and degradation of pollutants by ROS was the main way to remove pollutants. With the introduction of ELE, the reactive sites on the catalyst appearance were increased to some extent, and the Fe(III)/Fe(II) cycle was improved. The analysis showed that ELE is rich in titratable acids and the ZVI/H2O2 technology is promoted mainly by lowering the pH of the process. In addition, the chelation of ELE and the reduction in pH by the ELE synergistically enhanced the ZVI/H2O2 technology, which significantly improved the reagent utilization (4.70 times for ZVI and 3.03 times for H2O2), broadened the pH range of the technology (6-9) and was able to effectively reduce the iron sludge contamination (30.33 %) of the process. Therefore, the study offers an important value to study eucalyptus leaves in micron-scale ZVI-Fenton technology.


Subject(s)
Environmental Pollutants , Eucalyptus , Water Pollutants, Chemical , Norfloxacin , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Sewage , Reactive Oxygen Species , Ferric Compounds , Iron/chemistry , Plant Extracts
3.
Waste Manag ; 174: 666-673, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38176124

ABSTRACT

Homogeneous Fenton (Fe2+/H2O2) serves as a high-efficiency conditioning method for sludge dewatering due to the generation of strong oxidizing hydroxyl radicals (OH). However, high dose of ferric salts produces iron-rich dewatered sludge and decrease sludge organic matters, which will not be conducive to the subsequent disposal and reutilization. Considering advantages of Fe3O4 as heterogeneous Fenton catalyst, Fe3O4-activated H2O2 (Fe3O4 + H2O2) in this study was adopted to improve sludge deep-dewatering. Reduction efficiency of the bound water (71.3 %) after Fe3O4 + H2O2 treatment (after a reaction time of 30 min) were much higher than those in the Fe2++H2O2 treatment. Especially, the moisture content of treated sludge cake by Fe3O4 + H2O2 remarkably decreased from 86.4 % to 61.3 %. Improvement mechanism of sludge dewatering after Fe3O4 + H2O2 treatment mainly included electrostatic neutralization, reactive radical oxidation, and skeleton building by analysis of contribution factors. The generation of H+ in acidification could neutralize the negatively charged compounds to promote sludge hydrophobicity. Meanwhile reactive radicals generated from Fe3O4 + H2O2 destroyed sludge extracellular polymeric substances and cell structure to release intracellular water. Furthermore, Fe3O4 as a skeleton builder could reconstruct destructive sludge flocs and form new dewatering channels. Finally, low Fe leaching content and recoverability of Fe3O4 effectively will decrease environmental implication.


Subject(s)
Hydrogen Peroxide , Sewage , Sewage/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Iron/chemistry , Oxidation-Reduction , Water/chemistry
4.
Environ Res ; 243: 117833, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38056612

ABSTRACT

Advanced oxidation processes such as thermal plasma activation and UV-C/H2O2 treatment are considered as applications for the degradation of pharmaceutical residues in wastewater complementary to conventional wastewater treatment. It is supposed that direct oxidative treatment can lower the toxicity of hospital sewage water (HSW). The aim of this study was to predict the ecotoxicity for three aquatic species before and after oxidative treatment of 10 quantified pharmaceuticals in hospital sewage water. With the application of oxidative chemistry, pharmaceuticals are degraded into transformation products before reaching complete mineralization. To estimate the potential ecotoxicity for fish, Daphnia and green algae ECOSAR quantitative structure-activity relationship software was used. Structure information from pristine pharmaceuticals and their oxidative transformation products were calculated separately and in a mixture computed to determine the risk quotient (RQ). Calculated mixture toxicities for 10 compounds found in untreated HSW resulted in moderate-high RQ predictions for all three aquatic species. Compared to untreated HSW, 30-min treatment with thermal plasma activation or UV-C/H2O2 resulted in lowered RQs. For the expected transformation products originating from fluoxetine, cyclophosphamide and acetaminophen increased RQs were predicted. Prolongation of thermal plasma oxidation up to 120 min predicted low-moderate toxicity in all target species. It is anticipated that further degradation of oxidative transformation products will end in less toxic aliphatic and carboxylic acid products. Predicted RQs after UV-C/H2O2 treatment turned out to be still moderate-high. In conclusion, in silico extrapolation of experimental findings can provide useful predicted estimates of mixture toxicity. However due to the complex composition of wastewater this in silico approach is a first step to screen for ecotoxicity. It is recommendable to confirm these predictions with ecotoxic bioassays.


Subject(s)
Plasma Gases , Water Pollutants, Chemical , Animals , Wastewater/toxicity , Sewage , Hydrogen Peroxide/chemistry , Water , Oxidative Stress , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
5.
Ecotoxicol Environ Saf ; 269: 115794, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38061084

ABSTRACT

The massive accumulation of red mud (RM) and the abuse of antibiotics pose a threat to environment safety and human health. In this study, we synthesized RM-based Prussian blue (RM-PB) by acid solution-coprecipitation method to activate H2O2 to degrade norfloxacin, which reached about 90% degradation efficiency at pH 5 within 60 min and maintained excellent catalytic performance over a wide pH range (3-11). Due to better dispersion and unique pore properties, RM-PB exposed more active sites, thus the RM-PB/H2O2 system produced more reactive oxygen species. As a result, the removal rate of norfloxacin by RM-PB/H2O2 system was 8.58 times and 2.62 times of that by RM/H2O2 system and PB/H2O2 system, respectively. The reactive oxygen species (ROS) produced in the degradation process included ·OH, ·O2- and 1O2, with 1O2 playing a dominant role. The formation and transformation of these ROS was accompanied by the Fe(III)/Fe(II) cycle, which was conducive for the sustained production of ROS. The RM-PB/H2O2 system maintained a higher degradation efficiency after five cycles, and the material exhibited strong stability, with a low iron leaching concentration. Further research showed the degradation process was less affected by Cl-, SO42-, NO3-, and humic acids, but was inhibited by HCO3- and HPO42-. In addition, we also proposed the possible degradation pathway of norfloxacin. This work is expected to improve the resource utilization rate of RM and achieve treating waste with waste.


Subject(s)
Ferrocyanides , Hydrogen Peroxide , Norfloxacin , Humans , Hydrogen Peroxide/chemistry , Reactive Oxygen Species , Ferric Compounds , Oxidation-Reduction
6.
Water Res ; 249: 120735, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38007898

ABSTRACT

Phosphonate used as scale inhibitor is a non-negligible eutrophic contaminant in corresponding polluted waters. Besides, its conversion to orthophosphate (ortho-P) is a precondition for realizing bioavailable phosphorus recovery. Due to the feeble degradation efficiency with less than 30 % from classical Fenton commonly used in industrial wastewater treatment and itself vulnerable to strong inhibition interference of matrix chloride ions, we proposed an electrochemical approach to transform the native salt in the solution into oxidizing substances, sort of achieving beneficial utilization of matrix waste, and enhanced the ortho-P conversion rate of 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) to 89.2 % (± 3.6 %). In electrochlorination system, it was found that HEDP rapidly complexed with Fe(II) and then coordinated in-situ Fe(III) to release free HEDP via intramolecular metal-ligand electron transfer reaction. The subsequent degradation mainly rooted in the oxidation of pivotal reactive species HClO, FeIVO2+ and 1O2, causing C-P and CC bonds to fracture in sequence. Eventually the organically bound phosphorus of HEDP was recovered as ortho-P. This study acquainted the audiences with the rare mechanism of chloridion-triggered HEDP degradation under electrochemical way, as well as offered a feasible technology for synchronous transformation of organically bound phosphorus to ortho-P and elimination from phosphonates.


Subject(s)
Organophosphonates , Water Pollutants, Chemical , Phosphates , Ferric Compounds , Etidronic Acid , Oxidation-Reduction , Phosphorus , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry
7.
Chem Res Toxicol ; 36(12): 1891-1900, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37948660

ABSTRACT

Humans can be exposed to engineered and nonintentionally formed metal and metal oxide nanoparticles (Me NPs) in occupational settings, in public transportation areas, or by means of contact with different consumer products. A critical factor in the toxic potency of Me NPs is their ability to induce oxidative stress. It is thus essential to assess the potential reactive oxygen species (ROS) formation properties of Me NPs. A common way to assess the relative extent of ROS formation in vitro is to use fluorescence spectroscopy with the DCFH-DA (2',7'-dichlorofluorescein diacetate) probe, with and without HRP (horseradish peroxidase). However, this method does not provide any information about specific ROS species or reaction mechanisms. This study investigated the possibility of using complementary techniques to obtain more specific information about formed ROS species, both the type and reaction mechanisms. Cu NPs in PBS (phosphate buffered saline) were chosen as a test system to have the simplest (least interference from other components) aqueous solution with a physiologically relevant pH. ROS formation was assessed using fluorescence by means of the DCFH-DA method (information on relative amounts of oxygen radicals without selectivity), the Ghormley's triiodide method using UV-vis spectrophotometry (concentrations of H2O2), and electron paramagnetic resonance with DMPO as the spin-trap agent (information on specific oxygen radicals). This approach elucidates that Cu NPs undergo ROS-generating corrosion reactions, which previously have not been assessed in situ. In the presence of H2O2, and based on the type of oxygen radical formed, it was concluded that released copper participates in Haber-Weiss and/or Fenton reactions rather than in Fenton-like reactions. The new combination of techniques used to determine ROS induced by Me NPs provides a way forward to gain a mechanistic understanding of Me NP-induced ROS formation, which is important for gaining crucial insight into their ability to induce oxidative stress.


Subject(s)
Copper , Metal Nanoparticles , Humans , Reactive Oxygen Species , Copper/chemistry , Hydrogen Peroxide/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Oxides
8.
Bioorg Chem ; 141: 106891, 2023 12.
Article in English | MEDLINE | ID: mdl-37788560

ABSTRACT

Lactoperoxidase was previously used as a model enzyme to test the inhibitory activity of selenium analogs of anti-thyroid drugs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Peroxidases oxidize ABTS to a metastable radical ABTS•+, which is readily reduced by many antioxidants, including thiol-containing compounds, and it has been used for decades to measure antioxidant activity in biological samples. We showed that anti-thyroid drugs 6-n-propyl-2-thiouracil, methimazole, and selenium analogs of methimazole also reduced it rapidly. This reaction may explain the anti-thyroid action of many other compounds, particularly natural antioxidants, which may reduce the oxidized form of iodine and/or tyrosyl radicals generated by thyroid peroxidase thus decreasing the production of thyroid hormones. However, influence of selenium analogs of methimazole on the rate of hydrogen peroxide consumption during oxidation of ABTS by lactoperoxidase was moderate. Direct hydrogen peroxide reduction, proposed before as their mechanism of action, cannot therefore account for the observed inhibitory effects. 1-Methylimidazole-2-selone and its diselenide were oxidized by ABTS•+ to relatively stable seleninic acid, which decomposed slowly to selenite and 1-methylimidazole. In contrast, oxidation of 1,3-dimethylimidazole-2-selone gave selenite and 1,3-dimethylimidazolium cation. Accumulation of the corresponding seleninic acid was not observed.


Subject(s)
Selenium , Antioxidants/pharmacology , Cations , Hydrogen Peroxide/chemistry , Lactoperoxidase/metabolism , Methimazole/pharmacology , Oxidation-Reduction , Selenious Acid , Selenium/chemistry , Propylthiouracil/chemistry , Propylthiouracil/pharmacology
9.
Inorg Chem ; 62(29): 11291-11303, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37432268

ABSTRACT

A biosensor comprising crystalline CuS nanoparticles (NPs) was synthesized via a one-step simple coprecipitation route without involvement of a surfactant. The powder X-ray diffraction method has been used to evaluate the crystalline nature and different phases consist of the formation of CuS NPs. Mainly hexagonal unit cells consist of the formation of CuS NP unit cells. Most of the surfaces are covered with rhombohedral microparticles with a smooth exterior and surface clustering, examined by SEM images, and the shape of NPs was spherical, having an average size of 23 nm, as confirmed by TEM analysis. This study has focused on the peroxidase-mimicking activity, superoxide dismutase (SOD)-mimicking activity, and chemosensor-based colorimetric determination and detection of epinephrine (EP) neurotransmitters with excellent selectivity. The CuS NPs catalyzed the oxidation of the oxidase substrate 3, 3-5, 5 tetramethyl benzidine (TMB) with the help of supplementary H2O2 that followed Michaelis-Menten kinetics with excellent Km and Vmax values calculated by the Lineweaver-Burk plot. Taking advantage of the drop in absorbance upon introduction of EP for the CuS NPs-TMB/H2O2 system, a colorimetric route has been developed for selective and real-time detection of EP. The sensitivity of the new colorimetric probe was vibrant, having a linear range of 0-16 µM, and achieved a low limit of detection of 457 nM. Moreover, the present nanosystem exhibited appreciable SOD-mimicking activity which could effectively remove O2•- from commercial cigarette smoke, along with it acting as a potential radical scavenger as well. The new nanosystem effectively scavenged •OH, O2.-, and metal chelation which were investigated calorimetrically.


Subject(s)
Antioxidants , Peroxidase , Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Biomimetics , Epinephrine , Superoxide Dismutase , Colorimetry/methods
10.
Environ Sci Pollut Res Int ; 30(32): 79282-79296, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37284959

ABSTRACT

Rational treatment of drinking water treatment residues (WTR) has become an environmental and social issue due to the risk of secondary contamination. WTR has been commonly used to prepare adsorbents because of its clay-like pore structure, but then requires further treatment. In this study, a Fenton-like system of H-WTR/HA/H2O2 was constructed to degrade organic pollutants in water. Specifically, WTR was modified by heat treatment to increase its adsorption active site, and to accelerate Fe(III)/Fe(II) cycling on the catalyst surface by the addition of hydroxylamine (HA). Moreover, the effects of pH, HA and H2O2 dosage on the degradation were discussed with methylene blue (MB) as the target pollutant. The mechanism of the action of HA was analyzed and the reactive oxygen species in the reaction system were determined. Combined with the reusability and stability experiments, the removal efficiency of MB remained 65.36% after 5 cycles. Consequently, this study may provide new insights into the resource utilization of WTR.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Hydroxylamine/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Methylene Blue , Hot Temperature , Water Pollutants, Chemical/analysis , Hydroxylamines , Oxidation-Reduction
11.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 214-222, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37300666

ABSTRACT

The antioxidant and anti-inflammatory properties of an aqueous natural extract obtained from Rosa sempervirens leaves were assessed. The ability of the extract to scavenge DPPH, •OH, and H2O2 radicals, chelate ferrous ions, reduce ferric ions, and protect ß-carotene-linoleic acid in emulsion from peroxidation was investigated in vitro. Furthermore, the anti-inflammatory activity of the extract was evaluated by measuring the stability of the membrane of human red blood cells against different hypotonic concentrations of NaCl and heat, as well as by inhibiting the denaturation of albumin. A high total phenolic content (278.38± 11.07 mg GAE/g) and flavonoid content (34.22± 0.12 mg QE /g) were found in the extract. The extract exhibited significant scavenging activity of DPPH (IC50 6.201 ± 0.126 µg/ ml), •OH (IC50 = 894.57 ± 21.18 µg/ml), and H2O2 (IC50= 107±09.58 µg/ml) radicals, and good antioxidant activity by chelating ferrous ions (IC50 = 2499.086 ± 28.267µg/ml), reducing ferric ions (IC50=141.33±2.34 µg/ml), exhibiting total antioxidant capacity (IC50 465.65 ± 9.71 µg/ml), and protecting ß-carotene-linoleic acid against peroxidation (I% = 90.05 ± 1.65% at 1000µg/ml). R. sempervirens displayed anti-inflammatory activity in aqueous extract by inhibiting heat-induced albumin denaturation and stabilizing the membrane of human red blood cells. It was suggested from the results that R. sempervirens aqueous extract could help prevent oxidative and inflammatory processes due to its good antioxidant and anti-inflammatory properties.


Subject(s)
Antioxidants , Rosa , Humans , Antioxidants/chemistry , Hydrogen Peroxide/chemistry , Linoleic Acid , beta Carotene/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Inflammatory Agents/pharmacology
12.
Environ Sci Pollut Res Int ; 30(31): 77850-77874, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266783

ABSTRACT

This article presents a methodological approach to use manganese (Mn3+Mn7+)-modified black titanium dioxide (Mn/BTiO2) as a photocatalyst to optimize and improve visible-light-driven photodegradation of treated agro-industrial effluent (TPOME). A modified wet chemical process was used to prepare BTiO2. The BTiO2 was then wet impregnated with Mn and calcined at 300 °C for 1 h to produce Mn/BTiO2. The activity of Mn/BTiO2 was investigated in terms of photo-assisted elimination of chemical oxygen demand (COD), phenolic compounds (PCs), color, and total organic carbon (TOC). Using the design of experiments (DOE), the conditions of the photocatalytic process, including photocatalyst loading, Mn concentration, hydrogen peroxide (H2O2) dose, and irradiation time, were optimized. Under the optimum conditions (0.85 g/L photocatalyst loading, 0.048 mol/L H2O2 dose, 0.301 wt.% Mn concentration, and 204 min irradiation time) COD, PCs, color, and TOC removal efficiencies of 88.87%, 86.04%, 62.8%, and 84.66%, respectively, were obtained. Statistical analysis showed that the response variable's removal from TPOME estimation had high R2 and low RMSE, MSE, MAD, MAE, and MAPE values, indicating high reliability. This study demonstrated the significant potential of the developed photocatalytic system for the treatment of waste effluent generated by the palm oil industry and other agro-industries, with the ability to simultaneously reduce a number of organic pollution indicators (OPIs).


Subject(s)
Hydrogen Peroxide , Waste Disposal, Fluid , Palm Oil , Hydrogen Peroxide/chemistry , Manganese/analysis , Photolysis , Reproducibility of Results , Titanium/chemistry , Industrial Waste/analysis
13.
Adv Healthc Mater ; 12(23): e2300291, 2023 09.
Article in English | MEDLINE | ID: mdl-37157943

ABSTRACT

Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Humans , Female , Copper/chemistry , Phototherapy , Breast Neoplasms/pathology , Cell Line, Tumor , Hydrogen Peroxide/chemistry , Tumor Microenvironment
14.
J Environ Manage ; 340: 117950, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37094386

ABSTRACT

Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.


Subject(s)
Sewage , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction
15.
Environ Sci Technol ; 57(12): 5024-5033, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36892275

ABSTRACT

Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 µmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.


Subject(s)
Copper , Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Phosphorus , Oxidation-Reduction , Oxygen
16.
Mikrochim Acta ; 190(4): 163, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988717

ABSTRACT

Using rolling circle amplification (RCA) and two different ways of signal readout, we developed analytical methods to detect the receptor-binding domain (RBD) of SARS-CoV-2 spike protein (S protein). We modified streptavidin-coated magnetic beads with an aptamer of RBD through a biotin-tagged complementary DNA strand (biotin-cDNA). Binding of RBD caused the aptamer to dissociate from the biotin-cDNA, making the cDNA available to initiate RCA on the magnetic beads. Detection of RBD was achieved using a dual signal output. For fluorescence signaling, the RCA products were mixed with a dsDNA probe labeled with fluorophore and quencher. Hybridization of the RCA products caused the dsDNA to separate and to emit fluorescence (λex = 488 nm, λem = 520 nm). To generate easily detectable UV-vis absorbance signal, the RCA amplification was extended to produce DNA flower to encapsulate horseradish peroxidase (HRP). The HRP-encapsulated DNA flower catalyzed a colorimetric reaction between H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to generate an optical signal (λabs = 450 nm). The fluorescence and colorimetric assays for RBD have low detection limits (0.11 pg mL-1 and 0.904 pg mL-1) and a wide linear range (0.001-100 ng mL-1). For detection of RBD in human saliva, the recovery was 93.0-100% for the fluorescence assay and 87.2-107% for the colorimetric assay. By combining fluorescence and colorimetric detection with RCA, detection of the target RBD in human saliva was achieved with high sensitivity and selectivity.


Subject(s)
COVID-19 , Fluorescent Dyes , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Biotin/chemistry , DNA, Complementary , Hydrogen Peroxide/chemistry , DNA/chemistry , Horseradish Peroxidase/metabolism
17.
Oper Dent ; 48(2): 155-165, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36786762

ABSTRACT

This study aimed to evaluate the effect of human saliva in vitro and salivary flow in situ on the roughness and mineral content of bleached enamel. Dental specimens were divided into five groups (n=15): not bleached (NB); bleached (35% hydrogen peroxide) and exposed to distilled water (DW); human saliva in vitro (IV); normal salivary flow in situ (NSF); and low salivary flow (LSF) in situ. Enamel roughness (Ra, Rz) and calcium/phosphorus contents were evaluated with laser profilometry and energy-dispersive spectroscopy, respectively, at baseline (T1), after bleaching (T2), and after seven days (T3). Salivary pH and buffer capacity were evaluated with colorimetric strips and salivary calcium and phosphorus with absorbance spectrophotometry. Data were analyzed with non-parametric tests and linear regression (α=0.05). After contact with saliva, Ra and Rz of LSF=DW>IV=NSF=NB was found. For DW and LSF, the roughness of T1

Subject(s)
Tooth Bleaching Agents , Tooth Bleaching , Humans , Tooth Bleaching/methods , Tooth Bleaching Agents/chemistry , Calcium/analysis , Hydrogen Peroxide/chemistry , Dental Enamel , Minerals/analysis , Minerals/pharmacology , Phosphorus
18.
Chemosphere ; 319: 138013, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731662

ABSTRACT

Removing petroleum hydrocarbons (PHCs) from polluted soil is challenging due to their low bioavailability and degradability. In this study, an experiment was carried out to treat soil polluted with petroleum hydrocarbon using a hybrid electro-Fenton (with BDD anode electrode) and biological processes stimulated with long-chain rhamnolipids (biosurfactants). Electro-Fenton treatment was applied as a pretreatment before the biological process to enhance PHC biodegradability, which would benefit the subsequent biological process. The effects of initial pH, hydroxide concentration, soil organic matter composition, PHCs intermediates during the electro-Fenton process, and total numbers of bacteria in the biological process were analyzed to determine the optimum conditions. The results showed that the optimized electrolysis time for the electro-Fenton was 12 h. The change induced during pretreatment at a specified time was found suitable for the biological process stage and led to 93.6% PHC degradation in combination with the electro-Fenton-and-biological process after 72 h. The combined system's performance was almost 40% higher than individual electro-Fenton and biological treatments. GC-MS analysis confirms the formation of 9-octadecen-1-ol (Z), 2-heptadecene, 1-nonadecene, 1-heneicosene, and pentacosane as fragmentation during the PHCs degradation process. Thus, the electro-Fenton process as pretreatment combined with a biological process stimulated with rhamnolipids (biosurfactants) could be effectively applied to remediate soil polluted with PHCs. However, the system needs further research and investigation to optimize electrolysis time and biosurfactant dose to advance this approach in the soil remediation process.


Subject(s)
Petroleum , Soil Pollutants , Soil/chemistry , Hydrocarbons , Electrolysis , Gas Chromatography-Mass Spectrometry , Soil Pollutants/chemistry , Hydrogen Peroxide/chemistry
19.
Sci Total Environ ; 871: 161801, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36739024

ABSTRACT

Chemical oxidation is a promising technology for the remediation of organics-contaminated soils. However, residual oxidants and transformation products have adverse effects on microbial activities. This work aimed at moderate chemical oxidation coupled with microbial degradation (MOMD) for the removal of benzo[a]pyrene (BaP) by optimizing the type and dosage of oxidants. Potassium permanganate (KMnO4), Fe2+ + sodium persulfate (Fe2+ + PS), Fenton's reagent (Fe2+ + H2O2), and hydrogen peroxide (H2O2) were compared for BaP removal from loam clay and sandy soils. Overall, the removal efficiency of BaP by a moderate dose of oxidant coupled indigenous microorganism was slightly lower than that by a high dose of relevant oxidant. The contributions of microbial degradation to the total removal of BaP varied for different oxidants and soils. The removal efficiency of BaP from loam clay sandy soil by a moderate dose of KMnO4 (25 mmol/L) was 94.3 ± 1.1 % and 92.5 ± 1.8 %, respectively, which were both relatively higher than those under other conditions. The indirect carbon footprint yielded by the moderate dose of oxidants was 39.2-72.8 % less than that by the complete oxidation. A moderate dose of oxidants also reduced disturbances to soil pH and OC. The microbial communities after MOMD treatment were dominated by Burkholderiaceae, Enterobacteriaceae, Alicyclobacillaceae, and Oxalobacteraceae. These dominant microorganisms promoted the removal of BaP through the expression of polycyclic aromatic hydrocarbon-ring hydroxylated dioxygenase gene. Compared with complete chemical oxidation, MOMD is also a promising technique with the utilization of indigenous microorganism for remediating BaP-contaminated soils.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Hydrogen Peroxide/chemistry , Benzo(a)pyrene/metabolism , Clay , Soil Pollutants/analysis , Oxidants/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Sand
20.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677956

ABSTRACT

Moringa oleifera, native to India, grows in tropical and subtropical regions around the world and has valuable pharmacological properties such as anti-asthmatic, anti-diabetic, anti-inflammatory, anti-infertility, anti-cancer, anti-microbial, antioxidant, and many more. The purpose of this study was to assess the free radical scavenging ability of two extracts and two pure compounds of M. oleifera Lam (hexane, ethanol, compound E3, and compound Ra) against reactive oxygen species, as well as their reducing power and antimicrobial activities. Bioautography antioxidant assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) free radical scavenging, and iron (iii) (Fe3+ to Fe2+) chloride reducing power assays were used to assess the extracts' qualitative and quantitative free radical scavenging activities. Furthermore, the extract and the compounds were tested against both Gram-positive and Gram-negative bacterial strains suspended in Mueller-Hinton Broth. The extracts and pure compounds showed noteworthy antioxidant potential, with positive compound bands in the Rf range of 0.05-0.89. DPPH), H2O2, and Fe3+ to Fe2+ reduction assays revealed that ethanol extract has a high antioxidant potential, followed by compound E3, compound Ra, and finally hexane extract. Using regression analysis, the half maximal inhibitory concentration (IC50) values for test and control samples were calculated. Compound Ra and ethanol exhibited high antioxidant activity at concentrations as low as ≈0.28 mg/mL in comparison with n-hexane extract, compound E3, ascorbic acid, and butylated hydroxytoluene standards. The radical scavenging activity of almost all M. oleifera plant extracts against DPPH was observed at 0.28 mg/mL; however, the highest activity was observed at the same concentration for ascorbic acid and butylated hydroxytoluene (BHT) with a low IC50 value of 0.08 mg/mL and compound Ra and ethanol with a low IC50 of 0.4 mg/mL, respectively. The extracts and pure compounds of M. oleifera have little to no antibacterial potential. M. oleifera extracts contain antioxidant agents efficient to alleviate degenerative conditions such as cancer and cardiovascular disease but have little activity against infectious diseases.


Subject(s)
Anti-Infective Agents , Moringa oleifera , Antioxidants/chemistry , Moringa oleifera/chemistry , Hexanes , Butylated Hydroxytoluene , Hydrogen Peroxide/chemistry , Plant Extracts/chemistry , Ascorbic Acid/analysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Plant Leaves/chemistry , Ethanol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL