Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Toxicol Appl Pharmacol ; 485: 116900, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508403

ABSTRACT

One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-ß/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.


Subject(s)
Dantrolene , Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Reactive Oxygen Species , Signal Transduction , Simvastatin , Smad4 Protein , Transforming Growth Factor beta , Ubiquinone , Ubiquinone/analogs & derivatives , Animals , Dantrolene/pharmacology , Dantrolene/therapeutic use , Ubiquinone/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Signal Transduction/drug effects , Male , Reactive Oxygen Species/metabolism , Simvastatin/pharmacology , Smad4 Protein/metabolism , Rats , Transforming Growth Factor beta/metabolism , Diet, High-Fat/adverse effects , Muscular Diseases/chemically induced , Muscular Diseases/metabolism , Muscular Diseases/prevention & control , Drug Therapy, Combination , Oxidative Stress/drug effects , Rats, Wistar
2.
JCI Insight ; 9(4)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385748

ABSTRACT

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Muscular Diseases , Male , Adult , Female , Humans , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Mitochondria , Muscular Diseases/metabolism
3.
Cell Metab ; 36(2): 408-421.e5, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38325336

ABSTRACT

Statins are currently the most common cholesterol-lowering drug, but the underlying mechanism of statin-induced hyperglycemia is unclear. To investigate whether the gut microbiome and its metabolites contribute to statin-associated glucose intolerance, we recruited 30 patients with atorvastatin and 10 controls, followed up for 16 weeks, and found a decreased abundance of the genus Clostridium in feces and altered serum and fecal bile acid profiles among patients with atorvastatin therapy. Animal experiments validated that statin could induce glucose intolerance, and transplantation of Clostridium sp. and supplementation of ursodeoxycholic acid (UDCA) could ameliorate statin-induced glucose intolerance. Furthermore, oral UDCA administration in humans alleviated the glucose intolerance without impairing the lipid-lowering effect. Our study demonstrated that the statin-induced hyperglycemic effect was attributed to the Clostridium sp.-bile acids axis and provided important insights into adjuvant therapy of UDCA to lower the adverse risk of statin therapy.


Subject(s)
Glucose Intolerance , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulin Resistance , Microbiota , Humans , Animals , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Glucagon-Like Peptide 1 , Glucose Intolerance/drug therapy , Bile Acids and Salts , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use
4.
Cancer Res ; 83(13): 2091-2092, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37403629

ABSTRACT

Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme of the mevalonate pathway. Evidence suggests that certain cancers depend on the mevalonate pathway for growth and survival, and thus blocking the mevalonate pathway with statins may offer a viable therapeutic approach for treating cancer, or at least enhance the efficacy of existing cancer drugs. In this issue of Cancer Research, Tran and colleagues showed that caffeine works jointly with FOXM1 inhibition to enhance the antitumor activity of statins in neuroblastoma cells. They found that caffeine synergizes with statins by suppressing statin-induced feedback activation of the mevalonate pathway. Here, we reflect on the potential of combining caffeine and statin drugs as a strategy for potentiating anticancer activity. See related article by Tran et al., p. 2248.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neuroblastoma , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Caffeine/pharmacology , Mevalonic Acid/metabolism , Drug Repositioning , Friends , Neuroblastoma/drug therapy , Dietary Supplements , Forkhead Box Protein M1
5.
Cancer Res ; 83(13): 2248-2261, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37057874

ABSTRACT

High-risk neuroblastoma exhibits transcriptional activation of the mevalonate pathway that produces cholesterol and nonsterol isoprenoids. A better understanding of how this metabolic reprogramming contributes to neuroblastoma development could help identify potential prevention and treatment strategies. Here, we report that both the cholesterol and nonsterol geranylgeranyl-pyrophosphate branches of the mevalonate pathway are critical to sustain neuroblastoma cell growth. Blocking the mevalonate pathway by simvastatin, a cholesterol-lowering drug, impeded neuroblastoma growth in neuroblastoma cell line xenograft, patient-derived xenograft (PDX), and TH-MYCN transgenic mouse models. Transcriptional profiling revealed that the mevalonate pathway was required to maintain the FOXM1-mediated transcriptional program that drives mitosis. High FOXM1 expression contributed to statin resistance and led to a therapeutic vulnerability to the combination of simvastatin and FOXM1 inhibition. Furthermore, caffeine synergized with simvastatin to inhibit the growth of neuroblastoma cells and PDX tumors by blocking statin-induced feedback activation of the mevalonate pathway. This function of caffeine depended on its activity as an adenosine receptor antagonist, and the A2A adenosine receptor antagonist istradefylline, an add-on drug for Parkinson's disease, could recapitulate the synergistic effect of caffeine with simvastatin. This study reveals that the FOXM1-mediated mitotic program is a molecular statin target in cancer and identifies classes of agents for maximizing the therapeutic efficacy of statins, with implications for treatment of high-risk neuroblastoma. SIGNIFICANCE: Caffeine treatment and FOXM1 inhibition can both enhance the antitumor effect of statins by blocking the molecular and metabolic processes that confer statin resistance, indicating potential combination therapeutic strategies for neuroblastoma. See related commentary by Stouth et al., p. 2091.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neuroblastoma , Mice , Animals , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Caffeine/pharmacology , Mevalonic Acid/metabolism , Simvastatin/pharmacology , Cholesterol , Mice, Transgenic , Neuroblastoma/drug therapy , Purinergic P1 Receptor Antagonists , Dietary Supplements , Forkhead Box Protein M1/genetics
6.
J Biol Chem ; 299(5): 104681, 2023 05.
Article in English | MEDLINE | ID: mdl-37030504

ABSTRACT

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Myocardium/enzymology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Machine Learning
7.
Int Immunopharmacol ; 115: 109681, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634416

ABSTRACT

BACKGROUND: Prostaglandins (PGs) are bioactive lipid mediators derived from the nuclear and plasma membranes via the cyclooxygenase (COX) pathway of arachidonic acid (AA) metabolism. PGs bridge the interactions between various immunomodulatory cells in allergic rhinitis (AR) and are considered key players in regulating pro-inflammatory and anti-inflammatory responses. AA conversion to PGs involves rate-limiting enzymes that may be blocked by statins. The mechanisms by which statins regulate these enzymes in AR remain unclear. We investigated the effects of oral atorvastatin on PGs production in AR. METHODS: An ovalbumin-induced AR rat model was constructed and the changes in nasal symptom score and nasal mucosa histopathological characteristics of AR rats under different atorvastatin doses were assessed. qRT-PCR, western blotting, and immunofluorescence were used to detect the mRNA and protein expression levels of rate-limiting enzymes and downstream molecules of AA metabolism in the nasal mucosa and liver. RESULTS: Oral atorvastatin significantly alleviated symptoms and eosinophil infiltration in the nasal mucosa, inhibited goblet cell hyperplasia and mast cell recruitment, and decreased mucus secretion in AR rats. Increasing atorvastatin dose increased the anti-inflammatory effects. High-dose atorvastatin inhibited upregulation of the inflammatory mediator PGD2 in the nasal mucosa of AR rats. Compared to the control group, the mRNA and protein expression of the rate-limiting enzymes COX-2, PGDS, and PGES in AA metabolism in the AR group were upregulated but downregulated after the oral administration of high-dose atorvastatin. Atorvastatin also showed dose-dependent inhibition of ERK1/2 and downstream NF-κB phosphorylation in the nasal mucosa and liver of AR rats. CONCLUSIONS: Atorvastatin inhibited allergic inflammation and attenuated AR nasal symptoms by downregulating PGD2 and rate-limiting enzyme expression in PGD2 biosynthesis, possibly by blocking the RAS/ERK/NF-κB signaling pathway.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rhinitis, Allergic , Rats , Animals , Mice , Atorvastatin/therapeutic use , Atorvastatin/pharmacology , NF-kappa B/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Rhinitis, Allergic/pathology , Nasal Mucosa/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Prostaglandins/metabolism , Ovalbumin/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Cytokines/metabolism
8.
Biomed Pharmacother ; 158: 114089, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36538862

ABSTRACT

BACKGROUND: Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS: The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS: High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION: High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Osteoporosis , Humans , Male , Female , Mice , Animals , Simvastatin/pharmacology , Bone Density , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Osteoporosis/drug therapy , Osteoporosis/etiology , Bone and Bones , Ovariectomy/adverse effects
9.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36572553

ABSTRACT

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Atorvastatin/pharmacology , Atorvastatin/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Lipoproteins/metabolism , Lipoproteins/pharmacology , Cholesterol , Liver/metabolism , Triglycerides , Lipoproteins, VLDL , Adipose Tissue/metabolism , Lipid Metabolism , Mammals/metabolism
10.
Biochimie ; 204: 33-40, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36067903

ABSTRACT

Dyslipidemia is one of the major risk factors for the development of cardiovascular disease (CVD) in patients with type 2 diabetes (T2D). This metabolic anomality is implicated in the generation of oxidative stress, an inevitable process involved in destructive mechanisms leading to myocardial damage. Fortunately, commonly used drugs like statins can counteract the detrimental effects of dyslipidemia by lowering cholesterol to reduce CVD-risk in patients with T2D. Statins mainly function by blocking the production of cholesterol by targeting the mevalonate pathway. However, by blocking cholesterol synthesis, statins coincidently inhibit the synthesis of other essential isoprenoid intermediates of the mevalonate pathway like farnesyl pyrophosphate and coenzyme Q10 (CoQ10). The latter is by far the most important co-factor and co-enzyme required for efficient mitochondrial oxidative capacity, in addition to its robust antioxidant properties. In fact, supplementation with CoQ10 has been found to be beneficial in ameliorating oxidative stress and improving blood flow in subjects with mild dyslipidemia.. Beyond discussing the destructive effects of oxidative stress in dyslipidemia-induced CVD-related complications, the current review brings a unique perspective in exploring the mevalonate pathway to block cholesterol synthesis while enhancing or maintaining CoQ10 levels in conditions of dyslipidemia. Furthermore, this review disscusses the therapeutic potential of bioactive compounds in targeting the downstream of the mevalonate pathway, more importantly, their ability to block cholesterol while maintaining CoQ10 biosynthesis to protect against the destructive complications of dyslipidemia.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Ubiquinone/therapeutic use , Ubiquinone/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Mevalonic Acid , Cholesterol , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Dyslipidemias/complications , Dyslipidemias/drug therapy
11.
Med Oncol ; 40(1): 27, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36459301

ABSTRACT

Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Neoplasms , Radiation Oncology , Humans , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Immunotherapy , Adjuvants, Immunologic , Neoplasms/drug therapy
12.
Molecules ; 27(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500698

ABSTRACT

Tacca leontopetaloides (T. leontopetaloides) contain a number of active compounds such as flavonoids, tannins, phenolics, steroids, and alkaloids. The active compounds from plants have been shown to reduce the risk of cardiovascular disease by lowering cholesterol levels by inhibiting the enzyme 3-hydroxy-3-methylglutaryl-coenzym A (HMG-CoA) reductase activity. This study aims to investigate the potential active compounds in the ethanolic extract of Tacca tubers (T. leontopetaloides) from the Banyak Islands, Aceh Singkil Regency, Aceh Province both in vitro and in silico. Tacca tubers contain secondary metabolites including flavonoids, phenolics, tannins, steroids and saponins, according to phytochemical screening. In vitro investigation of ethanolic extract of Tacca tuber revealed inhibitory activity of HMG Co-A reductase with an IC50 value of 4.92 ppm. Based on the in silico study, active compound from the extract, namely Stigmasterol with the highest binding affinities with HMG Co-A reductase (-7.2 kcal/mol). As a comparison, the inhibition of HMG Co-A reductase activity by simvastatin with an IC50 4.62 ppm and binding affinity -8.0 Kcal/mol. Our findings suggest that the ethanolic extract of Tacca tuber (T. leontopetaloides) from Banyak Islands, Aceh Province has the potential to inhibit the activity of HMG Co-A reductase.


Subject(s)
Dioscoreaceae , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Simvastatin , Steroids , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oxidoreductases
13.
Nutrients ; 14(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297049

ABSTRACT

Statin treatment is accepted to prevent adverse cardiovascular events. However, atorvastatin, an HMG-CoA reductase inhibitor, has been reported to exhibit distinct effects on senescent phenotypes. Whether atorvastatin can induce adipose tissue senescence and the mechanisms involved are unknown. The effects of atorvastatin-induced senescence were examined in mouse adipose tissue explants. Here, we showed that statin initiated higher levels of mRNA related to cellular senescence markers and senescence-associated secretory phenotype (SASP), as well as increased accumulation of the senescence-associated ß-galactosidase (SA-ß-gal) stain in adipose tissues. Furthermore, we found that the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ were elevated in adipose tissues treated with atorvastatin, accompanied by a decrease in the expression of glutathione (GSH), and glutathione peroxidase 4 (GPX4), indicating an iron-dependent ferroptosis. Atorvastatin-induced was prevented by a selective ferroptosis inhibitor (Fer-1). Moreover, supplementation with geranylgeranyl pyrophosphate (GGPP), a metabolic intermediate, reversed atorvastatin-induced senescence, SASP, and lipid peroxidation in adipose tissue explants. Atorvastatin depleted GGPP production, but not Fer-1. Atorvastatin was able to induce ferroptosis in adipose tissue, which was due to increased ROS and an increase in cellular senescence. Moreover, this effect could be reversed by the supplement of GGPP. Taken together, our results suggest that the induction of ferroptosis contributed to statin-induced cell senescence in adipose tissue.


Subject(s)
Ferroptosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice , Animals , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Atorvastatin/pharmacology , Reactive Oxygen Species/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase , Glutathione , beta-Galactosidase , Iron/metabolism , Adipose Tissue/metabolism , RNA, Messenger , Malondialdehyde
14.
Medicina (Kaunas) ; 58(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36143915

ABSTRACT

Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients' daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient's daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.


Subject(s)
Anthelmintics , Antimalarials , Antineoplastic Agents , Breast Neoplasms , Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Adenosine Monophosphate/therapeutic use , Adrenergic beta-Antagonists/therapeutic use , Anthelmintics/therapeutic use , Anti-Bacterial Agents/therapeutic use , Antihypertensive Agents/therapeutic use , Antimalarials/therapeutic use , Antineoplastic Agents/therapeutic use , Atorvastatin/therapeutic use , Breast Neoplasms/pathology , Cholesterol , Diabetes Mellitus, Type 2/drug therapy , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypoglycemic Agents/therapeutic use , Male , Mebendazole/therapeutic use , Metformin/therapeutic use , Mevalonic Acid/therapeutic use , Propranolol/therapeutic use , Protein Kinases/metabolism , Protein Kinases/therapeutic use , Proto-Oncogene Proteins B-raf , Receptors, Adrenergic, beta-2/therapeutic use , Tyrosine
15.
J Phys Chem B ; 126(37): 7088-7103, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36083294

ABSTRACT

One of the most important areas of medical science is oncology, which is responsible for both the diagnostics and treatment of cancer diseases. Over the years, there has been an intensive development of cancer diagnostics and treatment. This paper shows the comparison of normal (CCD-18Co) and cancerous (CaCo-2) cell lines of the human gastrointestinal tract on the basis of nanomechanical and biochemical properties to obtain information on cancer biomarkers useful in oncological diagnostics. The research techniques used were Raman spectroscopy and imaging and atomic force microscopy (AFM). In addition, the studies also included the effect of the statin compounds─mevastatin, lovastatin, and simvastatin─and their influence on biochemical and nanomechanical changes of cell properties using Raman imaging and AFM techniques. The cytotoxicity of statins was determined using XTT tests.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Simvastatin , Biomarkers, Tumor , Caco-2 Cells , Colon , Dietary Supplements , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lovastatin/analogs & derivatives , Lovastatin/pharmacology , Microscopy, Atomic Force/methods , Simvastatin/pharmacology
16.
J Food Biochem ; 46(11): e14349, 2022 11.
Article in English | MEDLINE | ID: mdl-35892244

ABSTRACT

Chrysin (Chy) is known for various biological proprieties such as inhibitory effects on inflammation, cancer, oxidative stress, aging, and atherosclerosis. However, the hypolipidemic activity of Chy and its mechanistic action remains unclear in cardiovascular diseases (CVD). In this study, we focused on the hypolipidemic proprieties of Chy in hypercholesterolemia-induced atherosclerosis. Male Wistar rats (150-220 g) were divided into four groups as follows: Group I control was fed with standard laboratory chow. Rats in Group II were fed a high-fat diet (HFD) for 60 days. After 60 days of HFD, Group III rats received Chy (100 mg/kg body weight); Group IV rats received Atorvastatin (Atv; 10 mg/kg body weight) for 30 days. Biochemical studies showed Chy, Atv treatment decreased the activities of liver marker enzymes and the levels of Reactive Oxygen Species (ROS) and lipid profile. Gene expression analysis on nuclear factor erythroid 2-related factor 2 (Nrf2) and its regulated genes were significantly reduced in the intestine and increased in the aorta by Chy and Atv. Gut microbial species such as Bacteroidetes, Lactobacillus, Enterococcus, and Clostridium leptum copy numbers were significantly increased by Chy and Atv treatment. In addition, Chy and Atv modulated the expression of inflammatory genes including TLR4, TNFα, NLRP3, and IL-17 in the aorta and intestine compared with hypercholesterolemic control rats. Chy and Atv effectively increased the caspase-3 mRNA expression in the intestine, but these decreased in the aorta. The present study concludes that by reducing oxidative stress and increasing gut microbial colonization, Chy may provide an effective therapeutic approach for the prevention of hypercholesterolemia-mediated atherosclerosis. PRACTICAL APPLICATIONS: Our study focused on a therapeutic model representing the clinical presentation of atherosclerosis in humans. Statins are commonly used in the treatment of cardiovascular complications, patients with hypercholesterolemia face difficulties in the continuation of statin therapy. The reason for statin discontinuation has been associated with toxicological effects. It is necessary to investigate the potentiality of the natural compound as an alternative medicine to statin with fewer side effects. The main theme of our study is to compare the therapeutic potential of Chy and Atv. Chy is a natural bioflavonoid that could be considered as an alternative medicinal compound to statins and to avoid toxicity problems associated with statins. Chy is a bioflavonoid present in Passiflora caerulea (blue passion flower), Oroxylum indicum (Indian trumpet flower), Pelargonium crispum, propolis, and honey. Consuming Chy-rich foods will reduce hypercholesterolemia-mediated cardiovascular complications. Overall, the present studies provided a key to developing bioactive compounds-based foods for CVD patients.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Humans , Rats , Male , Animals , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Rats, Wistar , Flavonoids/pharmacology , Oxidative Stress , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Apoptosis , Body Weight
17.
J Biochem Mol Toxicol ; 36(10): e23154, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35734936

ABSTRACT

Statins are widely used lipid-lowering drugs that cause many side effects. Withaferin-A (WA), popularly known as Ashwagandha, an ancient Indian medicinal herb, is extracted from Withania somnifera. Anti-atherosclerotic effect of WA has been reported. However, the mechanism remains unknown. Hence, we planned this study to investigate the WA mechanism in anti-atherosclerosis in a rat model. High cholesterol diet (HCD) was fed to induce atherosclerosis in Sprague-Dawley male rats. Five groups (N = 6 rats/group) were fed with normal diet, HCD, WA (10 mg/kg bw)+HCD, lovastatin (LS: 10 mg/kg bw)+HCD, WA (10 mg/kg bw) respectively for 90 days. Statistical analysis was done by GraphPad Prism (version 8.0.1) using one-way analysis of variance (ANOVA) followed by post hoc Duncan's test with a significance level (p < 0.05). The groups were compared for lipid profiles, oxidative stress, lipid peroxidation, inflammatory mediators, apoptotic markers, and histopathological changes in the liver and aorta. Treatment with HCD increased lipid profiles, inflammatory mediators, cytokines, and lipid peroxidation. WA as well as LS treatments significantly decreased these parameters restored the antioxidant status, and reduced lipid peroxidation (p < 0.05). Histopathological studies revealed that WA and LS reduced the hepatic fat and aortic plaque. WA reduced apoptosis via augmentation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway; increased B-cell lymphoma 2 and inhibited Bcl-2 associated X-protein proapoptotic proteins; TNF receptor superfamily member 6, Bim, caspase-3, and -9; demonstrated significant hypolipidemic and anti-inflammatory properties against HCD induced atherosclerosis in rats through regulation of inflammatory mediators and apoptosis via the PI3K/AKT signaling pathway.


Subject(s)
Atherosclerosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Apoptosis , Atherosclerosis/drug therapy , Caspase 3/metabolism , Cholesterol , Cytokines/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypercholesterolemia/drug therapy , Inflammation Mediators/metabolism , Lovastatin , Male , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction
18.
Metabolism ; 132: 155211, 2022 07.
Article in English | MEDLINE | ID: mdl-35533891

ABSTRACT

Statins are a class of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Anti-inflammatory and antioxidant properties, as well as improvement of endothelial function and plaque stabilization have also been proposed as parts of the pleiotropic effects of statins. Specialized pro-resolving mediators (SPMs) are endogenous lipid-derived molecules originating from ω-6 and ω-3 polyunsaturated fatty acids, such as arachidonic, docosahexaenoic and eicosapentaenoic acid that trigger and modulate the resolution of inflammation. Impaired SPM biosynthesis can lead to excessive or chronic inflammation and is implicated in the pathogenesis of several diseases. Exogenous administration of SPMs, including lipoxin, maresin, protectin, have been shown to improve both bacterial and viral infections, mainly in preclinical models, thus minimizing inflammation. Statin-triggered-SPM production in several in vitro and in vivo models may represent another anti-inflammatory pathway involving these drugs. This commentary discusses scientific publications on the effects of statins on SPMs and the resolution of inflammation process.


Subject(s)
Fatty Acids, Omega-3 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid , Fatty Acids, Omega-3/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/metabolism
19.
Article in English | MEDLINE | ID: mdl-35490599

ABSTRACT

Circulating fatty acids (FA) may be important in the psoriatic pro-inflammatory phenotype. FADS1 converts linoleic acid (LA) to arachidonic acid (AA), a precursor to potent signaling molecules. HMG-CoA reductase inhibitors (statins) increase FADS1/2 expression in vitro. Psoriasis patients (42 ± 14 years/age, 47% male) were randomized to 40 mg of atorvastatin (n = 20) or nothing (n = 10) for two weeks and plasma FA measured pre and post treatment. After treatment, LDL-C was 44% lower in the statin compared to the no-treatment group. Statins increased FADS1/2 expression, and lowered LA 12% (33% - > 29%, p<0.001) and raised AA 14% (7.7% - > 9.0%, p<0.01) with no change in the no-treatment group. In psoriasis, statins enhance AA and decrease LA, consistent with the action of enhanced FADS expression in vivo. Therapies intended to blunt the effects of AA on platelet aggregation, such as aspirin or omega-3 fatty acids, may require dose adjustment when co-administered with atorvastatin. NCT: NCT03228017.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Psoriasis , Arachidonic Acid , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Delta-5 Fatty Acid Desaturase , Fatty Acid Desaturases/genetics , Fatty Acids , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Linoleic Acid , Male , Psoriasis/drug therapy
20.
Cells ; 11(8)2022 04 11.
Article in English | MEDLINE | ID: mdl-35455976

ABSTRACT

Statins, such as lovastatin, are lipid-lowering drugs (LLDs) that have been used to treat hypercholesterolaemia, defined as abnormally elevated cholesterol levels in the patient's blood. Although statins are considered relatively safe and well tolerated, recipients may suffer from adverse effects, including post-statin myopathies. Many studies have shown that supplementation with various compounds may be beneficial for the prevention or treatment of side effects in patients undergoing statin therapy. In our study, we investigated whether L-carnitine administered to zebrafish larvae treated with lovastatin alleviates post-statin muscle damage. We found that exposure of zebrafish larvae to lovastatin caused skeletal muscle disruption observed as a reduction of birefringence, changes in muscle ultrastructure, and an increase in atrogin-1. Lovastatin also affected heart performance and swimming behaviour of larvae. Our data indicated that the muscle-protective effect of L-carnitine is partial. Some observed myotoxic effects, such as disruption of skeletal muscle and increase in atrogin-1 expression, heart contraction could be rescued by the addition of L-carnitine. Others, such as slowed heart rate and reduced locomotion, could not be mitigated by L-carnitine supplementation.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Carnitine/metabolism , Carnitine/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Larva , Lovastatin/pharmacology , Muscle, Skeletal , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL