Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Biomolecules ; 13(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37238691

ABSTRACT

The transcripts for Bdnf (brain-derived neurotrophic factor), driven by different promoters, are expressed in different brain regions to control different body functions. Specific promoter(s) that regulates energy balance remain unclear. We show that disruption of Bdnf promoters I and II but not IV and VI in mice (Bdnf-e1-/-, Bdnf-e2-/-) results in obesity. Whereas Bdnf-e1-/- exhibited impaired thermogenesis, Bdnf-e2-/- showed hyperphagia and reduced satiety before the onset of obesity. The Bdnf-e2 transcripts were primarily expressed in ventromedial hypothalamus (VMH), a nucleus known to regulate satiety. Re-expressing Bdnf-e2 transcript in VMH or chemogenetic activation of VMH neurons rescued the hyperphagia and obesity of Bdnf-e2-/- mice. Deletion of BDNF receptor TrkB in VMH neurons in wildtype mice resulted in hyperphagia and obesity, and infusion of TrkB agonistic antibody into VMH of Bdnf-e2-/- mice alleviated these phenotypes. Thus, Bdnf-e2-transcripts in VMH neurons play a key role in regulating energy intake and satiety through TrkB pathway.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptor, trkB , Satiety Response , Animals , Mice , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hyperphagia/genetics , Hyperphagia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , Receptor, trkB/genetics , Receptor, trkB/metabolism
2.
Mol Psychiatry ; 28(5): 1857-1867, 2023 05.
Article in English | MEDLINE | ID: mdl-36765131

ABSTRACT

Antipsychotic (AP) drugs are efficacious treatments for various psychiatric disorders, but excessive weight gain and subsequent development of metabolic disease remain serious side effects of their use. Increased food intake leads to AP-induced weight gain, but the underlying molecular mechanisms remain unknown. In previous studies, we identified the neuropeptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2) as significantly upregulated genes in the hypothalamus following AP-induced hyperphagia. While Agrp is expressed specifically in the arcuate nucleus of the hypothalamus and plays a critical role in appetite stimulation, Nr5a2 is expressed in both the CNS and periphery, but its role in food intake behaviors remains unknown. In this study, we investigated the role of hypothalamic Nr5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, olanzapine treatment resulted in a dose-dependent increase in gene expression of Nr5a2 and Agrp. In mice, the pharmacological inhibition of NR5A2 decreased olanzapine-induced hyperphagia and weight gain, while the knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia. Chromatin-immunoprecipitation studies showed for the first time that NR5A2 directly binds to the Agrp promoter region. Lastly, the analysis of single-cell RNA seq data confirms that Nr5a2 and Agrp are co-expressed in a subset of neurons in the arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake. These findings can inform future clinical development of APs that do not activate hyperphagia and weight gain.


Subject(s)
Hyperphagia , Animals , Humans , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Agouti-Related Protein/pharmacology , Antipsychotic Agents/adverse effects , Eating , Hyperphagia/chemically induced , Hyperphagia/genetics , Hyperphagia/metabolism , Hypothalamus/metabolism , Olanzapine/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/pharmacology , Receptors, Cytoplasmic and Nuclear/therapeutic use , Weight Gain
3.
Mol Cells ; 45(4): 169-176, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35387896

ABSTRACT

A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.


Subject(s)
Cilia , Leptin , Animals , Cilia/metabolism , Humans , Hyperphagia/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Mice , Obesity/genetics , Obesity/metabolism
4.
Physiol Rep ; 10(3): e15191, 2022 02.
Article in English | MEDLINE | ID: mdl-35146951

ABSTRACT

The gut microbiota affects the host's metabolic phenotype, impacting health and disease. The gut-brain axis unites the intestine with the centers of hunger and satiety, affecting the eating behavior. Deregulation of this axis can lead to obesity onset. Litter size reduction is a well-studied model for infant obesity because it causes overnutrition and programs for obesity. We hypothesize that animals raised in small litters (SL) have altered circuitry between the intestine and brain, causing hyperphagia. We investigated vagus nerve activity, the expression of c-Fos, brain-derived neurotrophic factor (BDNF), gastrointestinal (GI) hormone receptors, and content of bacterial phyla and short-chain fatty acids (SCFAs) in the feces of adult male and female Wistar rats overfed during lactation. On the 3rd day after birth, litter size was reduced to 3 pups/litter (SL males or SL females) until weaning. Controls had normal litter size (10 pups/litter: 5 males and 5 females). The rats were killed at 5 months of age. The male and female offspring were analyzed separately. The SL group of both sexes showed higher food consumption and body adiposity than the respective controls. SL animals presented dysbiosis (increased Firmicutes, decreased Bacteroidetes) and had increased vagus nerve activity. Only the SL males had decreased hypothalamic GLP-1 receptor expression, while only the SL females had lower acetate and propionate in the feces and higher CCK receptor expression in the hypothalamus. Thus, overfeeding during lactation differentially changes the gut-brain axis, contributing to hyperphagia of the offspring of both sexes.


Subject(s)
Brain-Gut Axis , Hyperphagia/microbiology , Litter Size , Adiposity , Animals , Brain-Derived Neurotrophic Factor/metabolism , Female , Glucagon-Like Peptide 1/metabolism , Hyperphagia/metabolism , Hyperphagia/physiopathology , Hypothalamus/metabolism , Hypothalamus/physiology , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptors, Cholecystokinin/metabolism , Vagus Nerve/metabolism , Vagus Nerve/physiology
5.
J Neuroendocrinol ; 33(7): e12994, 2021 07.
Article in English | MEDLINE | ID: mdl-34156126

ABSTRACT

Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.


Subject(s)
Hypothalamic Hormones/metabolism , Nerve Net/physiopathology , Prader-Willi Syndrome , Animals , Humans , Hyperphagia/etiology , Hyperphagia/metabolism , Hyperphagia/psychology , Hypogonadism/etiology , Hypogonadism/metabolism , Hypogonadism/psychology , Hypothalamus/metabolism , Hypothalamus/pathology , Hypothalamus/physiopathology , Nerve Net/metabolism , Nerve Net/pathology , Neuropeptides/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/psychology , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/metabolism , Prader-Willi Syndrome/pathology , Prader-Willi Syndrome/psychology
6.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33978701

ABSTRACT

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Subject(s)
Antipsychotic Agents/pharmacology , Receptor, Melanocortin, Type 4/metabolism , Risperidone/pharmacology , Weight Gain/drug effects , Animals , Female , Hyperphagia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Neurons/drug effects , Neurons/metabolism , Obesity/metabolism , Olanzapine/pharmacology , Potassium/metabolism , Synaptic Potentials/drug effects , Transcriptome/drug effects , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
7.
Mol Cell Endocrinol ; 527: 111218, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33636254

ABSTRACT

Maternal obesity malprograms offspring obesity and associated metabolic disorder. As a common phenomenon in obesity, endoplasmic reticulum (ER) stress also presents early prior to the development. Here, we investigate metabolic effect of early activated hypothalamic ER stress in offspring exposed to maternal obesogenic environment and the underlying mechanism in ICR mice model. We found higher body weight, hyperphagia and defective hypothalamic feeding-circuit in the offspring born to obese dams, with hypothalamic ER stress, and even more comprehensive cell proteotoxic stress were induced during the early postnatal period. However, neonatal inhibition of hypothalamic ER stress worsened the metabolic end. We believe that the uncoordinated interaction between the unfolded protein response and the heat shock response, regulated by heat shock protein 70, might be responsible for the malformed hypothalamic feeding circuit of the offspring exposure to maternal obesogenic conditions and were linked with deleterious metabolism in adulthood, especially when exposure to high-energy conditions.


Subject(s)
Endoplasmic Reticulum Stress , Hyperphagia/metabolism , Hypothalamus/metabolism , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/metabolism , Unfolded Protein Response , Animals , Female , Hyperphagia/etiology , Male , Mice , Mice, Inbred ICR , Obesity, Maternal/chemically induced , Pregnancy , Prenatal Exposure Delayed Effects/etiology
8.
Mol Metab ; 47: 101174, 2021 05.
Article in English | MEDLINE | ID: mdl-33549847

ABSTRACT

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Subject(s)
Appetite/physiology , Homeostasis , Hypothalamus/metabolism , Sterol Esterase/metabolism , Agouti-Related Protein/metabolism , Animals , Body Weight , Diet, High-Fat/adverse effects , Eating , Energy Metabolism , Female , Hyperphagia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neuropeptide Y/metabolism , Obesity/metabolism , RNA Splicing Factors , Sterol Esterase/genetics , Stress, Physiological/genetics , Transcriptome
9.
Sci Rep ; 10(1): 18581, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122657

ABSTRACT

Antipsychotic drugs (AP) are used to treat a multitude of psychiatric conditions including schizophrenia and bipolar disorder. However, APs also have metabolic side effects including increased food intake and body weight, but the underlying mechanisms remain unknown. We previously reported that minocycline (MINO) co-treatment abrogates olanzapine (OLZ)-induced hyperphagia and weight gain in mice. Using this model, we investigated the changes in the pharmacometabolome in the plasma and hypothalamus associated with OLZ-induced hyperphagia and weight gain. Female C57BL/6 mice were divided into groups and fed either i) control, CON (45% fat diet) ii) CON + MINO, iii) OLZ (45% fat diet with OLZ), iv) OLZ + MINO. We identified one hypothalamic metabolite indoxylsulfuric acid and 389 plasma metabolites (including 19 known metabolites) that were specifically associated with AP-induced hyperphagia and weight gain in mice. We found that plasma citrulline, tricosenoic acid, docosadienoic acid and palmitoleic acid were increased while serine, asparagine and arachidonic acid and its derivatives were decreased in response to OLZ. These changes were specifically blocked by co-treatment with MINO. These pharmacometabolomic profiles associated with AP-induced hyperphagia and weight gain provide candidate biomarkers and mechanistic insights related to the metabolic side effects of these widely used drugs.


Subject(s)
Eating/drug effects , Hyperphagia/metabolism , Metabolome/drug effects , Minocycline/pharmacology , Olanzapine/toxicity , Weight Gain , Animals , Anti-Bacterial Agents/pharmacology , Antipsychotic Agents/toxicity , Female , Hyperphagia/chemically induced , Hyperphagia/drug therapy , Hyperphagia/pathology , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL
10.
Physiol Rep ; 8(16): e14529, 2020 08.
Article in English | MEDLINE | ID: mdl-32845565

ABSTRACT

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids, Omega-3/metabolism , Hyperphagia/metabolism , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinase Kinases , Adolescent , Adult , Ceramides/metabolism , Humans , Male , Oxidative Stress , Phospholipids/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
11.
Neurosci Lett ; 736: 135303, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32800923

ABSTRACT

This study aimed to determine whether glycyl-l-glutamine (Gly-Gln; ß-endorphin (30-31)), a non-opioid peptide derived from ß-endorphin processing, modulates neuropeptide Y (NPY)-induced feeding and hypothalamic mRNA expression of peptide hormones in male broiler chicks. Intracerebroventricular injection of NPY (235 pmol) generated a hyperphagic response in ad libitum chicks within 30 min. Co-administration of Gly-Gln (100 nmol) attenuated this response, inducing a 30 % decrease. This was not attributable to Gly-Gln hydrolysis because co-administration of glycine (Gly) and glutamine (Gln) had no effect on NPY-induced hyperphagia. Gly-Gln injected alone also showed no effect. The hypothalamic pro-opiomelanocortin mRNA expression in the co-injection group was significantly higher than that in the NPY alone group. These data indicate that endogenous Gly-Gln may contribute to regulate feeding behavior via the central melanocortin system in chicks and acts as a counter regulator of the neural activity in energy metabolism.


Subject(s)
Dipeptides/pharmacology , Eating/drug effects , Hyperphagia/metabolism , Hypothalamus/drug effects , Neuropeptide Y/pharmacology , Pro-Opiomelanocortin/metabolism , Animals , Chickens , Hypothalamus/metabolism , Male
12.
Nat Commun ; 11(1): 1914, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313051

ABSTRACT

Obesity is associated with the activation of cellular responses, such as endoplasmic reticulum (ER) stress. Here, we show that leptin-deficient ob/ob mice display elevated hypothalamic ER stress as early as postnatal day 10, i.e., prior to the development of obesity in this mouse model. Neonatal treatment of ob/ob mice with the ER stress-relieving drug tauroursodeoxycholic acid (TUDCA) causes long-term amelioration of body weight, food intake, glucose homeostasis, and pro-opiomelanocortin (POMC) projections. Cells exposed to ER stress often activate autophagy. Accordingly, we report that in vitro induction of ER stress and neonatal leptin deficiency in vivo activate hypothalamic autophagy-related genes. Furthermore, genetic deletion of autophagy in pro-opiomelanocortin neurons of ob/ob mice worsens their glucose homeostasis, adiposity, hyperphagia, and POMC neuronal projections, all of which are ameliorated with neonatal TUDCA treatment. Together, our data highlight the importance of early life ER stress-autophagy pathway in influencing hypothalamic circuits and metabolic regulation.


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum Stress/physiology , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/metabolism , Neurogenesis/physiology , Adiposity , Animals , Antiviral Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Autophagy-Related Protein 7/genetics , Body Weight/drug effects , Body Weight/physiology , Cholagogues and Choleretics/pharmacology , Disease Models, Animal , Eating , Endoplasmic Reticulum Stress/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Feeding Behavior , Homeostasis , Hyperphagia/metabolism , Leptin/genetics , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mice, Inbred Strains , Mice, Knockout , Neuroendocrinology , Neurogenesis/drug effects , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Taurochenodeoxycholic Acid
13.
Behav Brain Res ; 383: 112531, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32014554

ABSTRACT

Early weaning is associated with disruption of eating behavior. However, little is known about the mechanisms behind it. 5HT and DA systems are key regulators of homeostatic and hedonic eating behaviors, respectively. Thus, this study aims to evaluate the effects of early weaning on feeding behavior and 5HT and DA systems. For this, rats were submitted to regular (PND30) or early weaning (PND15) and between PND250 and PND300 were evaluated food intake of standard diet in response to 4 h food deprivation, during the 24 h period and per phase of the circadian cycle, in addition to the palatable food intake. Additionally, body mass and mRNA expression of 5HT1B, 5HT2C, SERT, DRD1 and DRD2 were evaluated in the hypothalamus and brainstem. The results demonstrate that early weaning promoted an increase in standard food intake in response to a 4 h food deprivation in the 24 h period and in the dark phase of the circadian cycle, in addition to an increased palatable food intake. No differences in body mass between regular or early weaning were observed. In the hypothalamus, increased mRNA expression of SERT and DRD1 was observed, but decreased 5HT1B mRNA expression. In the brainstem, the expression of 5HT1B, SERT, 5HT2C, DRD1 and DRD2 was increased in early weaned rats. In a nutshell, the stress promoted by early weaning has programmed the animals to be hyperphagic and to increase their palatable food intake, which was associated with modulation of 5HT and DA systems.


Subject(s)
Feeding Behavior/physiology , Hyperphagia/physiopathology , Hypothalamus/metabolism , RNA, Messenger/metabolism , Weaning , Animals , Body Weight , Dopamine/metabolism , Hyperphagia/metabolism , Male , Rats , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism
14.
Horm Behav ; 120: 104690, 2020 04.
Article in English | MEDLINE | ID: mdl-31954709

ABSTRACT

Changes to neonatal nutrition result in long-lasting impairments in energy balance, which may be described as metabolic programing. Astrocytes, which are interconnected by gap junctions, have emerged as important players in the hypothalamic control of food intake. In order to study the effects of nutritional programming on glial morphology and protein expression, cross-fostered male Wistar rats at postnatal day 3 were assigned to three groups based on litter size: small litter (3 pups per dam, SL), normal litter (10 pups per dam, NL), and large litter (16 pups per dam, LL). Rats from the SL group exhibited higher body weight throughout the study and hyperphagia after weaning. LL animals exhibited hyperphagia, high energy efficiency and catch-up of body weight after weaning. Both the SL and LL groups at postnatal day 60 (PN60) exhibited increased levels of plasma leptin, the Lee index (as an index of obesity), adiposity content, immunoreactivity toward T-cell protein tyrosine phosphatase (TCPTP), and glial fibrillary acidic protein (GFAP) in the arcuate nucleus (ARC) of the hypothalamus. Astrocyte morphology was altered in the ARC of SL and LL animals, and this effect occurred in parallel with a reduction in immunoreactivity toward connexin 30 (CX30). The data obtained demonstrate that both neonatal over- and underfeeding promote not only alterations in the metabolic status but also morphological changes in glial cells in parallel with increasing TCPTP and changes in connexin expression.


Subject(s)
Animal Nutritional Physiological Phenomena , Connexins/genetics , Gliosis/etiology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Adiposity/physiology , Animals , Animals, Newborn , Connexins/metabolism , Female , Gene Expression Regulation, Developmental , Gliosis/genetics , Gliosis/metabolism , Hyperphagia/complications , Hyperphagia/genetics , Hyperphagia/metabolism , Hyperphagia/pathology , Hypothalamus/metabolism , Litter Size/physiology , Male , Obesity/complications , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Pregnancy , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Rats , Rats, Wistar , Sex Factors , Time Factors
15.
J Nutr Biochem ; 77: 108321, 2020 03.
Article in English | MEDLINE | ID: mdl-31869758

ABSTRACT

Nutrition at early stages of life contributes to the alarming incidence of childhood obesity, insulin resistance and hepatoesteatosis. Cinnamaldehyde, major component of cinnamon, increases insulin sensitivity and modulates adiposity and lipid metabolism. The aim of this study was to analyze the impact of cinnamaldehyde treatment during adolescence in a rat model of early obesity. Litter size reduction was used to induce overfeeding and early obesity. At postnatal day 30 (adolescence), the male Wistar rats received cinnamaldehyde by gavage (40 mg/kg of body weight/day) for 29 days and were studied at the end of treatment at 60 days old or 4 months thereafter (180 days old). At 60 days of age, the treatment with cinnamaldehyde promoted reduced visceral adiposity, serum triacylglycerol, and attenuation of energy efficiency and insulin resistance. In the liver, it reduced lipid synthesis, stimulated autophagy and reduced ER stress. At 180 days of age, animals treated with cinnamaldehyde during the adolescence exhibited normalization of visceral adiposity and energy efficiency, and attenuation of hyperphagia, serum hypertriglyceridemia and hepatic triacylglycerol content, with molecular markers indicative of reduced hepatic synthesis. However, the beneficial effect observed at 60 days of age on glucose homeostasis, autophagy and ER stress was lost. Therefore, the cinnamaldehyde supplementation during the adolescence has short- and long-term metabolic beneficial effects, highlighting its potential as an adjuvant in the treatment of early obesity.


Subject(s)
Acrolein/analogs & derivatives , Adiposity/drug effects , Autophagy , Endoplasmic Reticulum Stress , Lipid Metabolism , Obesity/metabolism , Acrolein/pharmacology , Animals , Body Weight , Disease Models, Animal , Hyperphagia/metabolism , Insulin Resistance , Intra-Abdominal Fat/metabolism , Lipids/blood , Liver/metabolism , Male , Obesity/drug therapy , Rats , Rats, Wistar , Triglycerides/blood
16.
Physiol Behav ; 215: 112793, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31874179

ABSTRACT

BACKGROUND: Changes in the nutritional supply during the perinatal period can lead to metabolic disturbances and obesity in adulthood. OBJECTIVE: The divergent litter size model was used to investigate the hypothalamic sensitivity to leptin and ghrelin as well as the mechanisms involved in the disruption of food intake and energy expenditure. METHODS: On postnatal day 3 (P3), male Wistar rats were divided into 3 groups: small litter (SL - 3 pups), normal litter (NL - 10 pups), and large litter (LL - 16 pups). Animals at P60 were intraperitoneally treated with leptin (500 µg/Kg), ghrelin (40 µg/Kg), or vehicle (0.9% NaCl) at 5 pm and the following parameters were assessed: food intake and body weight; immunostaining of p-STAT-3 in the hypothalamus; Western Blotting analysis of p-AMPKα and UCP2 in the mediobasal hypothalamus (MBH), and UCP1 in the interscapular brown adipose tissue (BAT); or heat production, VO2, VCO2, and locomotor activity. RESULTS: SL rats had earlier leptin and ghrelin surges, while LL rats had no variations. At P60, after leptin treatment, LL rats showed hypophagia and increased p-STAT-3 expression in the arcuate nucleus, but SL rats had no response. After ghrelin treatment, LL rats did not have the orexigenic response or AMPKα phosphorylation in the MBH, while SL animals, unexpectedly, decreased body weight gain, without changes in food intake, and increased metabolic parameters and UCP1 expression in the BAT. CONCLUSIONS: Changes in the nutritional supply at early stages of life modify leptin and ghrelin responsiveness in adulthood, programming metabolic and central mechanisms, which contribute to overweight and obesity in adulthood.


Subject(s)
Ghrelin/metabolism , Hyperphagia/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Malnutrition/metabolism , Aging , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Body Weight , Eating , Energy Metabolism/physiology , Female , Litter Size , Male , Obesity/etiology , Pregnancy , Rats , Rats, Wistar , STAT3 Transcription Factor/metabolism
17.
Nutrients ; 11(11)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717368

ABSTRACT

(1) High-fat (HF) diet leads to gut microbiota dysbiosis which is associated with systemic inflammation. Bacterial-driven inflammation is sufficient to alter vagally mediated satiety and induce hyperphagia. Promoting bacterial fermentation improves gastrointestinal (GI) epithelial barrier function and reduces inflammation. Resistant starch escape digestion and can be fermented by bacteria in the distal gut. Therefore, we hypothesized that potato RS supplementation in HF-fed rats would lead to compositional changes in microbiota composition associated with improved inflammatory status and vagal signaling. (2) Male Wistar rats (n = 8/group) were fed a low-fat chow (LF, 13% fat), HF (45% fat), or an isocaloric HF supplemented with 12% potato RS (HFRS) diet. (3) The HFRS-fed rats consumed significantly less energy than HF animals throughout the experiment. Systemic inflammation and glucose homeostasis were improved in the HFRS compared to HF rats. Cholecystokinin-induced satiety was abolished in HF-fed rats and restored in HFRS rats. HF feeding led to a significant decrease in positive c fiber staining in the brainstem which was averted by RS supplementation. (4) The RS supplementation prevented dysbiosis and systemic inflammation. Additionally, microbiota manipulation via dietary potato RS prevented HF-diet-induced reorganization of vagal afferent fibers, loss in CCK-induced satiety, and hyperphagia.


Subject(s)
Bacteria/growth & development , Brain/physiopathology , Dietary Supplements , Dysbiosis , Gastrointestinal Microbiome , Inflammation/prevention & control , Intestines/innervation , Intestines/microbiology , Obesity/prevention & control , Solanum tuberosum , Starch/administration & dosage , Vagus Nerve/physiopathology , Animal Feed , Animals , Bacteria/metabolism , Brain/metabolism , Diet, High-Fat , Disease Models, Animal , Feeding Behavior , Fermentation , Hyperphagia/metabolism , Hyperphagia/microbiology , Hyperphagia/physiopathology , Hyperphagia/prevention & control , Inflammation/metabolism , Inflammation/microbiology , Inflammation/physiopathology , Male , Obesity/metabolism , Obesity/microbiology , Obesity/physiopathology , Plant Roots , Rats, Wistar , Satiety Response , Starch/metabolism , Vagus Nerve/metabolism , Weight Gain
18.
Nat Metab ; 1(5): 532-545, 2019 05.
Article in English | MEDLINE | ID: mdl-31656947

ABSTRACT

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Amino Acids/metabolism , Appetite Regulation , Life Expectancy , Animals , Female , Gene Expression Regulation , Hyperphagia/metabolism , Hypothalamus/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Serotonin/metabolism , Tryptophan/metabolism
19.
Diabetes ; 68(12): 2210-2222, 2019 12.
Article in English | MEDLINE | ID: mdl-31530579

ABSTRACT

Melanin-concentrating hormone (MCH) is an important regulator of food intake, glucose metabolism, and adiposity. However, the mechanisms mediating these actions remain largely unknown. We used pharmacological and genetic approaches to show that the sirtuin 1 (SIRT1)/FoxO1 signaling pathway in the hypothalamic arcuate nucleus (ARC) mediates MCH-induced feeding, adiposity, and glucose intolerance. MCH reduces proopiomelanocortin (POMC) neuronal activity, and the SIRT1/FoxO1 pathway regulates the inhibitory effect of MCH on POMC expression. Remarkably, the metabolic actions of MCH are compromised in mice lacking SIRT1 specifically in POMC neurons. Of note, the actions of MCH are independent of agouti-related peptide (AgRP) neurons because inhibition of γ-aminobutyric acid receptor in the ARC did not prevent the orexigenic action of MCH, and the hypophagic effect of MCH silencing was maintained after chemogenetic stimulation of AgRP neurons. Central SIRT1 is required for MCH-induced weight gain through its actions on the sympathetic nervous system. The central MCH knockdown causes hypophagia and weight loss in diet-induced obese wild-type mice; however, these effects were abolished in mice overexpressing SIRT1 fed a high-fat diet. These data reveal the neuronal basis for the effects of MCH on food intake, body weight, and glucose metabolism and highlight the relevance of SIRT1/FoxO1 pathway in obesity.


Subject(s)
Adiposity/drug effects , Forkhead Box Protein O1/metabolism , Glucose Intolerance/metabolism , Hyperphagia/metabolism , Hypothalamic Hormones/pharmacology , Melanins/pharmacology , Neurons/drug effects , Pituitary Hormones/pharmacology , Pro-Opiomelanocortin/metabolism , Sirtuin 1/metabolism , Adiposity/physiology , Animals , Forkhead Box Protein O1/genetics , Glucose Intolerance/genetics , Hyperphagia/genetics , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Sirtuin 1/genetics
20.
Diabetes ; 68(8): 1591-1603, 2019 08.
Article in English | MEDLINE | ID: mdl-31127052

ABSTRACT

The BBSome, a complex of eight Bardet-Biedl syndrome (BBS) proteins involved in cilia function, has emerged as an important regulator of energy balance, but the underlying cellular and molecular mechanisms are not fully understood. Here, we show that the control of energy homeostasis by the anorexigenic proopiomelanocortin (POMC) neurons and orexigenic agouti-related peptide (AgRP) neurons require intact BBSome. Targeted disruption of the BBSome by Bbs1 gene deletion in POMC or AgRP neurons increases body weight and adiposity. We demonstrate that obesity in mice lacking the Bbs1 gene in POMC neurons is associated with hyperphagia. Mechanistically, we present evidence implicating the BBSome in the trafficking of G protein-coupled neuropeptide Y Y2 receptor (NPY2R) and serotonin 5-hydroxytryptamine (HT)2C receptor (5-HT2CR) to cilia and plasma membrane, respectively. Consistent with this, loss of the BBSome reduced cell surface expression of the 5-HT2CR, interfered with serotonin-evoked increase in intracellular calcium and membrane potential, and blunted the anorectic and weight-reducing responses evoked by the 5-HT2cR agonist, lorcaserin. Finally, we show that disruption of the BBSome causes the 5-HT2CR to be stalled in the late endosome. Our results demonstrate the significance of the hypothalamic BBSome for the control of energy balance through regulation of trafficking of important metabolic receptors.


Subject(s)
Agouti-Related Protein/metabolism , Body Weight/physiology , Hyperphagia/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Adiposity/physiology , Animals , Calcium/metabolism , Cell Line , Cell Membrane/metabolism , Hyperphagia/genetics , Hypothalamus/metabolism , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Obesity/genetics , Protein Transport/physiology , Receptors, Neuropeptide Y/metabolism , Receptors, Serotonin, 5-HT2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL