Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.797
Filter
Add more filters

Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1373748, 2024.
Article in English | MEDLINE | ID: mdl-38660512

ABSTRACT

Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.


Subject(s)
Fatigue Syndrome, Chronic , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Hydrocortisone/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621962

ABSTRACT

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/drug therapy , Medicine, Chinese Traditional , Hypothalamo-Hypophyseal System/pathology , Pituitary-Adrenal System/pathology , Central Nervous System , Brain Ischemia/therapy , Immune System , Inflammation
3.
Sci Rep ; 14(1): 5898, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467724

ABSTRACT

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Female , Male , Animals , Mice , Humans , Hypothalamo-Hypophyseal System/metabolism , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/genetics , Influenza, Human/metabolism , Transcriptome , Stress, Psychological/metabolism , Pituitary-Adrenal System/metabolism , Brain/diagnostic imaging , Brain/metabolism , Corticosterone
4.
Nat Commun ; 15(1): 2426, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499548

ABSTRACT

The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Humans , Hypothalamus/diagnostic imaging , Brain/physiology , Amygdala/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
J Osteopath Med ; 124(6): 267-275, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38414339

ABSTRACT

CONTEXT: Osteopathic treatments regulate the neurovegetative system through joint mobilizations and manipulations, and myofascial and craniosacral techniques. Despite the growing body of research, the precise impact of osteopathic medicine on the autonomic nervous system (ANS) is not yet fully elucidated. As to Kuchera's techniques, the stimulation of the sympathetic trunk and prevertebral ganglia contributed to harmonization of the sympathetic activity. However, potential relationships between the harmonization of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis largely remain uncertain and warrant further exploration. OBJECTIVES: This study was designed to evaluate the effectiveness of the osteopathic sympathetic harmonization (OSH) on the SNS and the HPA axis in youth with major depressive disorder (MDD). METHODS: The study included 39 youths aged 15-21 years and diagnosed with MDD. The participants were randomly assigned into either the OSH or the placebo group. Stimulation was performed on the sympathetic truncus and prevertebral ganglia in the OSH group. The stimulation of the placebo group was performed with a lighter touch and a shorter duration in similar areas. Each participant completed the Beck Depression Inventory (BDI) and the State and Trait Anxiety Inventory (SAI and TAI) before the application. Blood pressure (BP) and pulse measurements were made, and saliva samples were taken before, immediately after, and 20 min after application. RESULTS: The baseline BDI (p=0.617) and TAI (p=0.322) scores were similar in both groups. Although the SAI scores decreased in both groups postintervention, no statistically significant difference was found between the two groups. Subjects who received OSH had a decrease in α-amylase level (p=0.028) and an increase in cortisol level (p=0.009) 20 min after the procedure. CONCLUSIONS: Following OSH application in depressed youth, SNS activity may decrease, whereas HPA axis activity may increase. Future studies may examine the therapeutic efficacy of repeated OSH applications in depressed individuals.


Subject(s)
Depressive Disorder, Major , Hypothalamo-Hypophyseal System , Manipulation, Osteopathic , Pituitary-Adrenal System , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Adolescent , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Male , Female , Double-Blind Method , Young Adult , Manipulation, Osteopathic/methods , Hydrocortisone/metabolism , Sympathetic Nervous System/physiopathology , Treatment Outcome
6.
Signal Transduct Target Ther ; 9(1): 30, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331979

ABSTRACT

Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/prevention & control , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System
7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 208-215, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403353

ABSTRACT

This study aimed to investigate the regulatory effects of Zuogui Jiangtang Jieyu Formula(ZJJ) on the intestinal flora, short chain fatty acids(SCFAs), and neuroinflammation in rats with diabetes mellitus complicated depression(DD). The DD model was established in rats and model rats were randomly divided into a model group, a positive drug(metformin + fluoxetine) group, a ZJJ low-dose group, and a ZJJ high-dose group, with eight rats in each group. Another eight rats were assigned to the blank group. Subsequently, depressive-like behavior test was conducted on the rats, and cerebrospinal fluid samples were collected to measure pro-inflammatory cytokines [interleukin-1ß(IL-1ß), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)]. Blood serum samples were collected to measure proteins related to the hypothalamic-pituitary-adrenal axis(HPA axis), including corticotropin-releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and cortisol(CORT), as well as glucose metabolism. Gut contents were collected from each group for 16S rRNA sequencing analysis of intestinal flora and SCFAs sequencing. The results indicated that ZJJ not only improved glucose metabolism in DD rats(P<0.01) but also alleviated depressive-like behavior(P<0.05) and HPA axis hyperactivity(P<0.05 or P<0.01). Besides, it also improved the neuroinflammatory response in the brain, as evidenced by a significant reduction in pro-inflammatory cytokines in cerebrospinal fluid(P<0.05 or P<0.01). Additionally, ZJJ improved the intestinal flora, causing the intestinal flora in DD rats to resemble that of the blank group, characterized by an increased Firmicutes abundance. ZJJ significantly increased the levels of SCFAs(acetic acid, butyric acid, valeric acid, and isovaleric acid)(P<0.01). Therefore, it is deduced that ZJJ can effectively ameliorate intestinal flora dysbiosis, regulate SCFAs, and thereby improve both glucose metabolism disturbances and depressive-like behavior in DD.


Subject(s)
Diabetes Mellitus , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Rats , Animals , Hypothalamo-Hypophyseal System/metabolism , Depression/drug therapy , RNA, Ribosomal, 16S , Pituitary-Adrenal System/metabolism , Corticotropin-Releasing Hormone/metabolism , Cytokines/genetics , Cytokines/metabolism , Glucose/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
8.
J Nutr Health Aging ; 28(2): 100005, 2024 02.
Article in English | MEDLINE | ID: mdl-38388108

ABSTRACT

Frailty represents diminished reserve across multiple physiologic systems, accompanied by increased vulnerability to stressors and increased morbidity and mortality. With population aging, strategies to prevent and manage frailty are priorities in clinical medicine and public health. Current evidence-based approaches to frailty management are multimodal in nature. Yoga, an increasingly popular and highly adaptable mind-body practice, is multi-component, incorporating physical postures, breathing practices, meditation, and other elements, and may be a strategy for frailty management. Here, we summarize the evidence linking yoga practice to mitigation of age-related degradation across multiple physiologic systems, including cardiovascular, pulmonary, musculoskeletal, and nervous systems. We discuss putative mechanisms of action including modulation of the hypothalamic-pituitary-adrenal axis. Finally, we consider implications for clinical practice and future research.


Subject(s)
Frailty , Meditation , Yoga , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Aging
9.
Chem Biol Interact ; 391: 110899, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325521

ABSTRACT

With the improvement of living quality, people pay more and more attention to vitamin supplements. The vitamins in the daily diet can meet the needs of the body. Whether additional vitamin supplementation is necessary still needs to be further explored. Many studies have reported that vitamin deficiency and excessive vitamin supplementation could lead to abnormal development in the body or increase the risk of diseases. Here, we summarize the abnormal levels of vitamins can cause the homeostasis imbalance of hypothalamus-pituitary-adrenal (HPA) axis by affecting its development and function. It can lead to abnormal synthesis and secretion of glucocorticoid in the body, which mediates the occurrence and development of metabolic diseases and psychoneurotic diseases. In addition, vitamin has a strong antioxidant effect, which can eliminate oxygen free radicals. Thereby, vitamins can alter HPA axis function and homeostasis maintenance by combating oxidative stress. This review provides a theoretical basis for clarifying the role of abnormal levels of vitamin in the occurrence and development of multiple diseases and its intervention strategy, and also provides reference value and guiding significance for rational use of vitamins.


Subject(s)
Hypothalamo-Hypophyseal System , Vitamins , Humans , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Antioxidants/metabolism , Vitamin A , Homeostasis
10.
J Affect Disord ; 351: 870-877, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38341156

ABSTRACT

The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.


Subject(s)
Corticotropin-Releasing Hormone , Sleep Initiation and Maintenance Disorders , Humans , Corticotropin-Releasing Hormone/metabolism , Sleep Initiation and Maintenance Disorders/diagnostic imaging , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Hypothalamus/diagnostic imaging
11.
Zhen Ci Yan Jiu ; 49(1): 57-63, 2024 Jan 25.
Article in English, Chinese | MEDLINE | ID: mdl-38239139

ABSTRACT

OBJECTIVES: To observe the clinical efficacy of the spirit-regulation method of Jin's three-needle therapy on post-stroke anxiety and its effects on the hypothalamus-pituitary-adrenal (HPA) axis. METHODS: Fifty-four patients with post-stroke anxiety were divided into spirit regulation (Jin's three needle therapy) group and sham-acupuncture group according to the random number table method, 28 cases in the spirit regulation and 26 cases in the sham-acupuncture group. The patients of the two groups received the same regimen of basic medication and rehabilitation, and the same acupoint prescription was adopted, including Sishenzhen (extra points, 1.5 cun to Baihui [GV20] at 3, 6, 9 and 12 o'clock positions), Shenting (GV24), Yintang (EX-HN3), and bilateral Shenmen (HT7), Sanyinjiao (SP6), Hegu (LI4) and Taichong (LR3). The true acupuncture was delivered in the spirit regulation group and the sham acupuncture operated in the sham-acupuncture group. One treatment lasted for 30 min, once daily, 5 times a week. The duration of treatment was 3 weeks in the trial. Before treatment and on day 10 and day 21 of treatment, the changes in the score of Hamilton anxiety scale (HAMA) and that of National Institutes of Health Stroke Scale (NIHSS) were compared between the two groups separately. Using ELISA, the contents of adrenocorticotropin (ACTH) and cortisol (CORT) in the serum were detected, and the adverse reactions were recorded. RESULTS: In the within-group comparison before and after treatment, HAMA score and NIHSS score dropped on day 10 and day 21 after treatment in the spirit regulation group (P<0.05);HAMA score and NIHSS score in the sham-acupuncture group were decreased on day 21 of treatment (P<0.05). After 21 days of treatment, HAMA score and NIHSS score in the spirit-regulation group were decreased significantly than those in the sham-acupuncture group (P<0.05) and the contents of ACTH and CORT in the serum decreased when compared with those before treatment and those of the sham-operation group (P<0.05). No obvious adverse events occurred in the spirit-regulation group and the sham-acupuncture group. CONCLUSIONS: Using sham acupuncture as a control, it is preliminarily confirmed that the spirit regulation method of Jin's three-needle therapy is effective on post-stroke anxiety. In association of the downtrend of serological indicators, it is speculated that the underlying mechanism of this therapy is related to HPA axis.


Subject(s)
Acupuncture Therapy , Stroke , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Stroke/complications , Stroke/therapy , Acupuncture Therapy/methods , Anxiety/therapy , Treatment Outcome , Acupuncture Points , Adrenocorticotropic Hormone
12.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38215742

ABSTRACT

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Subject(s)
Corticotropin-Releasing Hormone , Pituitary Hormone-Releasing Hormones , Mice , Animals , Corticotropin-Releasing Hormone/metabolism , Pituitary Hormone-Releasing Hormones/metabolism , Pituitary Hormone-Releasing Hormones/pharmacology , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Hypothalamus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Dopaminergic Neurons/metabolism
13.
Sleep Med Rev ; 74: 101892, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38232645

ABSTRACT

Primary insomnia (PI) is an increasing concern in modern society. Cognitive-behavioral therapy for insomnia is the first-line recommendation, yet limited availability and cost impede its widespread use. While hypnotics are frequently used, balancing their benefits against the risk of adverse events poses challenges. This review summarizes the clinical and preclinical evidence of acupuncture as a treatment for PI, discussing its potential mechanisms and role in reliving insomnia. Clinical trials show that acupuncture improves subjective sleep quality, fatigue, cognitive impairments, and emotional symptoms with minimal adverse events. It also positively impacts objective sleep processes, including prolonging total sleep time, improving sleep efficiency, reducing sleep onset latency and wake after sleep onset, and enhancing sleep architecture/structure, including increasing N3% and REM%, and decreasing N1%. However, methodological shortcomings in some trials diminish the overall quality of evidence. Animal studies suggest that acupuncture restores circadian rhythms in sleep-deprived rodents and improves their performance in behavioral tests, possibly mediated by various clinical variables and pathways. These may involve neurotransmitters, brain-derived neurotrophic factors, inflammatory cytokines, the hypothalamic-pituitary-adrenal axis, gut microbiota, and other cellular events. While the existing findings support acupuncture as a promising therapeutic strategy for PI, additional high-quality trials are required to validate its benefits.


Subject(s)
Acupuncture Therapy , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Sleep
14.
J Pharm Sci ; 113(1): 33-46, 2024 01.
Article in English | MEDLINE | ID: mdl-37597751

ABSTRACT

As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.


Subject(s)
Hydrocortisone , Hypothalamo-Hypophyseal System , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Circadian Rhythm/physiology , Glucocorticoids
15.
J Nat Med ; 78(1): 255-265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015359

ABSTRACT

The hypothalamic-pituitary-adrenal (HPA) system plays an important role in stress response. Chronic stress is thought to induce neuronal damage and contribute to the pathogenesis of psychiatric disorders by causing dysfunction of the HPA system and promoting the production and release of glucocorticoids, including corticosterone and cortisol. Several clinical studies have demonstrated the efficacy of herbal medicines in treating psychiatric disorders; however, their effects on corticosterone-induced neuronal cell death remain unclear. Here, we used HT22 cells to evaluate the neuroprotective potential of herbal medicines used in neuropsychiatry against corticosterone-induced hippocampal neuronal cell death. Cell death was assessed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction and Live/Dead assays. Hangekobokuto, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan were supplied in the form of water-extracted dried powders. Exposure of HT22 cells to ≥ 100 µM corticosterone decreased MTT values. Exposure to 500 µM corticosterone alone reduced MTT values to 18%, while exposure to 10 µM Mifepristone (RU486)-a glucocorticoid receptor antagonist-restored values to 36%. Corticosterone-induced cell death was partially suppressed by treatment with RU486. At 100 µg/mL, Hangekobokuto significantly suppressed the decrease in MTT values (15-32%) and increase in the percentage of ethidium homodimer-1-positive dead cells caused by corticosterone exposure (78-36%), indicating an inhibitory effect on cell death. By contrast, Kamikihito, Saikokaryukotsuboreito, Kamishoyosan, and Yokukansan did not affect corticosterone-induced cell death. Therefore, our results suggest that Hangekobokuto may ameliorate the onset and progression of psychiatric disorders by suppressing neurological disorders associated with increased levels of glucocorticoids.


Subject(s)
Corticosterone , Mifepristone , Humans , Corticosterone/toxicity , Corticosterone/metabolism , Mifepristone/pharmacology , Glucocorticoids , Hypothalamo-Hypophyseal System/metabolism , Cell Death , Pituitary-Adrenal System/metabolism
16.
Biomed Pharmacother ; 170: 115926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38035864

ABSTRACT

BACKGROUND: To provide new ideas for the clinical and mechanism research of acupuncture in the treatment of chronic obstructive pulmonary disease (COPD), this study systematically reviews clinical research and the progress of basic research of acupuncture in the treatment of COPD. METHODS: PubMed and Web of Science databases were searched using acupuncture and COPD as keywords in the last 10 years, and the included literature was determined according to exclusion criteria. FINDINGS: Acupuncture can relieve clinical symptoms, improve exercise tolerance, anxiety, and nutritional status, as well as hemorheological changes (blood viscosity), reduce the inflammatory response, and reduce the duration and frequency of COPD in patients with COPD. Mechanistically, acupuncture inhibits M1 macrophage activity, reduces neutrophil infiltration, reduces inflammatory factor production in alveolar type II epithelial cells, inhibits mucus hypersecretion of airway epithelial cells, inhibits the development of chronic inflammation in COPD, and slows tissue structure destruction. Acupuncture may control pulmonary COPD inflammation through the vagal-cholinergic anti-inflammatory, vagal-adrenomedullary-dopamine, vagal-dual-sensory nerve fiber-pulmonary, and CNS-hypothalamus-orexin pathways. Furthermore, acupuncture can increase endogenous cortisol levels by inhibiting the HPA axis, thus improving airway antioxidant capacity and reducing airway inflammation in COPD. In conclusion, the inhibition of the chronic inflammatory response is the key mechanism of acupuncture treatment for COPD.


Subject(s)
Acupuncture Therapy , Pulmonary Disease, Chronic Obstructive , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Pulmonary Disease, Chronic Obstructive/therapy , Inflammation
17.
Neurosci Lett ; 819: 137578, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38048875

ABSTRACT

Persistent post-ischemic alterations to the hypothalamic-pituitary-adrenal (HPA) axis occur following global cerebral ischemia (GCI) in rodents. However, similar effects on hypothalamic-pituitary-gonadal (HPG) axis activation remain to be determined. Therefore, this study evaluated the effects of GCI in adult female rats (via four-vessel occlusion) on the regularity of the estrous cycle for 24-days post ischemia. A second objective aimed to assess persistent alterations of HPG axis activation through determination of the expression of estrogen receptor alpha (ERα), kisspeptin (Kiss1), and gonadotropin-inhibitory hormone (GnIH/RFamide-related peptide; RFRP3) in the medial preoptic area (POA), arcuate nucleus (ARC), dorsomedial nucleus (DMH) of the hypothalamus, and CA1 of the hippocampus 25 days post ischemia. Expression of glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) and CA1 served as a proxy of altered HPA axis activation. Our findings demonstrated interruption of the estrous cycle in 87.5 % of ischemic rats, marked by persistent diestrus, lasting on average 11.86 days. Moreover, compared to sham-operated controls, ischemic female rats showed reduced Kiss1 expression in the hypothalamic ARC and POA, concomitant with elevated ERα in the ARC and increased GnIH in the DMH and CA1. Reduced GR expression in the CA1 was associated with increased GR-immunoreactivity in the PVN, indicative of lasting dysregulation of HPA axis activation. Together, these findings demonstrate GCI disruption of female rats' estrous cycle over multiple days, with a lasting impact on HPG axis regulators within the reproductive axis.


Subject(s)
Brain Ischemia , Hypothalamo-Hypophyseal System , Rats , Female , Animals , Hypothalamo-Hypophyseal System/metabolism , Kisspeptins/metabolism , Hypothalamic-Pituitary-Gonadal Axis , Estrogen Receptor alpha/metabolism , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Estrous Cycle/metabolism , Brain Ischemia/metabolism , Cerebral Infarction/metabolism , Periodicity
18.
Neurotoxicology ; 99: 244-253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944760

ABSTRACT

Misused volatile solvents typically contain toluene (TOL) as the main psychoactive ingredient. Cyclohexane (CHX) can also be present and is considered a safer alternative. Solvent misuse often occurs at early stages of life, leading to permanent neurobehavioral impairment and growth retardation. However, a comprehensive examination of the effects of TOL and CHX on stress regulation and energy balance is lacking. Here, we compared the effect of a binge-pattern exposure to TOL or CHX (4,000 or 8,000 ppm) on body weight, food intake, the hypothalamus-pituitary-adrenal (HPA) and hypothalamus-pituitary-thyroid (HPT) axes in male adolescent Wistar rats. At 8,000 ppm, TOL decreased body weight gain without affecting food intake. In addition, TOL and CHX altered the HPA and HPT axes' function in a solvent- and concentration-dependent manner. The highest TOL concentration produced HPA axis hyperactivation in animals not subjected to stress, which was evidenced by increased corticotropin-releasing-factor (CRF) release from the median eminence (ME), elevated adrenocorticotropin hormone (ACTH) and corticosterone serum levels, and decreased CRF mRNA levels in the hypothalamic paraventricular nucleus (PVN). TOL (8,000 ppm) also increased triiodothyronine (T3) serum levels, decreased pro-thyrotropin-releasing-hormone (pro-TRH) mRNA transcription in the PVN, pro-TRH content in the ME, and serum thyroid stimulating hormone (TSH) levels. CHX did not affect the HPA axis. We propose that the increased HPT axis activity induced by TOL can be related to the impaired body weight gain associated with inhalant misuse. These findings may contribute to a better understanding of the effects of the misused solvents TOL and CHX.


Subject(s)
Corticotropin-Releasing Hormone , Hypothalamo-Hypophyseal System , Rats , Male , Animals , Rats, Wistar , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Toluene/toxicity , Pituitary-Adrenal System/metabolism , Hypothalamus/metabolism , Body Weight , RNA, Messenger , Solvents/toxicity , Corticosterone
19.
Nutrients ; 15(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38004136

ABSTRACT

Major depressive disorder (MDD) is one life-threatening disorder that is prevalent worldwide. The evident etiology of this disease is still poorly understood. Currently, herbal medicine is gaining more interest as an alternative antidepressant. Oroxylum indicum, which is used in traditional medicine and contains a potential antidepressive compound, baicalein, could have an antidepressive property. An in vitro monoamine oxidase-A (MAO-A) inhibitory assay was used to preliminarily screening for the antidepressant effect of O. indicum seed (OIS) extract. Mice were subjected to unpredictable chronic mild stress (UCMS) for 6 weeks, and the daily administration of OIS extract started from week 4. The mechanisms involved in the antidepressive activity were investigated. The OIS extract significantly alleviated anhedonia and despair behaviors in the UCMS-induced mouse model via two possible pathways: (i) it normalized the HPA axis function via the restoration of negative feedback (decreased FKBP5 and increased GR expressions) and the reduction in the glucocorticoid-related negative gene (SGK-1), and (ii) it improved neurogenesis via the escalation of BDNF and CREB expressions in the hippocampus and the frontal cortex. In addition, an HPLC analysis of the OIS extract showed the presence of baicalin, baicalein, and chrysin as major constituents. All of the results obtained from this study emphasize the potential of OIS extract containing baicalin and baicalein as an effective and novel alternative treatment for MDD.


Subject(s)
Depressive Disorder, Major , Plant Extracts , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/metabolism , Hypothalamo-Hypophyseal System/metabolism , Depressive Disorder, Major/metabolism , Pituitary-Adrenal System/metabolism , Antidepressive Agents/pharmacology , Seeds , Hippocampus , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/metabolism , Disease Models, Animal
20.
Medicine (Baltimore) ; 102(44): e35862, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37932977

ABSTRACT

Depression, a prevalent psychiatric malady, afflicts a substantial global demographic, engendering considerable disease burden due to its elevated morbidity and mortality rates. Contemporary therapeutic approaches for depression encompass the administration of serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclic antidepressants, albeit these pharmaceuticals potentially induce adverse neurological and gastrointestinal effects. Traditional Chinese Medicine (TCM) natural products proffer the benefits of multi-target, multi-level, and multi-channel depression treatment modalities. In this investigation, we conducted a comprehensive literature review of the past 5 years in PubMed and other databases utilizing the search terms "Depression," "Natural medicines," "Traditional Chinese Medicine," and "hypothalamic-pituitary-adrenal axis." We delineated the 5 most recent and pertinent signaling pathways associated with depression and hypothalamic-pituitary-adrenal (HPA) axis dysregulation: nuclear factor kappa light-chain-enhancer of activated B cell, brain-derived neurotrophic factor, mitogen-activated protein kinase, cyclic AMP/protein kinase A, and phosphoinositide 3-kinase/protein kinase B. Additionally, we deliberated the antidepressant mechanisms of natural medicines comprising alkaloids, flavonoids, polyphenols, saponins, and quinones via diverse pathways. This research endeavor endeavored to encapsulate and synthesize the progression of TCMs in modulating HPA axis-associated signaling pathways to mitigate depression, thereby furnishing robust evidence for ensuing research in this domain.


Subject(s)
Depression , Hypothalamo-Hypophyseal System , Humans , Hypothalamo-Hypophyseal System/metabolism , Depression/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Pituitary-Adrenal System/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL