Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Immunol Res ; 71(6): 839-848, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37221348

ABSTRACT

Celiac disease (CD) is an autoimmune disease with inflammatory characteristics, having a condition of chronic malabsorption, affecting approximately 1% of the population at any age. In recent years, a concrete correlation between eating disorders and CD has emerged. Hypothalamus plays a central role in determining eating behaviour, regulating appetite and, consequently, food intake. One hundred and ten sera from celiac patients (40 active and 70 following a gluten-free diet) were tested for the presence of autoantibodies against primate hypothalamic periventricular neurons by immunofluorescence and by a home-made ELISA assay. In addition, ghrelin was measured by ELISA. As control, 45 blood serums from healthy age matched were analysed. Among active CD, all patients resulted positive for anti-hypothalamus autoantibodies and sera showed significantly higher levels of ghrelin. All of the free-gluten CD were negative for anti-hypothalamus autoantibodies and had low levels of ghrelin, as well as healthy controls. Of interest, anti-hypothalamic autoantibodies directly correlate with anti-tTG amounts and with mucosal damage. In addition, competition assays with recombinant tTG showed a drastically reduction of anti-hypothalamic serum reactivity. Finally, ghrelin levels are increased in CD patients and correlated with anti-tTG autoantibodies and anti-hypothalamus autoantibodies. This study demonstrates for the first time the presence of anti-hypothalamus antibodies and their correlation with the severity of the CD. It also allows us to hypothesize the role of tTG as a putative autoantigen expressed by hypothalamic neurons.


Subject(s)
Autoantibodies , Celiac Disease , Ghrelin , Hypothalamus , Animals , Humans , Autoantibodies/blood , Celiac Disease/blood , Celiac Disease/immunology , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin A , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Hypothalamus/immunology
2.
Horm Metab Res ; 54(3): 153-161, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35276740

ABSTRACT

SARS-CoV-2 may affect the hypothalamic-pituitary axis and pituitary dysfunction may occur. Therefore, we investigated neuroendocrine changes, in particular, secondary adrenal insufficiency, using a dynamic test and the role of autoimmunity in pituitary dysfunction in patients with COVID-19. The single-center, prospective, case-control study included patients with polymerase chain reaction (PCR)-confirmed COVID-19 and healthy controls. Basal hormone levels were measured, and the adrenocorticotropic hormone (ACTH) stimulation test was performed. Antipituitary (APA) and antihypothalamic antibodies (AHA) were also determined. We examined a total of 49 patients with COVID-19 and 28 healthy controls. The frequency of adrenal insufficiency in patients with COVID-19 was found as 8.2%. Patients with COVID-19 had lower free T3, IGF-1, and total testosterone levels, and higher cortisol and prolactin levels when compared with controls. We also demonstrated the presence of APA in three and AHA in one of four patients with adrenal insufficiency. In conclusion, COVID-19 may result in adrenal insufficiency, thus routine screening of adrenal functions in these patients is needed. Endocrine disturbances in COVID-19 are similar to those seen in acute stressful conditions or infections. Pituitary or hypothalamic autoimmunity may play a role in neuroendocrine abnormalities in COVID-19.


Subject(s)
Adrenocorticotropic Hormone/blood , COVID-19/immunology , Hypothalamus/immunology , Pituitary Gland/immunology , Adult , Autoantibodies/blood , Autoimmunity , COVID-19/blood , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Female , Humans , Hydrocortisone/blood , Hypothalamus/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Middle Aged , Pituitary Gland/metabolism , Prolactin/blood , Prospective Studies , SARS-CoV-2/physiology , Testosterone/blood
3.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948033

ABSTRACT

This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin-lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1ß) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.


Subject(s)
Caffeine/administration & dosage , Choroid Plexus/immunology , Cytokines/genetics , Encephalitis/drug therapy , Hypothalamus/immunology , Lipopolysaccharides/adverse effects , Administration, Intravenous , Animals , Caffeine/pharmacology , Choroid Plexus/drug effects , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/genetics , Female , Gene Expression Regulation/drug effects , Hypothalamus/drug effects , Interleukin-1beta/genetics , Interleukin-6/metabolism , Sheep , Tumor Necrosis Factor-alpha/genetics
4.
J Clin Endocrinol Metab ; 106(12): e5147-e5155, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34254637

ABSTRACT

CONTEXT: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe chronic illness that reduces the quality of life. A potential role of neuroendocrine autoimmune dysfunction has been hypothesized. OBJECTIVE: This work aims to investigate the occurrence of antipituitary (APA) and antihypothalamic (AHA) antibodies and possible related hypothalamic/pituitary dysfunctions in ME/CSF patients. METHODS: This is a case-control study conducted in a university hospital setting (Stanford, California, USA; and Naples, Italy). Thirty women with ME/CSF (group 1) diagnosed according to Fukuda, Canadian, and Institute of Medicine criteria, at Stanford University, were enrolled and compared with 25 age-matched healthy controls. APA and AHA were detected by immunofluorescence; moreover, we investigated hormonal secretions of anterior pituitary and respective target glands. APA and AHA titers both were assessed and the prevalence of pituitary hormone deficiencies was also investigated. RESULTS: Patients in group 1 showed a high prevalence of AHA (33%) and APA (56%) and significantly lower levels of adrenocorticotropin (ACTH)/cortisol, and growth hormone (GH) peak/insulin-like growth factor-1 (IGF-1) vs controls (all AHA/APA negative). Patients in group 1A (13 patients positive at high titers, ≥ 1:32) showed ACTH/cortisol and GH peak/IGF-1 levels significantly lower and more severe forms of ME/CFS with respect to patients in group 1B (7 positive at middle/low titers, 1:16-1:8) and 1C (10 antibody-negative patients). CONCLUSION: Both AHA and/or APA at high titers were associated with hypothalamic/pituitary dysfunction, suggesting that hypothalamic/pituitary autoimmunity may play an important role in the manifestations of ME/CFS, especially in its more severe forms.


Subject(s)
Autoantibodies/blood , Autoimmune Diseases/epidemiology , Biomarkers/blood , Fatigue Syndrome, Chronic/physiopathology , Hypothalamus/pathology , Pituitary Diseases/epidemiology , Adrenocorticotropic Hormone/blood , Adult , Autoantibodies/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Case-Control Studies , Female , Follow-Up Studies , Human Growth Hormone/blood , Humans , Hypothalamus/immunology , Hypothalamus/metabolism , Insulin-Like Growth Factor I/analysis , Pituitary Diseases/blood , Pituitary Diseases/immunology , Pituitary Diseases/pathology , Prognosis , United States/epidemiology , Young Adult
5.
Behav Brain Res ; 414: 113475, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34280460

ABSTRACT

Oxandrolone (OXA) is an androgen and anabolic steroid (AAS) that is used to reverse weight loss associated with some medical conditions. One of the side effects of OXA is its potential to induce depressive symptoms. Growing evidence suggested that neuroinflammation and cytokines play crucial roles in sickness behavioral and associated mood disturbances. Previous studies showed that metformin attenuated neuroinflammation. This study investigated the potential protective role of metformin against OXA-induced depression-like behavior and neuroinflammation. Twenty- four Wistar male rats were randomly grouped into four groups: the control group (Control) received only vehicle; the oxandrolone group (OXA) received oxandrolone (0.28 mg/kg, i.p); the metformin group (MET) received metformin (100 mg/kg, i.p); and the oxandrolone / metformin group (OXA + MET) received both oxandrolone (0.28 mg/kg, i.p) and metformin (100 mg/kg, i.p). These treatments were administered for fourteen consecutive days. Behavioral tests to measure depression-like behavior were conducted before and after treatments. qRT-PCR was used to measure the relative expression of proinflammatory and anti-inflammatory cytokines in the hippocampus and hypothalamus. The results showed that oxandrolone induced depression-like behavior and dysregulated pro-/anti-inflammatory cytokines, while metformin attenuated these effects. These findings suggest that metformin is a potential treatment to reverse the depressive effects induced by oxandrolone that involve neuroinflammatory effects.


Subject(s)
Anabolic Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Cytokines/drug effects , Depression/chemically induced , Depression/drug therapy , Metformin/pharmacology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Oxandrolone/adverse effects , Anabolic Agents/administration & dosage , Animals , Anti-Inflammatory Agents/administration & dosage , Behavior, Animal/drug effects , Depression/immunology , Depression/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/metabolism , Hypothalamus/drug effects , Hypothalamus/immunology , Hypothalamus/metabolism , Interleukin-10 , Interleukin-1beta/drug effects , Interleukin-6 , Male , Metformin/administration & dosage , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Oxandrolone/administration & dosage , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/drug effects
6.
Eur J Pharmacol ; 909: 174362, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34297968

ABSTRACT

The functions and mechanisms of GPR40 receptor to ameliorating the Alzheimer's disease (AD) by external treatment of encephalopathy remain unknown. In present study, the typical Aß1-42 induced mice model was applied to explore the functions and mechanisms of GPR40 receptor by external treatment of encephalopathy in AD. GPR40 agonist GW9508 and antagonist GW1100 were given by i.g injection to activate/inhibit the GPR40 receptor respectively in the gut of AD mouse which illustrated the function and mechanism of GPR40 receptor in ameliorating AD symptoms by external treatment of encephalopathy. A series of behavioral experiments were used to investigate the cognitive function and memory ability of mice, while molecular biology experiments such as Western blot, ELISA, flow cytometry were used to detect the corresponding changes of signaling pathways. The results revealed that intragastric administrated GW9508 could significantly ameliorate cognitive deficits of AD mouse, up-regulate the expression levels of gut-brain peptides both in blood circulation and hypothalamus thus up-regulate the expression levels of α-MSH in hypothalamus, while the negative autophagy-related proteins and inflammation-related proteins were down-regulated correspondingly. Meanwhile, GW9508 could also inhibit the pathological process of neuroinflammation in microglia. GW1100 reversed the effects of GW9508 significantly. These results suggested that GPR40 was an underlying therapeutic target for the external treatment of encephalopathy related to AD and GPR40 agonist could be explored as the emerging AD therapeutic drug.


Subject(s)
Alzheimer Disease/drug therapy , Cognitive Dysfunction/drug therapy , Methylamines/administration & dosage , Neuroinflammatory Diseases/drug therapy , Propionates/administration & dosage , Receptors, G-Protein-Coupled/agonists , Administration, Oral , Alzheimer Disease/complications , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/toxicity , Animals , Behavior Observation Techniques , Blood-Brain Barrier/metabolism , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/immunology , Cognitive Dysfunction/pathology , Down-Regulation/drug effects , Humans , Hypothalamus/drug effects , Hypothalamus/immunology , Hypothalamus/pathology , Male , Methylamines/pharmacokinetics , Mice , Microglia/drug effects , Microglia/immunology , Microglia/pathology , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Peptide Fragments/administration & dosage , Peptide Fragments/toxicity , Propionates/pharmacokinetics , Receptors, G-Protein-Coupled/metabolism , Tissue Distribution
7.
Viruses ; 13(3)2021 03 17.
Article in English | MEDLINE | ID: mdl-33802995

ABSTRACT

In December 2019, a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of Hubei, China. The virus infection, coronavirus disease 2019 (COVID-19), represents a global concern, as almost all countries around the world are affected. Clinical reports have confirmed several neurological manifestations in COVID-19 patients such as headaches, vomiting, and nausea, indicating the involvement of the central nervous system (CNS) and peripheral nervous system (PNS). Neuroinvasion of coronaviruses is not a new phenomenon, as it has been demonstrated by previous autopsies of severe acute respiratory syndrome coronavirus (SARS-CoV) patients who experienced similar neurologic symptoms. The hypothalamus is a complex structure that is composed of many nuclei and diverse neuronal cell groups. It is characterized by intricate intrahypothalamic circuits that orchestrate a finely tuned communication within the CNS and with the PNS. Hypothalamic circuits are critical for maintaining homeostatic challenges including immune responses to viral infections. The present article reviews the possible routes and mechanisms of neuroinvasion of SARS-CoV-2, with a specific focus on the role of the hypothalamic circuits in mediating the neurological symptoms noted during COVID-19 infection.


Subject(s)
COVID-19/complications , Hypothalamus/virology , Nervous System Diseases/virology , SARS-CoV-2/physiology , Animals , COVID-19/immunology , COVID-19/virology , Humans , Hypothalamus/immunology , Nervous System Diseases/etiology , Nervous System Diseases/immunology , SARS-CoV-2/genetics
8.
Sci Rep ; 11(1): 3101, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542312

ABSTRACT

Foot electrical stimulation (FES) has been considered as a classic stressor that can disturb homeostasis. Acute anemia was observed in the model induced by FES. The aim of this study was to explore the role of inflammatory cytokines underlying the acute anemia and gastrointestinal (GI) mucosal injury in the FES. Twenty-four male Kunming mice (20 ± 2 g) were randomly divided into control group and experimental group. The mice were placed in a footshock chamber that can generate 0.5 mA electrical impulse periodically for 0.5 h. After the process, red blood cell count, hemoglobin concentration and hematocrit, the levels of corticotropin releasing hormone (CRH) in serum and hypothalamus, and adrenocorticotropic hormone (ACTH) in serum and pituitary were detected separately. In addition, we investigated the expressions of inflammatory cytokines (IL-1, IL-6, TNF-α, iNOS, and IL-10) in the hypothalamus and duodenum by Polymerase Chain Reaction (PCR). Results showed that this FES model induced anemia, increased CRH and ACTH activity in the serum after the FES. Moreover, the expressions of IL-1ß, IL-6, TNF-α, and iNOS were significantly increased following the process, while IL-10 was not activated. These findings suggest that anemia, the inflammatory cytokines in the hypothalamus and duodenum of the mice in the model induced by FES is closely related to GI mucosal injury/bleeding. Taken together, these results underscore the importance of anemia, GI mucosal injury/bleeding and stress, future studies would be needed to translate these findings into the benefit of affected patients.


Subject(s)
Anemia/genetics , Duodenum/immunology , Electric Stimulation/adverse effects , Interleukin-6/genetics , Nitric Oxide Synthase Type II/genetics , Stress, Physiological/immunology , Tumor Necrosis Factor-alpha/genetics , Adrenocorticotropic Hormone/genetics , Adrenocorticotropic Hormone/immunology , Anemia/etiology , Anemia/immunology , Anemia/pathology , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/immunology , Duodenum/pathology , Erythrocyte Count , Forelimb , Gene Expression Regulation , Hematocrit , Hemoglobins/immunology , Hemoglobins/metabolism , Hindlimb , Hypothalamus/immunology , Hypothalamus/pathology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Male , Mice , Nitric Oxide Synthase Type II/immunology , Pituitary Gland/immunology , Pituitary Gland/pathology , Stress, Physiological/genetics , Tumor Necrosis Factor-alpha/immunology
9.
Eur J Immunol ; 51(3): 557-566, 2021 03.
Article in English | MEDLINE | ID: mdl-33169371

ABSTRACT

Macroenvironmental factors, including a patient's physical and social environment, play a role in cancer risk and progression. Our previous preclinical studies have shown that the enriched environment (EE) confers anti-obesity and anti-cancer phenotypes that are associated with enhanced adaptive immunity and are mediated by brain-derived neurotrophic factor (BDNF). Natural killer (NK) cells have anti-cancer and anti-viral properties, and their absence or depletion is associated with inferior clinical outcomes. In this study, we investigated the effects of EE on NK cell maturation following their depletion. Mice living in EE displayed a higher proportion of NK cells in the spleen, bone marrow, and blood, compared to those living in the standard environment (SE). EE enhanced NK cell maturation in the spleen and was associated with upregulation of BDNF expression in the hypothalamus. Hypothalamic BDNF overexpression reproduced the EE effects on NK cell maturation in secondary lymphoid tissues. Conversely, hypothalamic BDNF knockdown blocked the EE modulation on NK cell maturation. Our results demonstrate that a bio-behavior intervention enhanced NK cell maturation and was mediated at least in part by hypothalamic BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor/immunology , Hypothalamus/immunology , Killer Cells, Natural/immunology , Animals , Environment , Lymphoid Tissue/immunology , Male , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Spleen/immunology , Up-Regulation/immunology
10.
Food Funct ; 11(10): 8987-8995, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33001081

ABSTRACT

Obesity is an increasingly severe global health problem, leading to chronic inflammation and metabolic disorders in both peripheral tissues and the central nervous system. Matcha is a powdered green tea, and it is very popular in recent years as a beverage and food additive. Matcha green tea has been reported to have outstanding potential in regulating obesity-related metabolic syndrome. However, there are few studies on the regulation mechanism of matcha green tea on the central nervous system. In this study, we established a high-fat diet-induced obese mouse model. The results showed that dietary supplementation with matcha could effectively inhibit the weight gain, fat accumulation, glycemia and lipidemia increase, and excessive activation of microglia in the arcuate nucleus of the hypothalamus. Furthermore, we used different concentrations (100%, 80%, 60%, 40%, and 20%, v/v) of ethanol solution to prepare matcha ethanol extracts, and investigated their effects on palmitic acid-induced inflammation of microglial BV-2 cells. The results showed that matcha ethanol extracts could significantly reduce the release of inflammatory cytokines and the expression and phosphorylation of JAK2 and STAT3.


Subject(s)
Camellia sinensis/chemistry , Hypothalamus/drug effects , Janus Kinase 2/immunology , Obesity/drug therapy , Obesity/immunology , Plant Extracts/administration & dosage , STAT3 Transcription Factor/immunology , Animals , Antioxidants/administration & dosage , Humans , Hypothalamus/immunology , Janus Kinase 2/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Tea/chemistry
11.
Endocrinology ; 161(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32603429

ABSTRACT

The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-ß inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3ß in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.


Subject(s)
Encephalitis/chemically induced , Gastric Inhibitory Polypeptide/pharmacology , Hypothalamus/drug effects , Inflammation/chemically induced , Insulin Resistance , Receptors, Gastrointestinal Hormone/physiology , Animals , Diet, High-Fat , Encephalitis/genetics , Gastric Inhibitory Polypeptide/administration & dosage , Gastric Inhibitory Polypeptide/physiology , Hypothalamus/immunology , Hypothalamus/pathology , Inflammation/genetics , Infusions, Intraventricular , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Receptors, Gastrointestinal Hormone/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
12.
Article in English | MEDLINE | ID: mdl-32595600

ABSTRACT

Obesity is a prominent metabolic disease that predisposes individuals to multiple comorbidities, including type 2 diabetes mellitus, cardiovascular diseases, and cancer. Elevated circulating levels of fatty acids contribute to the development of obesity, in part, by targeting the hypothalamus. Palmitate, the most abundant circulating saturated fatty acid, has been demonstrated to dysregulate NAMPT and circadian clock proteins, as well as induce neuroinflammation. These effects ultimately result in hypothalamic dysregulation of feeding behavior and energy homeostasis. NAMPT is the rate-limiting enzyme of the NAD+ salvage pathway and its expression is under the control of the circadian clock. NAD+ produced from NAMPT can modulate the circadian clock, demonstrating bidirectional interactions between circadian and metabolic pathways. Using NPY/AgRP-expressing mHypoE-46 neurons as well as the novel mHypoA-BMAL1-WT/F and mHypoA-BMAL1-KO/F cell lines, we studied whether there were any interactions between NAMPT and the core circadian clock protein BMAL1 in the palmitate-mediated induction of neuroinflammation. We report that palmitate altered Nampt, Bmal1, Per2 and the inflammatory genes Nf-κb, IκBα, Il-6, and Tlr4. Contrary to studies performed with peripheral tissues, the palmitate-mediated induction in Nampt was independent of BMAL1, and basal Nampt levels did not appear to exhibit rhythmic expression. Palmitate-induced downregulation of Bmal1 and Per2 was independent of NAMPT. However, NAMPT and BMAL1 were both involved in the regulation of Nf-κb, IκBα, Il-6, and Tlr4, as NAMPT inhibition resulted in the repression of basal Nf-κb and IκBα and normalized palmitate-mediated increases in Il-6, and Tlr4. On the other hand, BMAL1 deletion repressed basal Nf-κb, but increased basal Il-6. We conclude that NAMPT and BMAL1 do not interact at the transcriptional level in hypothalamic neurons, but are independently involved in the expression of inflammatory genes.


Subject(s)
ARNTL Transcription Factors/physiology , Cytokines/metabolism , Gene Expression Regulation/drug effects , Hypothalamus/pathology , Inflammation/pathology , Neurons/pathology , Nicotinamide Phosphoribosyltransferase/metabolism , Palmitates/pharmacology , Animals , Cytokines/genetics , Female , Hypothalamus/drug effects , Hypothalamus/immunology , Hypothalamus/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators , Male , Mice , Mice, Knockout , Neurons/drug effects , Neurons/immunology , Neurons/metabolism , Nicotinamide Phosphoribosyltransferase/genetics
13.
Mol Cells ; 43(5): 431-437, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32392909

ABSTRACT

The hypothalamus is a crucial organ for the maintenance of appropriate body fat storage. Neurons in the hypothalamic arcuate nucleus (ARH) detect energy shortage or surplus via the circulating concentrations of metabolic hormones and nutrients, and then coordinate energy intake and expenditure to maintain energy homeostasis. Malfunction or loss of hypothalamic ARH neurons results in obesity. Accumulated evidence suggests that hypothalamic inflammation is a key pathological mechanism that links chronic overconsumption of a high-fat diet (HFD) with the development of obesity and related metabolic complications. Interestingly, overnutrition-induced hypothalamic inflammation occurs specifically in the ARH, where microglia initiate an inflammatory response by releasing proinflammatory cytokines and chemokines in response to excessive fatty acid flux. Upon more prolonged HFD consumption, astrocytes and perivascular macrophages become involved and sustain hypothalamic inflammation. ARH neurons are victims of hypothalamic inflammation, but they may actively participate in hypothalamic inflammation by sending quiescence or stress signals to surrounding glia. In this mini-review, we describe the current state of knowledge regarding the contributions of neurons and glia, and their interactions, to HFD-induced hypothalamic inflammation.


Subject(s)
Adipose Tissue/immunology , Hypothalamus/immunology , Inflammation/metabolism , Macrophages/immunology , Microglia/immunology , Neurons/immunology , Obesity/immunology , Animals , Cytokines/metabolism , Diet, High-Fat , Energy Metabolism , Humans , Immunity, Cellular , Neurogenic Inflammation
14.
Dev Psychobiol ; 62(6): 749-757, 2020 09.
Article in English | MEDLINE | ID: mdl-32115686

ABSTRACT

During infection, sickness behaviors, such as a hunched stance with piloerection, can facilitate host resistance by supporting the generation and maintenance of fever. Fever, in turn, is mediated by hypothalamic neuroimmune signaling. Sickness behaviors, however, can also be influenced by social stimuli. In this study, guinea pig pups were injected with lipopolysaccharide to simulate a bacterial infection and then exposed to a novel, threatening environment while either with their mother or alone. We found that the presence of the mother suppressed sickness behavior, but enhanced fever, and had no measureable effect on gene expression of hypothalamic mediators of fever. This 3-way dissociation induced by the mother's presence is interpreted in terms of the differential adaptive consequences of behavioral and febrile responses for pups in this situation. The results contribute to a growing literature linking immunological and social processes.


Subject(s)
Behavior, Animal/physiology , Fear/physiology , Fever , Gene Expression/physiology , Hypothalamus , Illness Behavior/physiology , Mothers , Animals , Female , Fever/chemically induced , Fever/immunology , Fever/metabolism , Guinea Pigs , Hypothalamus/immunology , Hypothalamus/metabolism , Lipopolysaccharides/pharmacology , Male
15.
Sci Rep ; 10(1): 4073, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139801

ABSTRACT

Lipopolysaccharide (LPS) induces fever through cytokines like receptor-activator of nuclear factor κB ligand (RANKL), triggering mediators like prostaglandins (PG), endothelin-1 (ET-1), corticotrophin-releasing factor (CRF), substance P (SP) and endogenous opioids. LPS-induced fever is reduced in females compared with males except in ovariectomized (OVX) females which show increased fever mediated by PG. The present study aimed to identify the mediators involved in fever in intact and OVX female rats. Fever was induced with LPS (50 µg/kg) intraperitoneally or CRF (2.5 µg), ET-1 (1 pg), morphine (10 µg) and SP (500 ng) intracerebroventricularly in sham-operated and OVX rats. The role of RANKL was evaluated with osteoprotegerin (OPG, 1 µg, intracerebroventricularly). Expression of RANK, CRFI/II, ETB, µ-opioid (MOR) and NK1 receptors was evaluated by confocal microscopy. Besides LPS, only morphine induced fever in OVX rats while all mediators induced fever in sham-operated animals. OPG abolished LPS-induced fever in OVX but not sham-operated animals. Overall, fever involves similar central mediators in cycling females and males but only morphine induced fever in OVX females. Importantly, RANK/RANKL participates in LPS-induced fever in OVX females, as in males but not in cycling females.


Subject(s)
Cytokines/metabolism , Fever/etiology , Hypothalamus/immunology , Hypothalamus/metabolism , Lipopolysaccharides/toxicity , Ovariectomy/adverse effects , Analgesics, Opioid/metabolism , Animals , Corticotropin-Releasing Hormone/metabolism , Endothelin-1/metabolism , Female , Fever/metabolism , Fever/pathology , Hypothalamus/drug effects , Prostaglandins/metabolism , RANK Ligand/metabolism , Rats , Rats, Wistar , Substance P/metabolism
16.
Article in English | MEDLINE | ID: mdl-32132974

ABSTRACT

Purpose: To detect the presence of antipituitary (APA) and antihypothalamus antibodies (AHA) in subjects treated for brain cancers, and to evaluate their potential association with pituitary dysfunction. Methods: We evaluated 63 patients with craniopharyngioma, glioma, and germinoma treated with surgery and/or radiotherapy and/or chemotherapy at a median age of 13 years. Forty-one had multiple pituitary hormone deficiencies (MPHD), six had a single pituitary defect. GH was the most common defect (65.1%), followed by AVP (61.9%), TSH (57.1%), ACTH (49.2%), and gonadotropin (38.1%). APA and AHA were evaluated by simple indirect immunofluorescence method indirect immunofluorescence in patients and in 50 healthy controls. Results: Circulating APA and/or AHA were found in 31 subjects (49.2%) and in none of the healthy controls. In particular, 25 subjects out of 31 were APA (80.6%), 26 were AHA (83.90%), and 20 were both APA and AHA (64.5%). Nine patients APA and/or AHA have craniopharyngioma (29%), seven (22.6%) have glioma, and 15 (48.4%) have germinoma. Patients with craniopharyngioma were positive for at least one antibody in 39.1% compared to 33.3% of patients with glioma and to 78.9% of those with germinoma with an analogous distribution for APA and AHA between the three tumors. The presence of APA or AHA and of both APA and AHA was significantly increased in patients with germinoma. The presence of APA (P = 0.001) and their titers (P = 0.001) was significantly associated with the type of tumor in the following order: germinomas, craniopharyngiomas, and gliomas; an analogous distribution was observed for the presence of AHA (P = 0.002) and their titers (P = 0.012). In addition, we found a significant association between radiotherapy and APA (P = 0.03). Conclusions: Brain tumors especially germinoma are associated with the development of hypothalamic-pituitary antibodies and pituitary defects. The correct interpretation of APA/AHA antibodies is essential to avoid a misdiagnosis of an autoimmune infundibulo-neurohypophysitis or pituitary hypophysitis in patients with germinoma.


Subject(s)
Autoantibodies/blood , Brain Neoplasms/epidemiology , Cancer Survivors/statistics & numerical data , Hypothalamus/immunology , Pituitary Diseases/epidemiology , Pituitary Gland/immunology , Adolescent , Adult , Age of Onset , Autoimmune Diseases/blood , Autoimmune Diseases/epidemiology , Autoimmune Diseases/etiology , Brain Neoplasms/blood , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Case-Control Studies , Child , Child, Preschool , Craniopharyngioma/blood , Craniopharyngioma/epidemiology , Craniopharyngioma/immunology , Craniopharyngioma/therapy , Female , Follow-Up Studies , Germinoma/blood , Germinoma/epidemiology , Germinoma/immunology , Germinoma/therapy , Glioma/blood , Glioma/epidemiology , Glioma/immunology , Glioma/therapy , Humans , Male , Pituitary Diseases/blood , Pituitary Diseases/immunology , Pituitary Diseases/therapy , Pituitary Neoplasms/blood , Pituitary Neoplasms/epidemiology , Pituitary Neoplasms/immunology , Pituitary Neoplasms/therapy , Young Adult
17.
Article in English | MEDLINE | ID: mdl-31729296

ABSTRACT

BACKGROUND: According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE: Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION: Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.


Subject(s)
Cerebellum/immunology , Hypothalamus/immunology , Immune System/immunology , Neuroimmunomodulation/physiology , Neurosecretory Systems/immunology , Animals , Cerebellum/metabolism , Humans , Hypothalamus/metabolism , Immune System/metabolism , Neurosecretory Systems/metabolism
18.
Cells ; 8(12)2019 12 11.
Article in English | MEDLINE | ID: mdl-31835795

ABSTRACT

Beta-aminoisobutyric acid (BAIBA), a natural thymine catabolite, is involved in the beneficial effects of exercise on metabolic disorders. In particular, it has been reported to reverse the inflammatory processes observed in the peripheral organs of animal models of obesity. Therefore, this study aimed to investigate whether BAIBA improves hypothalamic inflammation, which is also tightly coupled with the development of obesity. We observed that treatment with BAIBA effectively reversed palmitic acid-induced hypothalamic inflammation and microglial activation in vivo. Consistent with these findings, we confirmed that BAIBA reversed body weight gain and increased adiposity observed in mice fed with a high-fat diet. Collectively, the current findings evidence the beneficial impacts of BAIBA on the imbalance of energy metabolism linked to hypothalamic inflammation.


Subject(s)
Aminoisobutyric Acids/administration & dosage , Encephalitis/drug therapy , Hypothalamus/drug effects , Microglia/immunology , Obesity/drug therapy , Palmitic Acid/adverse effects , Aminoisobutyric Acids/pharmacology , Animals , Cell Line , Cytokines/genetics , Cytokines/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/immunology , Energy Metabolism/drug effects , Humans , Hypothalamus/immunology , Male , Mice , Microglia/drug effects , Obesity/chemically induced , Obesity/complications
19.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731705

ABSTRACT

Adiponectin, an adipokine derived from the adipose tissue, manifests anti-inflammatory effects in the metabolically active organs and is, therefore, beneficial in various metabolic diseases associated with inflammation. However, the role of adiponectin in alleviating the hypothalamic inflammation connected to the pathogenesis of obesity has not yet been clearly interrogated. Here, we identified that the systemic administration of adiponectin suppresses the activation of microglia and thereby reverses the hypothalamic inflammation during short-term exposure to a high-fat diet. Additionally, we show that adiponectin induces anti-inflammatory effects in the microglial cell line subjected to an exogenous treatment with a saturated free fatty acid. In conclusion, the current study suggests that adiponectin suppresses the saturated free fatty acid-triggered the hypothalamic inflammation by modulating the microglial activation and thus maintains energy homeostasis.


Subject(s)
Adiponectin/therapeutic use , Diet, High-Fat/adverse effects , Hypothalamus/metabolism , Inflammation/drug therapy , Microglia/metabolism , Adiponectin/pharmacology , Animals , Cell Line , Cells, Cultured , Hypothalamus/drug effects , Hypothalamus/immunology , Immunoblotting , Immunohistochemistry , Inflammation/etiology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/immunology , Real-Time Polymerase Chain Reaction
20.
Fish Shellfish Immunol ; 95: 180-189, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31600595

ABSTRACT

Low levels of stresses cause eustress while high stressful situations result in distress. Female rainbow trout (Oncorhynchus mykiss) was reared under crowded conditions to mimic the stressful environment of intensive fishery production. Trout was stocked for 300 days with initial densities of 4.6 ±â€¯0.02 (final: 31.1 ±â€¯0.62), 6.6 ±â€¯0.03 (final: 40.6 ±â€¯0.77), and 8.6 ±â€¯0.04 (final: 49.3 ±â€¯1.09) kg/m3 as SD1, SD2 and SD3. We assessed molecular, cellular and organismal parameters to understand the flexibility of neuro-endocrine-immune network during stress. Trout with higher initial density (SD3) displayed the slightly activated hypothalamus-pituitary-interrenal (HPI) axis with positively increased antioxidant enzyme activities and anti-inflammatory cytokine transcriptions on day 60 or 120. These results indicated that low level of stress was capable of exerting eustress by activating neuro-endocrine-immune network with beneficial adaptation. Transition from eustress to distress was induced by the increased intensity and duration of crowding stress on day 240 and 300. The prolonged activation of HPI axis resulted in suppressed growth hormone-insulin-like growth factor (GH-IGF) axis, up-regulated cytokine transcriptions and severe reactive oxygen species stress. Stress means reset of neuro-endocrine-immune network with energy expenditure and redistribution. Digestive ability of trout with distress was also inhibited on day 240 and 300, indicating a decreased total energy supplement and energy distribution for functions are not necessary for surviving such as growth and reproduction. Consequently, we observed the dyshomeostasis of energy balance and neuro-endocrine-immune network of trout during long-term crowding conditions.


Subject(s)
Crowding , Endocrine Glands/immunology , Oncorhynchus mykiss/immunology , Stress, Physiological/immunology , Animals , Cytokines/immunology , Female , Hypothalamus/immunology , Pituitary Gland/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL