Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.003
Filter
Add more filters

Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1064-1072, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621913

ABSTRACT

This article explored the mechanism by which ginsenoside Re reduces hypoxia/reoxygenation(H/R) injury in H9c2 cells by regulating mitochondrial biogenesis through nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)/peroxisome prolife-rator-activated receptor gamma coactivator-1α(PGC-1α) pathway. In this study, H9c2 cells were cultured in hypoxia for 4 hours and then reoxygenated for 2 hours to construct a cardiomyocyte H/R injury model. After ginsenoside Re pre-administration intervention, cell activity, superoxide dismutase(SOD) activity, malondialdehyde(MDA) content, intracellular reactive oxygen species(Cyto-ROS), and intramitochondrial reactive oxygen species(Mito-ROS) levels were detected to evaluate the protective effect of ginsenoside Re on H/R injury of H9c2 cells by resisting oxidative stress. Secondly, fluorescent probes were used to detect changes in mitochondrial membrane potential(ΔΨ_m) and mitochondrial membrane permeability open pore(mPTP), and immunofluorescence was used to detect the expression level of TOM20 to study the protective effect of ginsenoside Re on mitochondria. Western blot was further used to detect the protein expression levels of caspase-3, cleaved caspase-3, Cyto C, Nrf2, HO-1, and PGC-1α to explore the specific mechanism by which ginsenoside Re protected mitochondria against oxidative stress and reduced H/R injury. Compared with the model group, ginse-noside Re effectively reduced the H/R injury oxidative stress response of H9c2 cells, increased SOD activity, reduced MDA content, and decreased Cyto-ROS and Mito-ROS levels in cells. Ginsenoside Re showed a good protective effect on mitochondria by increasing ΔΨ_m, reducing mPTP, and increasing TOM20 expression. Further studies showed that ginsenoside Re promoted the expression of Nrf2, HO-1, and PGC-1α proteins, and reduced the activation of the apoptosis-related regulatory factor caspase-3 to cleaved caspase-3 and the expression of Cyto C protein. In summary, ginsenoside Re can significantly reduce I/R injury in H9c2 cells. The specific mechanism is related to the promotion of mitochondrial biogenesis through the Nrf2/HO-1/PGC-1α pathway, thereby increasing the number of mitochondria, improving mitochondrial function, enhancing the ability of cells to resist oxidative stress, and alleviating cell apoptosis.


Subject(s)
Ginsenosides , NF-E2-Related Factor 2 , Organelle Biogenesis , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Caspase 3/metabolism , Signal Transduction , Oxidative Stress , Hypoxia , Myocytes, Cardiac , Apoptosis , Superoxide Dismutase/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621911

ABSTRACT

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Colonic Neoplasms , Mice , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Nude , Fluorouracil/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Hypoxia , ErbB Receptors , Neoplastic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor
3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621945

ABSTRACT

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Subject(s)
Diabetic Nephropathies , Vascular Endothelial Growth Factor A , Rats , Male , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Ultrafiltration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ischemia , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Fibrosis , Hypoxia , Signal Transduction , RNA, Messenger/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621976

ABSTRACT

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Subject(s)
Berberine Alkaloids , Hypoxia , Mitophagy , Phenylacetates , Humans , Mitophagy/physiology , Caspase 3 , Reactive Oxygen Species/metabolism , Apoptosis , Adenosine Triphosphate/pharmacology , Autophagy-Related Protein-1 Homolog/genetics , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Mitochondrial Proteins
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612570

ABSTRACT

Plants are exposed to various stressors, including pathogens, requiring specific environmental conditions to provoke/induce plant disease. This phenomenon is called the "disease triangle" and is directly connected with a particular plant-pathogen interaction. Only a virulent pathogen interacting with a susceptible plant cultivar will lead to disease under specific environmental conditions. This may seem difficult to accomplish, but soft rot Pectobacteriaceae (SRPs) is a group virulent of pathogenic bacteria with a broad host range. Additionally, waterlogging (and, resulting from it, hypoxia), which is becoming a frequent problem in farming, is a favoring condition for this group of pathogens. Waterlogging by itself is an important source of abiotic stress for plants due to lowered gas exchange. Therefore, plants have evolved an ethylene-based system for hypoxia sensing. Plant response is coordinated by hormonal changes which induce metabolic and physiological adjustment to the environmental conditions. Wetland species such as rice (Oryza sativa L.), and bittersweet nightshade (Solanum dulcamara L.) have developed adaptations enabling them to withstand prolonged periods of decreased oxygen availability. On the other hand, potato (Solanum tuberosum L.), although able to sense and response to hypoxia, is sensitive to this environmental stress. This situation is exploited by SRPs which in response to hypoxia induce the production of virulence factors with the use of cyclic diguanylate (c-di-GMP). Potato tubers in turn reduce their defenses to preserve energy to prevent the negative effects of reactive oxygen species and acidification, making them prone to soft rot disease. To reduce the losses caused by the soft rot disease we need sensitive and reliable methods for the detection of the pathogens, to isolate infected plant material. However, due to the high prevalence of SRPs in the environment, we also need to create new potato varieties more resistant to the disease. To reach that goal, we can look to wild potatoes and other Solanum species for mechanisms of resistance to waterlogging. Potato resistance can also be aided by beneficial microorganisms which can induce the plant's natural defenses to bacterial infections but also waterlogging. However, most of the known plant-beneficial microorganisms suffer from hypoxia and can be outcompeted by plant pathogens. Therefore, it is important to look for microorganisms that can withstand hypoxia or alleviate its effects on the plant, e.g., by improving soil structure. Therefore, this review aims to present crucial elements of potato response to hypoxia and SRP infection and future outlooks for the prevention of soft rot disease considering the influence of environmental conditions.


Subject(s)
Gammaproteobacteria , Solanum tuberosum , Solanum , Hypoxia , Oxygen , Agriculture
6.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 181-191, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597078

ABSTRACT

OBJECTIVES: To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS: Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS: The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS: Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.


Subject(s)
Drugs, Chinese Herbal , Panax , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Network Pharmacology , Phosphatidylinositol 3-Kinases , Hypoxia
7.
Sultan Qaboos Univ Med J ; 24(1): 103-108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38434470

ABSTRACT

Objectives: This study aimed to compare the high-flow nasal oxygen (HFNO) and supraglottic airway device (SAD) techniques in oncological patients undergoing endobronchial ultrasound (EBUS) and transbronchial needle aspiration (TBNA) to evaluate the efficacy of HFNO in them. Methods: This pilot study was conducted at Sultan Qaboos Comprehensive Cancer Care and Research Centre, Muscat, Oman, from May 2022 to March 2023. Patients undergoing EBUS TBNA under moderate sedation were quasi-randomised into the HFNO and SAD groups. The episodes and duration of hypoxia and the lowest level of oxygen saturation were the primary outcomes measured. Results: A total of 24 patients were included in the study (10 of them were in the HFNO group and 14 were in the SAD group), with an equal number of males and females. The duration of the procedure in both groups was similar (45 ± 20 and 44 ± 17 minutes in the HFNO and SAD groups, respectively). The mean lowest oxygen saturation in the HFNO group was 93.5 ± 4.5%, which was significantly higher than that of the SAD group (90 ± 3%; P <0.001). In both groups, maximum hypoxia occurred during the early phase of the procedure. However, the HFNO and SAD groups were similar in terms of the cumulative duration of hypotension (140 versus 95 seconds, respectively) and bradycardia (25 versus 40 seconds, respectively). Conclusion: HFNO is a good alternative to SAD and could be used safely and efficiently in patients undergoing EBUS TBNA.


Subject(s)
Hypoxia , Ultrasonography, Interventional , Female , Male , Humans , Pilot Projects , Biopsy, Fine-Needle , Oman
8.
ACS Appl Mater Interfaces ; 16(11): 13543-13562, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452225

ABSTRACT

We use low-molecular-weight branched polyethylenimine (PEI) to produce cytocompatible reduced graphene oxide quantum dots (rGOQD) as a photothermal agent and covalently bind it with the photosensitizer IR-820. The rGOQD/IR820 shows high photothermal conversion efficiency and produces reactive oxygen species (ROS) after irradiation with near-infrared (NIR) light for photothermal/photodynamic therapy (PTT/PDT). To improve suspension stability, rGOQD/IR820 was PEGylated by anchoring with the DSPE hydrophobic tails in DSPE-PEG-Mal, leaving the maleimide (Mal) end group for covalent binding with manganese dioxide/bovine serum albumin (MnO2/BSA) and targeting ligand cell-penetrating peptide (CPP) to synthesize rGOQD/IR820/MnO2/CPP. As MnO2 can react with intracellular hydrogen peroxide to produce oxygen for alleviating the hypoxia condition in the acidic tumor microenvironment, the efficacy of PDT could be enhanced by generating more cytotoxic ROS with NIR light. Furthermore, quercetin (Q) was loaded to rGOQD through π-π interaction, which can be released in the endosomes and act as an inhibitor of heat shock protein 70 (HSP70). This sensitizes tumor cells to thermal stress and increases the efficacy of mild-temperature PTT with NIR irradiation. By simultaneously incorporating the HSP70 inhibitor (Q) and the in situ hypoxia alleviating agent (MnO2), the rGOQD/IR820/MnO2/Q/CPP can overcome the limitation of PTT/PDT and enhance the efficacy of targeted phototherapy in vitro. From in vivo study with an orthotopic brain tumor model, rGOQD/IR820/MnO2/Q/CPP administered through tail vein injection can cross the blood-brain barrier and accumulate in the intracranial tumor, after which NIR laser light irradiation can shrink the tumor and prolong the survival times of animals by simultaneously enhancing the efficacy of PTT/PDT to treat glioblastoma.


Subject(s)
Antineoplastic Agents , Glioblastoma , Graphite , Photochemotherapy , Quantum Dots , Animals , Manganese Compounds/pharmacology , Manganese Compounds/chemistry , Glioblastoma/drug therapy , Quantum Dots/therapeutic use , Heat-Shock Proteins , Reactive Oxygen Species , Tumor Hypoxia , Oxides/pharmacology , Oxides/chemistry , Phototherapy , Hypoxia , Cell Line, Tumor , Tumor Microenvironment
9.
Article in English | MEDLINE | ID: mdl-38428624

ABSTRACT

Reduced blood flow (hypoxia) to the brain is thought to be the main cause of strokes because it deprives the brain of oxygen and nutrients. An increasing amount of evidence indicates that the Centella-Asiatica (HA-CA) hydroalcoholic extract has a variety of pharmacological benefits, such as antioxidant activity, neuroprotection, anti-inflammatory qualities, and angiogenesis promotion. Intermittent fasting (IF) has neurological benefits such as anti-inflammatory properties, neuroprotective effects, and the ability to enhance neuroplasticity. The current study evaluates the combined effect of IF (for 1, 6, and 12 days) along with HA-CA (daily up to 12 days) in adult zebrafish subjected to hypoxia every 5 min for 12 days followed by behavioral (novel tank and open-field tank test), biochemical (SOD, GSH-Px, and LPO), inflammatory (IL-10, IL-1ß, and TNF-α), mitochondrial enzyme activities (Complex-I, II, and IV), signaling molecules (AMPK, MAPK, GSK-3ß, Nrf2), and imaging/staining (H&E, TTC, and TEM) analysis. Results show that sub-acute hypoxia promotes the behavioral alterations, and production of radical species and alters the oxidative stress status in brain tissues of zebrafish, along with mitochondrial dysfunction, neuroinflammation, and alteration of signaling molecules. Nevertheless, HA-CA along with IF significantly ameliorates these defects in adult zebrafish as compared to their effects alone. Further, imaging analysis significantly provided evidence of infarct damage along with neuronal and mitochondrial damage which was significantly ameliorated by IF and HA-CA. The use of IF and HA-CA has been proven to enhance the physiological effects of hypoxia in all dimensions.


Subject(s)
Centella , Ischemic Stroke , Triterpenes , Animals , Zebrafish/metabolism , Centella/chemistry , Centella/metabolism , Intermittent Fasting , Glycogen Synthase Kinase 3 beta/pharmacology , Antioxidants/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Hypoxia
10.
Int J Clin Pharmacol Ther ; 62(4): 169-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431830

ABSTRACT

OBJECTIVE: The aim of this clinical study is to obtain evidence for the clinical efficacy of Bu-Shen-Jian-Pi formula (BSJP), a traditional Chinese medicine, used for the treatment of amyotrophic lateral sclerosis, a relatively rare, progressive and usually fatal disease possibly associated with alterations in tissue redox status, hypoxia, and muscular injury. BACKGROUND: The active agents in BSJP formula† causing apoptosis, modulation of redox changes, and alterations in the immune status have been studied previously by us using cell cultures. The findings from these investigations have been incorporated into pharmacology databases employed in our analysis of BSJP using network pharmacology analysis/artifical intelligence. This information has been used here in the design of the investigation and to optimize evaluation of the clinical efficacy and usefulness of this herbal medicine, as far as possible using evidence-based medicine criteria. MATERIALS AND METHODS: The design of the study was a randomized multi-center, controlled clinical trial in 127 patients with confirmed diagnoses of amyotrophic lateral sclerosis. Patients and investigator were double-blinded. Clinical efficacy was determined using the Amyotrophic Lateral Sclerosis Symptom Score in Integrative Treatment Scale (ALS-SSIT) and the Amyotrophic Lateral Sclerosis Rating Scale-Revised (ALSFRS-R), together with tests of limb muscle strength using the manual muscle test (MMT), forced vital capacity (FVC), and clinical chemistry laboratory tests over a 20-week observation period. RESULTS: The scores of ALS-SSIT in the BSJP group increased significantly (22%) after treatment. The ALSFRS-R score in the BSJP group decreased significantly after treatment (19%). The rate of decrease in muscle function (MMT score) in most BSJP patients was lower than that in the control group, where the differences in the scores for the trapezius and triceps brachii were statistically significant compared to the control group. The fall in FVC in the BJSP group was significantly slower than in the control group. There were no marked differences observed in the frequency of side effects. Serum vitamin D3 levels in the BSJP group showed greater increases compared to the control group. CONCLUSION: BSJP treatment reduced the rate of progression of amyotrophic lateral sclerosis according to the ALS-SSITS and ALSFRS scores and significantly reduced the rate of deterioration in muscle function in the limbs of amyotrophic lateral sclerosis patients. The modes of action of BSJP in treating amyotrophic lateral sclerosis are probably diverse and multi targeted, some of which may involve regulation of serum vitamin D3 and alleviation of the impairments in liver and kidney function.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/diagnosis , Medicine, Chinese Traditional , Network Pharmacology , Treatment Outcome , Hypoxia , Cholecalciferol , Muscles , Disease Progression
11.
Int J Clin Pharmacol Ther ; 62(4): 162-168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431829

ABSTRACT

OBJECTIVE: To examine the mitochondrial protective effects of icariin, naringenin, kaempferol, and formononetin, potentially active agents in Bu-Shen-Jian-Pi formula (BSJP) identified using network pharmacology analysis. MATERIALS AND METHODS: Mitochondrial protection activity was determined using a hypoxia-reoxygenation in vitro model based on the neuroblastoma cell line SH-SY5Y and measurements of anti-ferroptotic activity. RESULTS: Icariin, naringenin, kaempferol, and formononetin showed mitochondrial protective activity involving diverse signaling pathways. The cytoprotective effects of formononetin depended on the inhibition of ferroptosis. Hypoxia-reoxygenation stimulation induced ferroptosis in SH-SY5Y cells. DISCUSSION: Ferroptosis is a key mechanism in nervous system diseases and is associated with hypoxia-reoxygenation injury. Naringenin and kaempferol were devoid of anti-ferroptotic activity. CONCLUSION: Evidence has been obtained showing that the core components: icariin, naringenin, kaempferol, and formononetin in BSJP formula have anti-hypoxic and mitochondrial protective activity of potential clinical importance in the treatment of amyotrophic lateral sclerosis and patients with symptoms of hypoxia.


Subject(s)
Medicine, Chinese Traditional , Neuroblastoma , Humans , Kaempferols/pharmacology , Cell Line, Tumor , Network Pharmacology , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Oxidation-Reduction , Hypoxia/drug therapy , Treatment Outcome
12.
Phytomedicine ; 128: 155376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503152

ABSTRACT

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Subject(s)
Apoptosis , Endothelial Cells , Heme Oxygenase (Decyclizing) , Pulmonary Artery , Signal Transduction , Animals , Male , Rats , Apoptosis/drug effects , Endothelial Cells/drug effects , Glucosides/pharmacology , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phenols/pharmacology , Pulmonary Artery/drug effects , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , Rhodiola/chemistry , Signal Transduction/drug effects
13.
J Nat Med ; 78(3): 664-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427210

ABSTRACT

This study investigates the cardioprotective effects of Paeoniflorin (PF) on left ventricular remodeling following acute myocardial infarction (AMI) under conditions of hypobaric hypoxia. Left ventricular remodeling post-AMI plays a pivotal role in exacerbating heart failure, especially at high altitudes. Using a rat model of AMI, the study aimed to evaluate the cardioprotective potential of PF under hypobaric hypoxia. Ninety male rats were divided into four groups: sham-operated controls under normoxia/hypobaria, an AMI model group, and a PF treatment group. PF was administered for 4 weeks after AMI induction. Left ventricular function was assessed using cardiac magnetic resonance imaging. Biochemical assays of cuproptosis, oxidative stress, apoptosis, inflammation, and fibrosis were performed. Results demonstrated PF significantly improved left ventricular function and remodeling after AMI under hypobaric hypoxia. Mechanistically, PF decreased FDX1/DLAT expression and serum copper while increasing pyruvate. It also attenuated apoptosis, inflammation, and fibrosis by modulating Bcl-2, Bax, NLRP3, and oxidative stress markers. Thus, PF exhibits therapeutic potential for left ventricular remodeling post-AMI at high altitude by inhibiting cuproptosis, inflammation, apoptosis and fibrosis. Further studies are warranted to optimize dosage and duration and elucidate PF's mechanisms of action.


Subject(s)
Glucosides , Hypoxia , Monoterpenes , Myocardial Infarction , Oxidative Stress , Rats, Sprague-Dawley , Ventricular Remodeling , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Ventricular Remodeling/drug effects , Male , Rats , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Myocardial Infarction/drug therapy , Oxidative Stress/drug effects , Hypoxia/drug therapy , Apoptosis/drug effects , Disease Models, Animal , Ventricular Function, Left/drug effects
14.
Pharmacogenomics J ; 24(2): 8, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485921

ABSTRACT

BACKGROUND: Tibetan medicine Gaoyuan'an capsule (GYAC) is widely used to prevent pulmonary edema at high altitude, but the specific mechanism has not been explored. In this study, we analyzed the mechanism of GYAC in hypoxia tolerance, and provided a new idea for the prevention and treatment of altitude disease. METHODS: The effective components and corresponding targets of GYAC were screened out by the Chinese herbal medicine network database, and the key targets of hypoxia tolerance were retrieved by Genecards, OMIM and PubMed database. Cytoscape 3.7.2 was used to construct GYAC ingredient-target-hypoxia tolerance-related target network. GO function annotation and KEGG enrichment analysis were performed to predict the pathways in which target genes may be involved, and molecular docking was used to verify the binding ability of the compound to target genes. In vitro, the above results were further verified by molecular experiment. RESULTS: We found that GYAC can improve hypoxia tolerance by regulating various target genes, including IL6, IFNG, etc. The main regulatory pathways were HIF-1 signaling pathway. Molecular docking showed that the affinity between luteolin and target genes (IL6, IFNG) were better. In vitro, we observed that hypoxia can inhibit cell viability and promote apoptosis of H9C2 cell. And hypoxia can promote the expression of LDH. After the addition of luteolin, the decrease of cell viability, the increase of cell apoptosis, LDH release and the decrease of mitochondrial membrane potential were inhibited. Besides, inflammatory related factors (IL-6, IL-10, IL-2, IFNG and VEGFA) expression were also inhibited hypoxic cell models. CONCLUSIONS: The results of network pharmacology and molecular docking showed that luteolin, a monomeric component of GYAC, played a role in hypoxia tolerance through a variety of target genes, such as IL6, IFNG. What's more, we have discovered that luteolin can reduce the inflammatory response in cardiac myocytes, thereby alleviating mitochondrial damage, and ultimately enhancing the hypoxia tolerance of H9C2 cardiomyocytes.


Subject(s)
Drugs, Chinese Herbal , Interleukin-6 , Humans , Molecular Docking Simulation , Luteolin , Network Pharmacology , Hypoxia/drug therapy , Hypoxia/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
15.
Phytomedicine ; 128: 155529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503156

ABSTRACT

BACKGROUND/PURPOSE: Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS: The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKß and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS: The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION: Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.


Subject(s)
Blood-Brain Barrier , Energy Metabolism , Plant Extracts , Rhodiola , Animals , Rhodiola/chemistry , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Mice , Plant Extracts/pharmacology , Energy Metabolism/drug effects , Male , Apoptosis/drug effects , Glucosides/pharmacology , Disease Models, Animal , Phenols/pharmacology , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Altitude Sickness/drug therapy , Altitude Sickness/metabolism , Hypoxia/drug therapy
16.
Zygote ; 32(2): 161-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465746

ABSTRACT

Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.


Subject(s)
Apoptosis , Fertility , Granulosa Cells , Hypoxia , Melatonin , Oocytes , Oogenesis , Ovarian Follicle , Reactive Oxygen Species , Melatonin/pharmacology , Animals , Female , Oogenesis/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Mice , Hypoxia/complications , Hypoxia/physiopathology , Granulosa Cells/drug effects , Oocytes/drug effects , Oocytes/physiology , Ovarian Follicle/drug effects , Fertility/drug effects , Cell Proliferation/drug effects , Antioxidants/pharmacology
17.
Int J Biol Macromol ; 264(Pt 2): 130785, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471605

ABSTRACT

Chemotherapy remains one of the most widely used cancer treatment modalities in clinical practice. However, the characteristic microenvironment of solid tumors severely limits the anticancer efficacy of chemotherapy. In addition, a single treatment modality or one death pathway reduces the antitumor outcome. Herein, tumor-targeting O2 self-supplied nanomodules (CuS@DOX/CaO2-HA) are proposed that not only alleviate tumor microenvironmental hypoxia to promote the accumulation of chemotherapeutic drugs in tumors but also exert photothermal effects to boost drug release, penetration and combination therapy. CuS@DOX/CaO2-HA consists of copper sulfide (CuS)-loaded calcium peroxide (CaO2) and doxorubicin (DOX), and its surface is further modified with HA. CuS@DOX/CaO2-HA underwent photothermal treatment to release DOX and CaO2. Hyperthermia accelerates drug penetration to enhance chemotherapeutic efficacy. The exposed CaO2 reacts with water to produce Ca2+, H2O2 and O2, which sensitizes cells to chemotherapy through mitochondrial damage caused by calcium overload and a reduction in drug efflux via the alleviation of hypoxia. Moreover, under near infrared (NIR) irradiation, CuS@DOX/CaO2-HA initiates a pyroptosis-like cell death process in addition to apoptosis. In vivo, CuS@DOX/CaO2-HA demonstrated high-performance antitumor effects. This study provides a new strategy for synergistic enhancement of chemotherapy in hypoxic tumor therapy via combination therapy and multiple death pathways.


Subject(s)
Nanoparticles , Neoplasms , Humans , Hyaluronic Acid/therapeutic use , Hydrogen Peroxide , Doxorubicin , Neoplasms/drug therapy , Neoplasms/pathology , Phototherapy , Hypoxia , Cell Line, Tumor , Tumor Microenvironment
18.
Sci Rep ; 14(1): 7617, 2024 03 31.
Article in English | MEDLINE | ID: mdl-38556603

ABSTRACT

The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.


Subject(s)
Quercetin , Renin , Rats , Male , Animals , Quercetin/therapeutic use , Renin/metabolism , Catalase/metabolism , Aldosterone/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Hypoxia/metabolism , Antioxidants/metabolism , Oxidative Stress , Angiotensin I/pharmacology , Kidney/metabolism
19.
Chem Biol Interact ; 393: 110944, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38518851

ABSTRACT

Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Selenium , Animals , Humans , Mice , Acute Kidney Injury/chemically induced , Epithelial Cells/metabolism , Hypoxia , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium/pharmacology , Selenium-Binding Proteins/genetics , Selenium-Binding Proteins/metabolism
20.
Can Respir J ; 2024: 6038771, 2024.
Article in English | MEDLINE | ID: mdl-38505803

ABSTRACT

Introduction: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) contributes to a poor prognosis. Reliable biomarkers to predict adverse outcomes during hospitalization are important. Aim: To investigate the relationship between the serum cholinesterase (ChE) level and adverse clinical outcomes, including hypoxemia severity, hypercapnia, duration of hospital stay (DoHS), and noninvasive ventilation (NIV) requirement, in patients with AECOPD. Methods: Patients hospitalized with AECOPD in the Wuhu Hospital of Traditional Chinese Medicine between January 2017 and December 2021 were included. Results: A total of 429 patients were enrolled. The serum ChE level was significantly lower in patients with hypercapnia, who required NIV during hospitalization and who had a DoHS of >10 days, with an oxygenation index < 300. The ChE level was correlated negatively with the C-reactive protein level and neutrophil-to-lymphocyte ratio and correlated positively with the serum albumin level. Multivariate logistic regression analysis indicated that a serum ChE level of ≤4116 U/L (OR = 2.857, 95% CI = 1.46-5.58, p = 0.002) was associated significantly with NIV requirement. Conclusions: The serum ChE level was correlated significantly with complicating severe hypoxemia, hypercapnia, prolonged DoHS, and the need for NIV in patients hospitalized with AECOPD. The serum ChE level is a clinically important risk-stratification biomarker in patients hospitalized with AECOPD.


Subject(s)
Hypercapnia , Pulmonary Disease, Chronic Obstructive , Humans , Prognosis , Hypercapnia/complications , Cholinesterases , Pulmonary Disease, Chronic Obstructive/complications , Hypoxia/complications , Disease Progression , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL