Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Molecules ; 23(4)2018 04 17.
Article in English | MEDLINE | ID: mdl-29673163

ABSTRACT

A series of sp²-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 ß-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N'-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.


Subject(s)
Enzyme Inhibitors/therapeutic use , Gaucher Disease/drug therapy , Gaucher Disease/enzymology , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/genetics , Imino Sugars/therapeutic use , Molecular Chaperones/therapeutic use , 1-Deoxynojirimycin/therapeutic use , Fibroblasts/drug effects , Fibroblasts/metabolism , Gaucher Disease/genetics , Glucosamine/analogs & derivatives , Glucosamine/therapeutic use , Humans , Mutation
2.
Antiviral Res ; 138: 22-31, 2017 02.
Article in English | MEDLINE | ID: mdl-27908828

ABSTRACT

Iminosugars are host-directed antivirals with broad-spectrum activity. The iminosugar, N-butyl-deoxynojirimycin (NB-DNJ or Miglustat®), is used in humans for treatment of Gaucher's disease and has mild antiviral properties. More potent analogs of NB-DNJ have been generated and have demonstrated activity against a variety of viruses including flaviviruses, influenza, herpesviruses and filoviruses. In the current study, a panel of analogs based on NB-DNJ was analyzed for activity against Ebola (EBOV) and Marburg viruses (MARV). The antiviral activity of NB-DNJ (UV-1), UV-2, UV-3, UV-4 and UV-5 against both EBOV and MARV was demonstrated in Vero cells. Subsequent studies to examine the activity of UV-4 and UV-5 using rodent models of EBOV and MARV were performed. In vivo efficacy studies provided inconsistent data following treatment with iminosugars using filovirus mouse models. A tolerability study in nonhuman primates demonstrated that UV-4 could be administered at much higher dose levels than rodents. Since UV-4 was active in vitro, had been demonstrated to be active against influenza and dengue in vivo, and was being tested in a Phase 1 clinical trial, a small proof-of-concept nonhuman primate trial was performed to determine whether this antiviral candidate could provide clinical benefit to EBOV-infected individuals. Administration of UV-4B did not provide a clinical or survival benefit to macaques infected with EBOV-Makona; however, dosing of animals was not optimal in this study. Efficacy may be improved by thrice daily dosing (e.g. by nasogastric tube feeding) to match the efficacious dosing regimens demonstrated against dengue and influenza viruses.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ebolavirus/drug effects , Imino Sugars/pharmacology , Imino Sugars/therapeutic use , Marburgvirus/drug effects , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/agonists , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Chlorocebus aethiops , Disease Models, Animal , Dose-Response Relationship, Drug , Imino Sugars/administration & dosage , Imino Sugars/chemistry , Macaca , Mice , Models, Animal , Vero Cells
3.
Viruses ; 7(5): 2404-27, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25984714

ABSTRACT

Iminosugars are capable of targeting the life cycles of multiple viruses by blocking host endoplasmic reticulum α-glucosidase enzymes that are required for competent replication of a variety of enveloped, glycosylated viruses. Iminosugars as a class are approved for use in humans with diseases such as diabetes and Gaucher's disease, providing evidence for safety of this class of compounds. The in vitro antiviral activity of iminosugars has been described in several publications with a subset of these demonstrating in vivo activity against flaviviruses, herpesviruses, retroviruses and filoviruses. Although there is compelling non-clinical in vivo evidence of antiviral efficacy, the efficacy of iminosugars as antivirals has yet to be demonstrated in humans. In the current study, we report a novel iminosugar, UV-12, which has efficacy against dengue and influenza in mouse models. UV-12 exhibits drug-like properties including oral bioavailability and good safety profile in mice and guinea pigs. UV-12 is an example of an iminosugar with activity against multiple virus families that should be investigated in further safety and efficacy studies and demonstrates potential value of this drug class as antiviral therapeutics.


Subject(s)
Antiviral Agents/therapeutic use , Dengue/drug therapy , Imino Sugars/therapeutic use , Orthomyxoviridae Infections/drug therapy , Animals , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Disease Models, Animal , Female , Guinea Pigs , Imino Sugars/pharmacology , Male , Mice , Microbial Sensitivity Tests , Orthomyxoviridae/drug effects , Treatment Outcome
4.
Antimicrob Agents Chemother ; 56(12): 6379-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23070155

ABSTRACT

A key challenge faced by promising antiviral drugs, such as iminosugars, is in vivo delivery to achieve effective levels of drug without toxicity. Four iminosugars, all deoxynojirimycin (DNJ) derivatives-N-butyl DNJ (NB-DNJ), N-nonyl DNJ, N-(9-methoxynonyl) DNJ, and N-(6'-[4″-azido-2″-nitrophenylamino]hexyl)-1-DNJ (NAP-DNJ)-potently inhibited both the percentage of cells infected with dengue virus and release of infectious virus from primary human monocyte-derived macrophages, demonstrating their efficacy in primary cells. In a lethal antibody-dependent enhancement mouse model of dengue pathogenesis, free NB-DNJ significantly enhanced survival and lowered viral load in organs and serum. Liposome-mediated delivery of NB-DNJ, in comparison with free NB-DNJ, resulted in a 3-log(10) reduction in the dose of drug sufficient to enhance animal survival. The optimizing of the effective dose in this way could liberate the therapeutic potential of many cytotoxic antivirals against both dengue virus and a wide array of other viruses.


Subject(s)
Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Dengue Virus/drug effects , Dengue/drug therapy , Imino Sugars/administration & dosage , Imino Sugars/therapeutic use , 1-Deoxynojirimycin/administration & dosage , 1-Deoxynojirimycin/therapeutic use , Animals , Cell Survival/drug effects , Dengue/virology , Drug Carriers , Drug Delivery Systems , Gene Dosage , Humans , In Vitro Techniques , Liposomes , Macrophages/drug effects , Macrophages/microbiology , Mice , RNA, Viral/biosynthesis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction
5.
Future Med Chem ; 3(12): 1513-21, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21882944

ABSTRACT

For the purpose of this article, iminosugars are polyhydroxylated secondary and tertiary amines in which the molecules resemble monosaccharide sugars in which the ring oxygen is replaced by the nitrogen. The bicyclic structures may biologically resemble disaccharides. Very few iminosugars have been available up to now for evaluation of their pharmaceutical applications. The early compounds were discovered and selected for study due to glycosidase inhibition, which is now known to not be necessary for pharmacological activity and may cause off-target effects. Glyset® and Zavesca®, derived from the glucosidase-inhibiting natural product 1-deoxynojirimycin, are the first two examples of iminosugar drugs. Since the discovery of this first generation, many new natural products have been identified with a wide range of biological activities but few are widely available. Among the biological properties of these compounds are good oral bioavailability and very specific immune modulatory and chaperoning activity. Although the natural products from plants and microorganisms can have good specificity, modifications of the template natural products have been very successful recently in producing bioactive compounds with good profiles. The field of iminosugars continues to open up exciting new opportunities for therapeutic agent discovery and offers many new tools for precisely modifying carbohydrate structures and modulating glycosidase activity in vivo. Current efforts are directed towards a greater range of structures and a wider range of biochemical targets.


Subject(s)
Imino Sugars/chemistry , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Gaucher Disease/drug therapy , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/metabolism , Humans , Hyperglycemia/drug therapy , Imino Sugars/pharmacology , Imino Sugars/therapeutic use , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Virus Diseases/drug therapy
6.
Int J Clin Pharmacol Ther ; 47 Suppl 1: S111-7, 2009.
Article in English | MEDLINE | ID: mdl-20040321

ABSTRACT

Many genetic disorders are due to protein misfolding and excessive premature degradation in the endoplasmic reticulum (ER). When a gene mutation does not affect the functionality of the protein, it may still promote the premature clearance of the protein by ER-associated degradation (ERAD), resulting in a loss of function. Competitive inhibitors are often effective active-site-specific chaperones when used at sub-inhibitory concentrations. Active-site-specific chaperones assist in the folding of mutant lysosomal enzymes in the ER, thereby promoting their escape from ERAD, enhancing trafficking to the lysosome and increasing the level of residual enzyme activity. In Fabry disease, degradation of various mutant forms of a-galactosidase A (alpha-gal A) has been shown to take place in the ER as a result of protein misfolding. One of the most potent inhibitors of alpha-gal A, 1-deoxygalactonojirimycin, has also been shown to be effective in enhancing residual alpha-gal A activity in cultured fibroblasts and lymphoblasts established from patients with Fabry disease caused by a variety of missense mutations. Oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing a mutant form of human alpha-gal A (R301Q) yielded higher alpha-gal A activity in major tissues, compared with untreated transgenic mice.


Subject(s)
Binding Sites/drug effects , Fabry Disease/drug therapy , Imino Sugars/therapeutic use , Molecular Chaperones/therapeutic use , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , Animals , Enzyme Activators/therapeutic use , Fabry Disease/enzymology , Humans , Mice , Mice, Transgenic , Protein Folding , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
7.
Rejuvenation Res ; 9(2): 237-44, 2006.
Article in English | MEDLINE | ID: mdl-16706651

ABSTRACT

Metabolic storage disorders are caused by mutations in genes that result in insufficient activity of enzymes required for the catabolism of substances that arise from the turnover of senescent cells in the body. Among the most prevalent of these conditions are Gaucher disease and Fabry disease, which are caused by reduced activity of the housekeeping enzymes glucocerebrosidase and alpha-galactosidase A, respectively. Enzyme replacement therapy is extraordinarily effective for patients with Gaucher disease. It is under examination in patients with Fabry disease, and improvement of various clinical aspects in these patients has been documented. The blood-brain barrier prevents systemically administered enzymes from reaching the central nervous system. This limitation is a major impediment for the treatment of patients with enzyme deficiency disorders in whom the brain is involved. Alternatives to enzyme replacement therapy that have been initiated to treat systemic manifestations and brain involvement in patients with metabolic disorders include substrate reduction therapy, active site-specific chaperone therapy, and gene therapy. The present status and anticipated advances in the application of these therapeutic approaches are examined here.


Subject(s)
Fabry Disease/therapy , Gaucher Disease/therapy , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , Bone Marrow Transplantation , Enzyme Inhibitors/therapeutic use , Gangliosidosis, GM1/therapy , Genetic Therapy , Humans , Imino Sugars/therapeutic use , Piperidines/therapeutic use
8.
Glycobiology ; 15(10): 43R-52R, 2005 Oct.
Article in English | MEDLINE | ID: mdl-15901676

ABSTRACT

The inherited metabolic disorders of glycosphingolipid (GSL) metabolism are a relatively rare group of diseases that have diverse and often neurodegenerative phenotypes. Typically, a deficiency in catabolic enzyme activity leads to lysosomal storage of GSL substrates and in many diseases, several other glycoconjugates. A novel generic approach to treating these diseases has been termed substrate reduction therapy (SRT), and the discovery and development of N-alkylated imino sugars as effective and approved drugs is discussed. An understanding of the molecular mechanism for the inhibition of the key enzyme in GSL biosynthesis, ceramide glucosyltransferase (CGT) by N-alkylated imino sugars, has also lead to compound design for improvements to inhibitory potency, bioavailability, enzyme selectivity, and biological safety. Following a successful clinical evaluation of one compound, N-butyl-deoxynojirimycin [(NB-DNJ), miglustat, Zavesca], for treating type I Gaucher disease, issues regarding the significance of side effects and CNS access have been addressed as exposure of drug to patients has increased. An alternative experimental approach to treat specific glycosphingolipid (GSL) lysosomal storage diseases is to use imino sugars as molecular chaperons that assist protein folding and stability of mutant enzymes. The principles of chaperon-mediated therapy (CMT) are described, and the potential efficacy and preclinical status of imino sugars is compared with substrate reduction therapy (SRT). The increasing use of imino sugars for clinical evaluation of a group of storage diseases that are complex and often intractable disorders to treat has considerable benefit. This is particularly so given the ability of small molecules to be orally available, penetrate the central nervous system (CNS), and have well-characterized biological and pharmacological properties.


Subject(s)
Enzyme Inhibitors/therapeutic use , Glycosphingolipids/metabolism , Imino Sugars/therapeutic use , Sphingolipidoses/drug therapy , Animals , Drug Evaluation, Preclinical , Gaucher Disease/drug therapy , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Glycosphingolipids/biosynthesis , Humans , Sphingolipidoses/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL