Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Arch Insect Biochem Physiol ; 114(2): 1-21, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459157

ABSTRACT

A nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte-spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune-challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune-associated genes from a transcriptome generated by RNA-Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune-challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune-associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.


Subject(s)
Moths , Animals , Moths/genetics , Onions/genetics , RNA-Seq , Larva , Immunity/genetics , Hemocytes
2.
BMC Genomics ; 23(1): 578, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953779

ABSTRACT

Berberine hydrochloride is the main effective component of Coptis spp. used in Chinese herbal medicine and its underlying molecular mechanisms, responsible for inducing effects in crustacean species, are not fully understood. In this study, the molecular response of the crab Charybdis japonica to berberine hydrochloride exposure was studied using transcriptome sequencing. The survival rate, gene expression and activities of several immune enzymes were measured after berberine hydrochloride treatments, with or without injection of the pathogenic bacterium Aeromonas hydrophila. A total of 962 differentially expressed genes (464 up-regulated and 498 down-regulated) were observed during exposure to 100 mg/L of berberine hydrochloride and in the control group after 48 h. Enrichment analysis revealed that these genes are involved in metabolism, cellular processes, signal transduction and immune functions, indicating that exposure to berberine hydrochloride activated the immune complement system. This bioactive compound simultaneously activated fibrinogen beta (FGB), fibrinogen alpha (FGA), alpha-2-macroglobulin (A2M), kininogen (KNG), fibrinogen gamma chain (FGB), alpha-2-HS-glycoprotein (AHSG), caspase-8 (CASP8), cathepsin L (CTSL), adenylate cyclase 3 (Adcy3) and MMP1. Its action could significantly increase the survival rate of the crabs injected with A. hydrophila and promote the activity of LZM, Caspas8, FGA, ACP and AKP in the hepatopancreas. When A. hydrophila was added, the neutralization of 300 mg/L berberine hydrochloride maximized the activities of Caspas8, LZM, ACP and AKP. Our results provide a new understanding of the potential effects of berberine hydrochloride on the immune system mechanisms in crustaceans.


Subject(s)
Berberine , Brachyura , Animals , Berberine/pharmacology , Brachyura/genetics , Fibrinogen/pharmacology , Hepatopancreas , Immunity/genetics
3.
Mol Ther ; 30(3): 1018-1035, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34793975

ABSTRACT

Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.


Subject(s)
Alternative Splicing , Neoplasms , Humans , Immunity/genetics , Neoplasms/drug therapy , Neoplasms/therapy , Protein Isoforms/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/metabolism
4.
Biomolecules ; 11(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34680134

ABSTRACT

Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in breast cancer cells. Little is known about its effects on the tumor immune microenvironment. We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFß; p = 0.049), whereas in Cht+I2 tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ gene promoter (by increasing its unmethylated form) and silences TGFß in Cht+I2. In conclusion, our data showed that I2 supplements induce the activation of the immune response and that when combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in these responses are being analyzed, but preliminary data suggest that methylation/demethylation mechanisms could also participate.


Subject(s)
Breast Neoplasms/drug therapy , GATA3 Transcription Factor/genetics , Interferon-gamma/genetics , Iodine/administration & dosage , Transforming Growth Factor beta1/genetics , Adult , Aged , Angiogenesis Inhibitors/administration & dosage , Apoptosis/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , Immunity/genetics , Iodine/adverse effects , Macrophages/drug effects , Macrophages/immunology , Mexico , Middle Aged , RNA-Seq , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
5.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681661

ABSTRACT

Three Solanaceae hosts (TSHs), S. tuberosum, N. benthamiana and S. lycopersicum, represent the three major phylogenetic clades of Solanaceae plants infected by Phytophthora infestans, which causes late blight, one of the most devastating diseases seriously affecting crop production. However, details regarding how different Solanaceae hosts respond to P. infestans are lacking. Here, we conducted RNA-seq to analyze the transcriptomic data from the TSHs at 12 and 24 h post P. infestans inoculation to capture early expression effects. Macroscopic and microscopic observations showed faster infection processes in S. tuberosum than in N. benthamiana and S. lycopersicum under the same conditions. Analysis of the number of genes and their level of expression indicated that distinct response models were adopted by the TSHs in response to P. infestans. The host-specific infection process led to overlapping but distinct in GO terms and KEGG pathways enriched for differentially expressed genes; many were tightly linked to the immune response in the TSHs. S. tuberosum showed the fastest response and strongest accumulation of reactive oxygen species compared with N. benthamiana and S. lycopersicum, which also had similarities and differences in hormone regulation. Collectively, our study provides an important reference for a better understanding of late blight response mechanisms of different Solanaceae host interactions.


Subject(s)
Phytophthora infestans/physiology , Solanum tuberosum/metabolism , Transcriptome , Cluster Analysis , Host-Pathogen Interactions , Immunity/genetics , Phenotype , Plant Leaves/metabolism , Plant Leaves/parasitology , Principal Component Analysis , RNA-Seq , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Species Specificity
7.
Nutrients ; 13(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34444938

ABSTRACT

l-Arginine is an important nutrient in the infant diet that significantly regulates the maturation of the immune system in neonates, including the maturation of CD4+ T cells. The biological activities of CD4+ T cells differ substantially between neonates and adults, and these differences may be governed by epigenetic processes. Investigating these differences and the causative processes may help understand neonatal and developmental immunity. In this study, we compared the functional DNA methylation profiles in CD4+ T cells of neonates and adults, focusing on the role of l-arginine supplementation. Umbilical cord blood and adult CD4+ T cells were cultured with/without l-arginine treatment. By comparing DNA methylation in samples without l-arginine treatment, we found that CD4+ T cells of neonatal cord blood generally showed higher DNA methylation than those of adults (average CpG methylation percentage 0.6305 for neonate and 0.6254 for adult, t-test p-value < 0.0001), suggesting gene silencing in neonates. By examining DNA methylation patterns of CpG dinucleotides induced by l-arginine treatment, we found that more CpG dinucleotides were hypomethylated and more genes appeared to be activated in neonatal T-cells as compared with adult. Genes activated by l-arginine stimulation of cord blood samples were more enriched regarding immune-related pathways. CpG dinucleotides at IL-13 promoter regions were hypomethylated after l-arginine stimulation. Hypomethylated CpG dinucleotides corresponded to higher IL-13 gene expression and cytokine production. Thus, DNA methylation partially accounts for the mechanism underlying differential immune function in neonates. Modulatory effects of l-arginine on DNA methylation are gene-specific. Nutritional intervention is a potential strategy to modulate immune function of neonates.


Subject(s)
Arginine/administration & dosage , CD4-Positive T-Lymphocytes/drug effects , DNA Methylation/drug effects , Immunity/drug effects , Adult , CpG Islands , Dietary Supplements , Epigenesis, Genetic , Fetal Blood/metabolism , Gene Expression , Humans , Immunity/genetics , Infant, Newborn , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Promoter Regions, Genetic
8.
Genes (Basel) ; 12(8)2021 08 21.
Article in English | MEDLINE | ID: mdl-34440457

ABSTRACT

The inclusion of fat in livestock diets represents a valuable and cost-effective way to increase the animal's caloric intake. Beyond their caloric value, fatty acids can be understood in terms of their bioactivity, via the modulation of the ligand-dependent nuclear peroxisome proliferator-activated receptors (PPAR). Isotypes of PPAR regulate important metabolic processes in both monogastric and ruminant animals, including the metabolism of fatty acids (FA), the production of milk fat, and the immune response; however, information on the modulation of bovine PPAR by fatty acids is limited. The objective of this study was to expand our understanding on modulation of bovine PPAR by FA, both when used individually and in combination, in an immortalized cell culture model of bovine liver. Of the 10 FA included in the study, the greatest activation of the PPAR reporter was detected with saturated FA C12:0, C16:0, and C18:0, as well as phytanic acid, and the unsaturated FA C16:1 and C18:1. When supplemented in mixtures of 2 FA, the most effective combination was C12:0 + C16:0, while in mixtures of 3 FA, the greatest activation was caused by combinations of C12:0 with C16:0 and either C18:0, C16:1, or C18:1. Some mixtures display a synergistic effect that leads to PPAR activation greater than the sum of their parts, which may be explained by structural dynamics within the PPAR ligand-binding pocket. Our results provide fundamental information for the development of tailored dietary plans that focus on the use of FA mixtures for nutrigenomic purposes.


Subject(s)
Energy Intake/genetics , Fatty Acids/metabolism , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Adipose Tissue/metabolism , Animal Feed , Animals , Cattle , Fatty Acids/genetics , Fatty Acids/pharmacology , Female , Immunity/genetics , Lactation/drug effects , Lactation/genetics , Milk/metabolism , Nutrigenomics , Peroxisome Proliferator-Activated Receptors/metabolism
9.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34174187

ABSTRACT

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Subject(s)
Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology
10.
J Int Soc Sports Nutr ; 18(1): 19, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653365

ABSTRACT

BACKGROUND: In this study, we investigated the effects of supplementation and exercise on the expression of genes associated with inflammation like CCL2, CRP, IL1, IL6, IL10 mRNA in elderly women. METHODS: Twenty four participants divided randomly into two groups were subjected to 6 weeks of the same health training program (three times per week). SUP group (supplemented, n = 12, mean age 72.8 ± 5.26 years and mean body mass 68.1 ± 8.3 kg) received 1000 mg of Vitamin C/day during the training period, while CON group (control, n = 12, mean age 72.4 ± 5.5 years and body mass 67.7 ± 7.5 kg) received placebo. RESULTS: No significant changes in IL-1, IL-6, IL-10 and CRP mRNA were observed within and between groups. However, there was a clear tendency of a decrease in IL-6 (two-way ANOVA, significant between investigated time points) and an increase in IL-10 mRNA noted in the supplemented group. A significant decrease in CCL2 mRNA was observed only in the CON group (from 2^0.2 to 2^0.1, p = 0.01). CONCLUSIONS: It can be concluded, that 6 weeks of supplementation and exercise was too short to obtain significant changes in gene expression in leukocytes, but supplementation of 1000 mg vitamin C positively affected IL-6 and IL-10 expression - which are key changes in the adaptation to training. However, changes in body mass, IL1 and CCL2 were positive in CON group. It is possible that Vitamin C during 6 weeks of supplementation could have different effects on the expression of individual genes involved in the immune response. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Ascorbic Acid/administration & dosage , Gene Expression , Immunity/genetics , Physical Conditioning, Human/physiology , Vitamins/administration & dosage , Aged , Ascorbic Acid/blood , Body Composition , Body Mass Index , Chemokine CCL2/blood , Chemokine CCL2/genetics , Female , Humans , Interleukin-1/blood , Interleukin-1/genetics , Interleukin-10/blood , Interleukin-10/genetics , Interleukin-6/blood , Interleukin-6/genetics , Oxidative Stress , Oxygen Consumption , RNA, Messenger/blood , Receptors, Immunologic/blood , Receptors, Immunologic/genetics , Time Factors , Vitamins/blood
11.
Sci Immunol ; 6(57)2021 03 05.
Article in English | MEDLINE | ID: mdl-33674324

ABSTRACT

Pregnancy induces both humoral sensitization and T cell tolerance to paternal tissues.


Subject(s)
Immunity , Yin-Yang , Animals , Biomarkers , Female , Immunity/genetics , Immunity/immunology , Mice , Pregnancy
12.
J Ethnopharmacol ; 271: 113780, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33421600

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedium brevicornu Maxim, Dioscorea nipponica Makino, and Salvia miltiorrhiza Bunge formula (EDS) are three traditional Chinese medicines commonly combined and used to treat osteoarthritis (OA). However, the mechanism of its therapeutic effect on OA is still unclear. AIM OF THE STUDY: The aim of this study was to investigate the potential anti osteoarthritis mechanism of EDS in the treatment of OA rats' model by quantitative proteomics. MATERIALS AND METHODS: A papain-induced rat OA model was established, and then EDS was intragastrically administered for 28 days. A label-free quantification proteomics was performed to evaluate the holistic efficacy of EDS against OA and identify the possible protein profiles mechanisms. The expression levels of critical changed proteins were validated by RT-qPCR and Western blotting. The effects of EDS were then assessed by evaluating pathologic changes in the affected knee joint and measuring pressure pain threshold, acoustic reflex threshold, angle of joint curvature. RESULTS: Proteomics analysis showed that 62 proteins were significantly upregulated and 208 proteins were downregulated in OA group compared to control group. The changed proteins were involved in activation of humoral immunity response, complement cascade activation, leukocyte mediated immunity, acute inflammatory response, endocytosis regulation, and proteolysis regulation. The EDS treatment partially restored the protein profile changes. The protective effects of EDS on pathologic changes in OA rats' knee joint and pain threshold assessment were consisted with the proteomics results. CONCLUSIONS: The results suggest that EDS exerted synergistic therapeutic efficacies to against OA through suppressing inflammation, modulating the immune system, relieving joint pain, and attenuating cartilage degradation.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Immunity/drug effects , Inflammation/prevention & control , Osteoarthritis/prevention & control , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Complement System Proteins/drug effects , Complement System Proteins/genetics , Complement System Proteins/metabolism , Cytokines/blood , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Immunity/genetics , Inflammation/immunology , Knee Joint/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Osteoarthritis/chemically induced , Osteoarthritis/immunology , Osteoarthritis/pathology , Pain Threshold/drug effects , Papain/toxicity , Proteome/drug effects , Proteome/genetics , Proteome/immunology , Proteomics/methods , Rats, Wistar , Ribosomal Proteins/drug effects , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
13.
Indian J Med Res ; 152(3): 296-302, 2020 09.
Article in English | MEDLINE | ID: mdl-33107490

ABSTRACT

Background & objectives: Zinc alters gene expression mainly by binding to a site on the transcription factor. Genome-wide expression studies have shown early repression of genes related to zinc and immunity in adult patients with sepsis. The present study was conducted to evaluate the role of zinc supplementation on relative expression of immune response genes in neonatal sepsis. Methods: In the present study, a sample of convenience of 22 neonates each was selected from the zinc supplemented and control groups using random numbers for expression of immune-related genes by zinc supplementation. These neonates with sepsis were earlier randomized into two groups: with and without zinc supplementation in addition to standard antibiotics and supportive care. Relative expression of immune response genes were analyzed for 22 neonates in each group using quantitative real-time PCR for calprotectin (S100A8/A9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), toll-like receptor-4 (TLR-4), cluster of differentiation 14 (CD14) and lipopolysaccharide-binding protein (LBP) genes. Results: An increase in serum zinc levels was observed in zinc-supplemented group compared to controls. S100A8 gene showed downregulation by three-fold (P <0.001) and S100A9 gene showed upregulation by two-fold (P <0.05) in zinc group compared to controls. CD14 gene showed upregulation by one-fold in zinc-supplemented group compared to controls (P <0.05). No significant fold changes were observed with respect to TNF-α, IL-6, LBP and TLR-4 genes between the two groups. Interpretation & conclusions: The results of our preliminary study showed that the zinc supplementation might modulates the relative expression of immune-related genes involved in sepsis pathway among neonates. However, studies with larger sample size are needed to be done to provide a better picture on the outcome by gene expression in neonatal sepsis by zinc supplementation.


Subject(s)
Neonatal Sepsis , Sepsis , Dietary Supplements , Humans , Immunity/genetics , Infant, Newborn , Neonatal Sepsis/drug therapy , Neonatal Sepsis/genetics , Sepsis/drug therapy , Sepsis/genetics , Tumor Necrosis Factor-alpha/genetics , Zinc
14.
Front Immunol ; 11: 1502, 2020.
Article in English | MEDLINE | ID: mdl-32903657

ABSTRACT

A 10-week feeding experiment was conducted to reveal the immune mechanism for soybean meal-induced enteritis (SBMIE) in hybrid grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. Four isonitrogenous and isolipidic diets were formulated by replacing 0, 10, 30, and 50% fish meal protein with soybean meal (namely FM, SBM10, SBM30, and SBM50, respectively). The weight gain rate of the SBM50 group was significantly lower than those of the other groups. Plica height, muscular layer thickness, and goblet cells of the distal intestine in the SBM50 group were much lower than those in the FM group. The intestinal transcriptomic data, including the transcriptome and miRNAome, showed that a total of 6,390 differentially expressed genes (DEGs) and 92 DEmiRNAs were identified in the SBM50 and FM groups. DEmiRNAs (10 known and 1 novel miRNAs) and their DE target genes were involved in immune-related phagosome, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, and the intestinal immune network for IgA production pathways. Our study is the first to offer transcriptomic and small RNA profiling for SBMIE in hybrid grouper. Our findings offer important insights for the understanding of the RNA profile and further elucidation of the underlying molecular immune mechanism for SBMIE in carnivorous fish.


Subject(s)
Enteritis/immunology , Fish Diseases/immunology , Fishes/physiology , MicroRNAs/genetics , RNA, Messenger/genetics , Animals , Cytotoxicity, Immunologic , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Immunity/genetics , Immunoglobulin A/biosynthesis , Integrative Medicine , MicroRNAs/immunology , Phagocytosis , Sequence Analysis, RNA
15.
Dev Comp Immunol ; 109: 103717, 2020 08.
Article in English | MEDLINE | ID: mdl-32348787

ABSTRACT

Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.


Subject(s)
Anthozoa/immunology , Coral Reefs , Immunity/drug effects , Lipopolysaccharides/pharmacology , Animals , Anthozoa/genetics , Anthozoa/microbiology , Bacteria/classification , Bacteria/genetics , Ecosystem , Gene Expression Regulation/drug effects , Gene Ontology , Genotype , Host Microbial Interactions/genetics , Immunity/genetics , RNA, Ribosomal, 16S/genetics
16.
J Dairy Sci ; 102(12): 11609-11621, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31548065

ABSTRACT

MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miRBase.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.


Subject(s)
Cattle/physiology , Colostrum/physiology , Fatty Acids, Nonesterified/blood , Immunity/genetics , MicroRNAs/analysis , Milk/physiology , Animals , Animals, Newborn , Body Composition/genetics , Cattle/genetics , Cattle/immunology , Computational Biology , Female , Lactation , MicroRNAs/genetics , Parturition , Pregnancy , RNA Interference
17.
Sci Rep ; 9(1): 11155, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31371761

ABSTRACT

Tripterygium is a traditional Chinese medicine that has widely been used in the treatment of rheumatic disease. (5R)-5-hydroxytriptolide (LLDT-8) is an extracted compound from Tripterygium, which has been shown to have lower cytotoxicity and relatively higher immunosuppressive activity when compared to Tripterygium. However, our understanding of LLDT-8-induced epigenomic impact and overall regulatory changes in key cell types remains limited. Doing so will provide critically important mechanistic information about how LLDT-8 wields its immunosuppressive activity. The purpose of this study was to assess the effects of LLDT-8 on transcriptome including mRNAs and long non-coding RNA (lncRNAs) in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) by a custom genome-wide microarray assay. Significant differential expressed genes were validated by QPCR. Our work shows that 394 genes (281 down- and 113 up-regulated) were significantly differentially expressed in FLS responding to the treatment of LLDT-8. KEGG pathway analysis showed 20 pathways were significantly enriched and the most significantly enriched pathways were relevant to Immune reaction, including cytokine-cytokine receptor interaction (P = 4.61 × 10-13), chemokine signaling pathway (P = 1.01 × 10-5) and TNF signaling pathway (P = 2.79 × 10-4). Furthermore, we identified 618 highly negatively correlated lncRNA-mRNA pairs from the selected significantly differential lncRNA and mRNA including 27 cis-regulated and 591 trans-regulated lncRNA-mRNAs modules. KEGG and GO based function analysis to differential lncRNA also shown the enrichment of immune response. Finally, lncRNA-transcription factor (TF) and lncRNA-TF-mRNA co-expression network were constructed with high specific network characteristics, indicating LLDT-8 would influence the expression network within the whole FLS cells. The results indicated that the LLDT-8 would mainly influence the FLS cells systemically and specially in the process of immune related pathways.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Diterpenes/pharmacology , Immunity/genetics , Synoviocytes/immunology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Epigenomics , Female , Fibroblasts , Gene Expression Regulation/drug effects , Humans , Immunity/drug effects , Immunosuppressive Agents/pharmacology , Male , RNA, Long Noncoding
18.
J Dairy Sci ; 102(9): 8343-8351, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301830

ABSTRACT

Methionine (Met) is one of the 2 most limiting amino acids for milk production in dairy cow diets. The accepted "ideal" ratio of lysine (Lys) to Met (L:M) when formulating diets is 3:1. However, blood from cows fed corn silage-based diets without supplemental rumen-protected Met averages approximately 3.6:1 L:M. Recent in vivo research on cattle immunonutrition has revealed that the immune system could benefit from greater Met supply. To study more closely the effects of different L:M ratios, blood polymorphonuclear cells (PMN) were isolated from 5 Holstein cows in mid-lactation (238 ± 20 d postpartum, 33.8 ± 3.8 kg of milk/d; mean ± SD). The PMN were incubated at 3 different levels of L:M (3.6:1, 2.9:1, or 2.4:1) and stimulated with lipopolysaccharide (LPS) at either 0 or 50 µg/mL for 2 h at 37°C. Target genes were associated with cytokines, pathogen recognition, nuclear receptors, killing mechanisms, and Met and glutathione metabolism. Data were subjected to ANOVA using PROC MIXED in SAS, with L:M, LPS, and their interaction as fixed effects. Stimulation with LPS upregulated genes related to cytokines (IL1B, TNF, IL10 and IL6) and nuclear receptors, including nuclear factor kappa B (NFKB1) and glucocorticoid receptor (NR3C1), and downregulated the mRNA abundance of chemokine receptor 1 (CXCR1), lysozyme (LYZ) and glutathione reductase (GSR). A linear decrease was observed in the mRNA abundance of TNF when L:M was decreased. A similar response was observed for interleukin-1 receptor-associated kinase 1 (IRAK1) and NFKB1 abundance in cells stimulated with LPS (linear effect). A linear increase of LYZ mRNA expression as L:M decreased was detected in unstimulated cells. Furthermore, a decrease in L:M led to a linear decrease of superoxide dismutase 1 (SOD1) mRNA abundance in cells challenged with LPS. Overall, LPS challenge triggered the activation of isolated PMN from mid-lactation cows. However, data suggest the use of a shorter incubation time to capture the peak response and not the resolution of the inflammatory response as in the present study. Our results indicate a possible involvement of Met in modulating PMN inflammatory and oxidative stress status and in helping the resolution of inflammation after initial stimulation.


Subject(s)
Cattle/immunology , Gene Regulatory Networks , Immunity/genetics , Methionine/pharmacology , Neutrophils/immunology , Animals , Cattle/genetics , Cells, Cultured , Diet/veterinary , Dietary Supplements , Female , Lactation/physiology , Lipopolysaccharides/immunology , Methionine/administration & dosage , Milk/chemistry , Rumen/metabolism
19.
Mol Biol Rep ; 46(1): 947-955, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30523517

ABSTRACT

The objective of this study was to evaluate the toxic effects on bioaccumulation, oxidative stress, immune responses and immune-related genes expression of Channa argus exposed for 28 days with waterborne selenium (0, 50, 100, 200, and 400 µg/L). After 28 days, the order of Se accumulation in tissues was kidney > liver > spleen > intestine > gill > muscle. Antioxidant parameters in liver and spleen of C. argus evidenced an oxidative stress condition in waterborne selenium. In addition, immunological parameters and immune-related gene expression were all enhanced with an increase in Se expose levels. Our results suggest that waterborne Se exposure can induce considerable Se accumulation, oxidative stress and immunotoxic effects on C. argus.


Subject(s)
Fishes/genetics , Fishes/immunology , Gene Expression Regulation/drug effects , Immunity/genetics , Oxidative Stress , Selenium/metabolism , Selenium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Immunity/drug effects , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Spleen/drug effects , Spleen/metabolism
20.
BMC Evol Biol ; 18(1): 93, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29973156

ABSTRACT

BACKGROUND: Outbreaks caused by asexual lineages of fungal and oomycete pathogens are a continuing threat to crops, wild animals and natural ecosystems (Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ, Nature 484:186-194, 2012; Kupferschmidt K, Science 337:636-638, 2012). However, the mechanisms underlying genome evolution and phenotypic plasticity in asexual eukaryotic microbes remain poorly understood (Seidl MF, Thomma BP, BioEssays 36:335-345, 2014). Ever since the 19th century Irish famine, the oomycete Phytophthora infestans has caused recurrent outbreaks on potato and tomato crops that have been primarily caused by the successive rise and migration of pandemic asexual lineages (Goodwin SB, Cohen BA, Fry WE, Proc Natl Acad Sci USA 91:11591-11595, 1994; Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10:e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Cooke DEL, Cano LM, Raffaele S, Bain RA, Cooke LR, Etherington GJ, Deahl KL, Farrer RA, Gilroy EM, Goss EM, et al. PLoS Pathog 8:e1002940, 2012). However, the dynamics of genome evolution within these clonal lineages have not been determined. The objective of this study was to use a comparative genomics and transcriptomics approach to determine the molecular mechanisms that underpin phenotypic variation within a clonal lineage of P. infestans. RESULTS: Here, we reveal patterns of genomic and gene expression variation within a P. infestans asexual lineage by comparing strains belonging to the South American EC-1 clone that has dominated Andean populations since the 1990s (Yoshida K, Burbano HA, Krause J, Thines M, Weigel D, Kamoun S, PLoS Pathog 10e1004028, 2014; Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. eLife 2:e00731, 2013; Delgado RA, Monteros-Altamirano AR, Li Y, Visser RGF, van der Lee TAJ, Vosman B, Plant Pathol 62:1081-1088, 2013; Forbes GA, Escobar XC, Ayala CC, Revelo J, Ordonez ME, Fry BA, Doucett K, Fry WE, Phytopathology 87:375-380, 1997; Oyarzun PJ, Pozo A, Ordonez ME, Doucett K, Forbes GA, Phytopathology 88:265-271, 1998). We detected numerous examples of structural variation, nucleotide polymorphisms and loss of heterozygosity within the EC-1 clone. Remarkably, 17 genes are not expressed in one of the two EC-1 isolates despite apparent absence of sequence polymorphisms. Among these, silencing of an effector gene was associated with evasion of disease resistance conferred by a potato immune receptor. CONCLUSIONS: Our findings highlight the molecular changes underpinning the exceptional genetic and phenotypic plasticity associated with host adaptation in a pandemic clonal lineage of a eukaryotic plant pathogen. We observed that the asexual P. infestans lineage EC-1 can exhibit phenotypic plasticity in the absence of apparent genetic mutations resulting in virulence on a potato carrying the Rpi-vnt1.1 gene. Such variant alleles may be epialleles that arose through epigenetic changes in the underlying genes.


Subject(s)
Host-Pathogen Interactions/genetics , Immune Evasion/genetics , Immunity/genetics , Phytophthora infestans/genetics , Plant Diseases/immunology , Polymorphism, Genetic , Solanum tuberosum/immunology , Solanum tuberosum/microbiology , Gene Expression Regulation , Phylogeny , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL