Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092092

ABSTRACT

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Subject(s)
Bass , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Immunologic Factors/metabolism , Power, Psychological , Fish Diseases/prevention & control
2.
Mol Cell Neurosci ; 120: 103735, 2022 05.
Article in English | MEDLINE | ID: mdl-35562037

ABSTRACT

A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Ganoderma , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Fungal Proteins/metabolism , Fungal Proteins/pharmacology , Ganoderma/metabolism , Glutamates/metabolism , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Memory Disorders , Oxidative Stress
3.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216253

ABSTRACT

In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.


Subject(s)
Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Immunologic Factors/metabolism , Lipids/physiology , Macrophages/metabolism , Phospholipids/metabolism , Proteins/metabolism , Animals , Immunity/physiology , Inflammation/metabolism , Lipidomics/methods , Metabolome/physiology , Mice , Proteome/metabolism , RAW 264.7 Cells , Signal Transduction/physiology
4.
Article in English | MEDLINE | ID: mdl-33334298

ABSTRACT

Atherosclerosis, a major contributor to cardiovascular disease, is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes the recruitment of monocytes to the inflammatory sites and subsides pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 have to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of pro-inflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage have atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Macrophages/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology
5.
Cytokine ; 149: 155743, 2022 01.
Article in English | MEDLINE | ID: mdl-34662821

ABSTRACT

Immunotherapy has been applied in cancer treatments for many years as an alternative treatment method to radiotherapy, chemotherapy. It is well known that immunotherapy could suppress tumor formation by modulating the immune system of the host. The aim of the study is to investigate supportive therapy potential of acidophilus milk (AS) and propolis extract (PE) in the mouse xenograft breast cancer model. For this purpose, firstly cytotoxic effect of PE was determined by MTT assay against 4 T1 mouse breast cancer cells. Apoptotic effect of PE analyzed by flow cytometry. The antibacterial activity of PE was determined by the 96-well microplate broth-dilution method on Lactobacillus acidophilus LA-5. Then, Balb/c mice were injected subcutaneously with 4 T1 cells (2x105 cells/mouse) and also mice were given daily oral gavage with PE (66 mg/kg/day) and/or acidophilus milk (108 CFU/mL/mouse/day) for 14 days. The Balb/c mice were weighed throughout the study, and the tumor sizes were measured by caliper at the 14th day. The proliferation of splenocytes which collected spleen from mice was measured by MTT. CD8 + T cell response was analyzed by flow cytometry and results were evaluated in comparison with control and tumor control groups. The IC50 value for PE on 4 T1 cells was determined as 129.25 ± 1.90 µg/mL. The apoptotic effect of PE at IC50 concentration was determined as 3.3% of cells to late-apoptosis, 4.3% of cells to pro-apoptosis and 2.5% of cells to necrosis. The MIC and MBC values for PE on L. acidophilus LA-5 were 5000 ppm. The treatment of PE, AS and the combination of PE and AS were inhibited the tumor volumes by 59.16%, 28.29% and 63.39%, respectively. Acidophilus milk and PE combination significantly enhanced the ConA-, LPS- and PHA-induced splenocyte proliferation (P < 0.05). The acidophilus milk and PE combination were also found to stimulate IFN- γ production. In conclusion, the best anti-tumor effect was obtained by the combination of acidophilus milk and propolis.


Subject(s)
Breast Neoplasms/drug therapy , Lactobacillus acidophilus/physiology , Milk/microbiology , Propolis/pharmacology , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Immunologic Factors/metabolism , Mice , Mice, Inbred BALB C , Probiotics/pharmacology , Spleen/drug effects , Spleen/metabolism
6.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203809

ABSTRACT

Rhododendron (Ericaceae) extracts contain flavonoids, chromones, terpenoids, steroids, and essential oils and are used in traditional ethnobotanical medicine. However, little is known about the immunomodulatory activity of essential oils isolated from these plants. Thus, we isolated essential oils from the flowers and leaves of R. albiflorum (cascade azalea) and analyzed their chemical composition and innate immunomodulatory activity. Compositional analysis of flower (REOFl) versus leaf (REOLv) essential oils revealed significant differences. REOFl was comprised mainly of monoterpenes (92%), whereas sesquiterpenes were found in relatively low amounts. In contrast, REOLv was primarily composed of sesquiterpenes (90.9%), with a small number of monoterpenes. REOLv and its primary sesquiterpenes (viridiflorol, spathulenol, curzerene, and germacrone) induced intracellular Ca2+ mobilization in human neutrophils, C20 microglial cells, and HL60 cells transfected with N-formyl peptide receptor 1 (FPR1) or FPR2. On the other hand, pretreatment with these essential oils or component compounds inhibited agonist-induced Ca2+ mobilization and chemotaxis in human neutrophils and agonist-induced Ca2+ mobilization in microglial cells and FPR-transfected HL60 cells, indicating that the direct effect of these compounds on [Ca2+]i desensitized the cells to subsequent agonist activation. Reverse pharmacophore mapping suggested several potential kinase targets for these compounds; however, these targets were not supported by kinase binding assays. Our results provide a cellular and molecular basis to explain at least part of the beneficial immunotherapeutic properties of the R. albiflorum essential oils and suggest that essential oils from leaves of this plant may be effective in modulating some innate immune responses, possibly by inhibition of neutrophil migration.


Subject(s)
Oils, Volatile/chemistry , Rhododendron/chemistry , Flowers/chemistry , HL-60 Cells , Humans , Immunologic Factors/isolation & purification , Immunologic Factors/metabolism , Immunomodulation/drug effects , Monoterpenes/pharmacology , Neutrophils/drug effects , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Receptors, Formyl Peptide/drug effects , Receptors, Formyl Peptide/metabolism , Rhododendron/metabolism , Sesquiterpenes/pharmacology
7.
PLoS One ; 16(6): e0248479, 2021.
Article in English | MEDLINE | ID: mdl-34115763

ABSTRACT

The Coronavirus disease (COVID-19) caused by the virus SARS-CoV-2 has become a global pandemic in a very short time span. Currently, there is no specific treatment or vaccine to counter this highly contagious disease. There is an urgent need to find a specific cure for the disease and global efforts are directed at developing SARS-CoV-2 specific antivirals and immunomodulators. Ayurvedic Rasayana therapy has been traditionally used in India for its immunomodulatory and adaptogenic effects, and more recently has been included as therapeutic adjuvant for several maladies. Amongst several others, Withania somnifera (Ashwagandha), Tinospora cordifolia (Guduchi) and Asparagus racemosus (Shatavari) play an important role in Rasayana therapy. The objective of this study was to explore the immunomodulatory and anti SARS-CoV2 potential of phytoconstituents from Ashwagandha, Guduchi and Shatavari using network pharmacology and docking. The plant extracts were prepared as per ayurvedic procedures and a total of 31 phytoconstituents were identified using UHPLC-PDA and mass spectrometry studies. To assess the immunomodulatory potential of these phytoconstituents an in-silico network pharmacology model was constructed. The model predicts that the phytoconstituents possess the potential to modulate several targets in immune pathways potentially providing a protective role. To explore if these phytoconstituents also possess antiviral activity, docking was performed with the Spike protein, Main Protease and RNA dependent RNA polymerase of the virus. Interestingly, several phytoconstituents are predicted to possess good affinity for the three targets, suggesting their application for the termination of viral life cycle. Further, predictive tools indicate that there would not be adverse herb-drug pharmacokinetic-pharmacodynamic interactions with concomitantly administered drug therapy. We thus make a compelling case to evaluate the potential of these Rasayana botanicals as therapeutic adjuvants in the management of COVID-19 following rigorous experimental validation.


Subject(s)
Antiviral Agents/metabolism , Asparagus Plant/chemistry , COVID-19/metabolism , Immunologic Factors/metabolism , Molecular Docking Simulation/methods , Plant Extracts/metabolism , SARS-CoV-2/enzymology , Tinospora/chemistry , Withania/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Herb-Drug Interactions , Humans , Immunologic Factors/pharmacokinetics , India , Medicine, Ayurvedic/methods , Phytotherapy/methods , Plant Extracts/pharmacokinetics , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
8.
Fish Shellfish Immunol ; 115: 124-133, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34077788

ABSTRACT

Aquaculture is one of the important globally growing industries. It serves as an important food source of protein for human beings. With the expanding demand for the fish and their products it has become extremely important to improve the aquaculture practices. Aquaculture in India has witnessed huge mortalities caused by bacteria, viruses, fungi, nematodes etc. Aquatic weeds plants are harmful for aquaculture in many ways. Present study is aimed to overcome the disease caused by Aeromonas hydrophila (fish pathogenic bacteria) through feed supplementation of two aquatic weed plants (Azolla pinnata and Ceratophyllum demersum). The fish were divided into 6 groups: experimental groups (fish fed on supplementary feed at 5% and 2.5% concentration for individual plant and challenged with bacteria), positive control (fish fed on non-supplemented feed and challenged with bacteria) and negative control (fish fed on non-supplementary feed and not challenged with bacteria). It was observed that supplemented feed enhanced both cell mediated and humoral immunity in fish. Therefore, we advocate that feed formulated with incorporation of Azolla pinnata and Ceratophyllum demersum leaf powder at 5% and 2.5% could be used to prevent disease caused by A. hydrophila or can be used to enhance fish health by boosting its immune system. The results of this study also showed an improved digestibility in fish fed on supplemented feed.


Subject(s)
Adaptive Immunity/drug effects , Catfishes/physiology , Digestive System/drug effects , Ferns/chemistry , Immunity, Innate/drug effects , Immunologic Factors/metabolism , Magnoliopsida/chemistry , Animal Feed/analysis , Animals , Catfishes/immunology , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Immunologic Factors/administration & dosage , Male , Polypodiaceae
9.
Biomed Pharmacother ; 139: 111514, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33951576

ABSTRACT

Male immune infertility is a kind of disease that damages family life and happiness. The development of novel methods treating male immune infertility is of great significance. This study aimed to investigate the therapeutic effects of Chinese medicine Xiaokang Liuwei Dihuang decoction on immune infertility of male rats and explored the involved mechanisms. Model rats were established by lipopolysaccharide (LPS) injection. Anti-sperm antibody (AsAb) was detected by ELISA assay and testicular cell apoptosis was evaluated by TUNEL staining to verify the successful model establishment and screen suitable doses of Xiaokang Liuwei Dihuang decoction. Thirty rats were then divided into five groups (n = 6 per group): Control, LPS, Xiaokang Liuwei Dihuang decoction (15.12 g/kg, 30.24 g/kg and 45.36 g/kg). Results of HE staining showed that compared with LPS group, Xiaokang Liuwei Dihuang decoction treatments gradually improved the morphology of seminiferous tubules and elevated the number of spermatogenic cells as the doses increased. The sperm number and the levels of testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) in the serum of 15.12 g/kg, 30.24 g/kg and 45.36 g/kg Xiaokang Liuwei Dihuang decoction groups were much higher than those in LPS group. Results of TUNEL staining, ELISA assay and western blot showed that compared with LPS group, the testicular cell apoptosis and the levels of interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), AsAb, malondialdehyde (MDA) and toll-like receptor 2 (TLR2) in the testicular tissue significantly decreased in three Xiaokang Liuwei Dihuang decoction groups. Compared with LPS group, Bax expression in the 30.24 g/kg and 45.36 g/kg Xiaokang Liuwei Dihuang decoction groups was significantly down-regulated as well. In conclusion, Xiaokang Liuwei Dihuang decoction might ameliorate the immune infertility of male rats induced by LPS through regulating the levels of sex hormones, reactive oxygen species, pro-apoptotic and immune factors.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Drugs, Chinese Herbal/therapeutic use , Gonadal Steroid Hormones/metabolism , Infertility, Male/drug therapy , Infertility, Male/immunology , Reactive Oxygen Species/metabolism , Animals , Autoantibodies/analysis , Immunologic Factors/metabolism , Infertility, Male/chemically induced , Lipopolysaccharides , Male , Rats , Seminiferous Tubules/cytology , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Sperm Count , Spermatogenesis/drug effects , Spermatozoa/immunology , Testis/cytology , Testis/drug effects
10.
J Med Chem ; 64(7): 3794-3812, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33769811

ABSTRACT

The structures of melatonin and ferulic acid were merged into tertiary amide-based histone deacetylase 6 (HDAC6) inhibitors to develop multi-target-directed inhibitors for neurodegenerative diseases to incorporate antioxidant effects without losing affinity and selectivity at HDAC6. Structure-activity relationships led to compound 10b as a hybrid molecule showing pronounced and selective inhibition of HDAC6 (IC50 = 30.7 nM, > 25-fold selectivity over other subtypes). This compound shows comparable DPPH radical scavenging ability to ferulic acid, comparable ORAC value to melatonin and comparable Cu2+ chelating ability to EDTA. It also lacks neurotoxicity on HT-22 cells, exhibits a pronounced immunomodulatory effect, and is active in vivo showing significantly higher efficacy in an AD mouse model to prevent both Aß25-35-induced spatial working and long-term memory dysfunction at lower dose (0.3 mg/kg) compared to positive control HDAC6 inhibitor ACY1215 and an equimolar mixture of the three entities ACY1215, melatonin and ferulic acid, suggesting potentially disease-modifying properties.


Subject(s)
Alzheimer Disease/drug therapy , Coumaric Acids/therapeutic use , Histone Deacetylase 6/antagonists & inhibitors , Immunologic Factors/therapeutic use , Neuroprotective Agents/therapeutic use , Tryptamines/therapeutic use , Alzheimer Disease/enzymology , Alzheimer Disease/metabolism , Animals , Catalytic Domain , Cell Line, Transformed , Coumaric Acids/chemical synthesis , Coumaric Acids/metabolism , Histone Deacetylase 6/chemistry , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Immunologic Factors/chemical synthesis , Immunologic Factors/metabolism , Male , Melatonin/analogs & derivatives , Melatonin/metabolism , Melatonin/therapeutic use , Mice , Molecular Docking Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Structure-Activity Relationship , Tryptamines/chemical synthesis , Tryptamines/metabolism
11.
Carbohydr Polym ; 260: 117796, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33712144

ABSTRACT

The polysaccharide (DRP) was gained from dandelion roots by ultrasonic-assisted enzymatic extraction (UAEE) followed by two-step column purification. Then selenylation of DRP has been accomplished by HNO3-Na2SeO3 method. sDRP-1 and sDRP-2 with the selenium content of 170 ± 1.13 and 710 ± 4.00 µg/g were prepared for further structural characterization and bioactivity determination. DRP, sDRP-1, and sDRP-2 were composed of the same monosaccharides in different molar ratios, and the molecular weights of DRP, sDRP-1 and sDRP-2 were 8700, 7900, and 5600 Da, respectively. Fourier transform infrared (FT-IR) spectra confirmed that DRP, sDRP-1, and sDRP-2 possessed similar functional groups. The results of Congo red test, X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that DRP, sDRP-1, and sDRP-2 had no three helix structure, did not form single crystal, and all belonged to amorphous morphology. sDRP-1 and sDRP-2 possessed greater antioxidant activities in vitro than the native polysaccharide DRP. At the same time, the selenized polysaccharides showed better immunomodulatory ability and could be used as new-type immunoenhancer. The present conclusions provided theoretical basis for the new application of dandelion polysaccharides and the development of dandelion resources.


Subject(s)
Antioxidants/chemistry , Polysaccharides/chemistry , Selenium/chemistry , Taraxacum/metabolism , Animals , Cell Survival/drug effects , Hydrogen Peroxide/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Weight , Phagocytosis/drug effects , Plant Roots/metabolism , Polysaccharides/metabolism , Polysaccharides/pharmacology , RAW 264.7 Cells
12.
Res Vet Sci ; 135: 96-105, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33461120

ABSTRACT

The purpose of the study was to evaluate the protective effects of polygonatum sibiricum polysaccharide (PP), an important component of rhizome polygonatum, on cyclophosphamide (CY) induced immunosuppressed chickens. Four hundred and eighty one-day-old Erlang mountainous chickens were randomly allocated into four treatments. The main factors consisted of dietary supplement (PP at 0 or 800 mg/kg of diet) and immunosuppressive challenge (birds challenged with CY or treated with sterile saline). The results showed that PP enhanced chickens' growth performance via elevating daily weight gain (DWG), serum protein production, and decreasing feed conversion ratio (FCR). Moreover, physical measurements revealed that PP accelerated recovery of relative weights of immune organs and maintained their structure and function. Biochemical analysis indicated that PP significantly stimulated immunoglobulin and antioxidant indexes in serum, and improved the proliferation of peripheral blood T lymphocytes. In addition, PP promoted immune organs cells to enter into S and G2/M phases as well as inhibited the apoptosis in the spleen, thymus, and bursa of Fabricius. PP up regulated the expression of IL-2, IL-6 and IFN-γ genes. Therefore, PP performs a profile in antagonizing Cy-induced immunosuppression in chickens, and it seems that PP can be used as a potential immunostimulant agent.


Subject(s)
Chickens , Cyclophosphamide/pharmacology , Immunologic Factors/pharmacology , Immunosuppression Therapy/veterinary , Immunosuppressive Agents/pharmacology , Polygonatum/chemistry , Polysaccharides/pharmacology , Poultry Diseases/prevention & control , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Immunologic Factors/administration & dosage , Immunologic Factors/metabolism , Male , Polysaccharides/administration & dosage , Polysaccharides/metabolism , Random Allocation
13.
J Photochem Photobiol B ; 216: 112127, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33517070

ABSTRACT

Cutaneous melanoma is one of the aggressive cancers. Recent studies have shown that Photobiomodulation (PBM) can inhibit the proliferation of melanoma cells. However, it is not clear that the effect of PBM light mode on the inhibition of melanoma cells. Herein, we investigated the difference of influence between continuous wave (CW) and Pulse PBM on B16F10 melanoma cells. Our results suggested that Pulse mode had a more significant inhibition on the viability of B16F10 melanoma cells than CW mode under the PBM light parameter of wavelength, dose, and average irradiance at 457 nm, 1.14 J/cm2, and 0.19 mW/cm2. Besides, we revealed the differentially expressed genes of B16F10 melanoma cells under the various treatments of PBM light mode (not PBM treatment, CW mode, and Pulse mode) by RNA sequencing. Together, our data suggested that Pulse-PBM can improve the effect of PBM on cells significantly and there may be different molecular mechanisms between Pulse and CW mode including anti-proliferative and cell necrosis. The study shed new light on investigating the molecular mechanisms of various PBM light modes on B16F10 melanoma cells.


Subject(s)
Gene Expression Regulation, Neoplastic/radiation effects , Immunologic Factors/metabolism , Melanoma/radiotherapy , Skin Neoplasms/radiotherapy , Transcriptome/radiation effects , Apoptosis/radiation effects , Cell Line, Tumor , Dose-Response Relationship, Radiation , Gene Expression Profiling , Humans , Light , Low-Level Light Therapy , Melanoma, Cutaneous Malignant
14.
Food Chem ; 334: 127475, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32688176

ABSTRACT

Although numerous types of organisms have been used to enrich selenium, a low-cost and efficient organism is yet to be identified. This study aimed to develop a new means of selenium enrichment using Tenebrio molitor larvae. Our results indicated that the total selenium content in larvae was increased 83-fold to 54.21 ± 1.25 µg/g, and of this content, organic selenium accounted for over 97% after feeding the larvae with 20 µg/g of sodium selenite. Selenium was distributed unequally in the protein fraction with following order: alkali-soluble protein-bound selenium (36.32%) > salt-soluble protein-bound selenium (19.41%) > water-soluble protein-bound selenium (17.03%) > alcohol-soluble protein-bound selenium (3.21%). Additionally, 81% of the selenium within the soluble proteins was distributed in subunits possessing molecular weights of <40 kDa. After hydrolysis by alcalase, the protein hydrolysate of selenium-enriched larvae possessing 75% selenium recovery exhibited stronger antioxidant and immunoregulatory activities than those of regular larvae.


Subject(s)
Antioxidants/pharmacology , Immunologic Factors/pharmacology , Insect Proteins/metabolism , Protein Hydrolysates/pharmacology , Selenium/pharmacokinetics , Tenebrio/metabolism , Adult , Amino Acids/analysis , Amino Acids/metabolism , Animals , Antioxidants/metabolism , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Hydrolysis , Immunologic Factors/metabolism , Insect Proteins/pharmacology , Larva/drug effects , Larva/metabolism , Mice , Protein Hydrolysates/metabolism , RAW 264.7 Cells , Selenium/analysis , Subtilisins/chemistry , Subtilisins/metabolism , Tenebrio/drug effects
15.
J Ethnopharmacol ; 267: 113512, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33223116

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jianqu, a classical formula of traditional Chinese medicine, is used clinically to treat symptoms like chill and fever headache, diarrhea and loss of appetite and act on patients with low immunity. However, the quality control of Jianqu fermentation is not well established, and its function in regulating the body's immunity still remains unclear. AIM OF THE STUDY: The present study firstly assesses the structure and diversity of fungal community during Jianqu fermentation and then investigates the immune regulating function of Jianqu extract in mouse model. MATERIALS AND METHOD: The high-throughput sequencing is conducted to analyze the diversity and distribution of fungal community during the fermentation process of Jianqu, and then fungi with a high frequency and relative abundance are isolated. The immunosuppressed mice are induced by using cyclophosphamide (CTX) and used to evaluate the immune regulating function of Jianqu extract from natural fermentation or directed fermentation, respectively. RESULTS: With the fermentation, the diversity and distribution of fungal community significantly changed. The number of OTU (operational taxonomic unit) was gradually decreased from 223 ± 1 in the early phase to 201 ± 11 in the middle phase and to 175 ± 32 in the later phase of Jianqu fermentation. Generally, in genus level, Millerozyma, Debaryomyces and Rhizomucor showed a significant increase and became dominant in the mid or later phase of fermentation, while the Aspergillus displayed a decrease following the fermentation. However, Saccharomycopsis is a dominate species in surveyed samples. Next, six fungi strains with a high frequency and relative abundance, including Saccharomycopsis fibuligera, Millerozyma farinose, Hyphopichia burtonii, Rhizomucor pusillus, Lichtheimia ramosa, and Monascus purpureus, are isolated successfully. Interestingly, directed fermentation for Jianqu with the six isolated fungi strains could achieve similar morphological characteristics with the natural fermentation. Consistently, Jianqu extract from directed fermentation demonstrated a similar therapeutic effect on immune response as that of naturally fermented Jianqu. CONCLUSIONS: We firstly showed the significant change of structural profiles of fungal communities during Jianqu fermentation, and successfully isolated six dominate fungi strains in Jianqu. Interestingly, directed fermentation for Jianqu with these isolated strains could achieve a similar morphological characteristics and immune-modulating function as natural fermentation. It was suggested that Jianqu fermentation with functional fungi instead of natural microbes provide a new approach for the improvement of the production and quality control of the traditional Chinese medicine of Jianqu.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Fermentation , Fungi/metabolism , Immune System/drug effects , Immunity/drug effects , Immunocompromised Host , Immunologic Factors/pharmacology , Animals , Antibody Formation/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cyclophosphamide/pharmacology , Drugs, Chinese Herbal/metabolism , Fungi/classification , Hemolysin Proteins/metabolism , Hypersensitivity, Delayed/immunology , Immune System/immunology , Immune System/metabolism , Immunologic Factors/metabolism , Immunosuppressive Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice, Inbred C57BL , Phagocytosis/drug effects
16.
Biochem Biophys Res Commun ; 534: 67-72, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33310190

ABSTRACT

Cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, is a target of thalidomide and thalidomide-derived immunomodulatory drugs (IMiDs). The binding of these IMiDs to CRBN alters the substrate specificity of the ligase, thereby mediating multiple effects that are exploited in cancer therapy. However, to date, it is not clear which other possible targets might be involved in the efficacy of IMiDs. One especially prominent effect of a number of thalidomide analogs is their ability to inhibit angiogenesis, which is typically enhanced in fluorinated analogs. So far, the involvement of CRBN in antiangiogenic effects is under debate. Here, starting from a systematic set of thalidomide analogs and employing a quantitative in vitro CRBN-binding assay, we study the correlation of fluorination, CRBN binding and antiangiogenic effects. We clearly identify fluorination to correlate both with CRBN binding affinity and with antiangiogenic effects, but do not find a correlation between the latter two phenomena, indicating that the main target for the antiangiogenic effects of thalidomide analogs still remains to be identified.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Angiogenesis Inhibitors/pharmacology , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Ubiquitin-Protein Ligases/metabolism , Angiogenesis Inhibitors/chemistry , Animals , Aorta/drug effects , Drug Evaluation, Preclinical , Halogenation , Human Umbilical Vein Endothelial Cells , Humans , Immunologic Factors/chemistry , Male , Rats, Sprague-Dawley , Structure-Activity Relationship , Thalidomide/analogs & derivatives
17.
Article in English | MEDLINE | ID: mdl-33031994

ABSTRACT

As the infected cases of COVID-19 reach more than 20 million with more than 778,000 deaths globally, an increase in psychiatric disorders including anxiety and depression has been reported. Scientists globally have been searching for novel therapies and vaccines to fight against COVID-19. Improving innate immunity has been suggested to block progression of COVID-19 at early stages, while omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to have immunomodulation effects. Moreover, n-3 PUFAs have also been shown to improve mood disorders, thus, future research is warranted to test if n-3 PUFAs may have the potential to improve our immunity to counteract both physical and mental impact of COVID-19.


Subject(s)
Anxiety/prevention & control , Coronavirus Infections/prevention & control , Depression/prevention & control , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Immunologic Factors/administration & dosage , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Anxiety/immunology , Anxiety/metabolism , Anxiety/virology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , Depression/immunology , Depression/metabolism , Depression/virology , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , Fatty Acids, Omega-3/immunology , Fatty Acids, Omega-3/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Immunologic Factors/immunology , Immunologic Factors/metabolism , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2
18.
PLoS One ; 15(9): e0239364, 2020.
Article in English | MEDLINE | ID: mdl-32991579

ABSTRACT

Natural products obtained from species of the genus Abuta (Menispermaceae) are known as ethnobotanicals that are attracting increasing attention due to a wide range of their pharmacological properties. In this study, the alkaloids stepharine and 5-N-methylmaytenine were first isolated from branches of Abuta panurensis Eichler, an endemic species from the Amazonian rainforest. Structure of the compounds was elucidated by a combination of 1D and 2D NMR spectroscopic and MS and HRMS spectrometric techniques. Interaction of the above-mentioned alkaloids with acetylcholinesterase enzyme and interleukins IL-6 and IL-8 was investigated in silico by molecular docking. The molecules under investigation were able to bind effectively with the active sites of the AChE enzyme, IL-6, and IL-8 showing affinity towards the proteins. Along with the theoretical study, acetylcholinesterase enzyme inhibition, cytotoxic, and immunomodulatory activity of the compounds were assessed by in vitro assays. The data obtained in silico corroborate the results of AChE enzyme inhibition, the IC50 values of 61.24µM for stepharine and 19.55µM for 5-N-methylmaytenine were found. The compounds showed cytotoxic activity against two tumor cell lines (K562 and U937) with IC50 values ranging from 11.77 µM to 28.48 µM. The in vitro assays revealed that both alkaloids were non-toxic to Vero and human PBMC cells. As for the immunomodulatory activity, both compounds inhibited the production of IL-6 at similar levels. Stepharine inhibited considerably the production of IL-8 in comparison to 5-N-methylmaytenine, which showed a dose dependent action (inhibitory at the IC50 dose, and stimulatory at the twofold IC50 one). Such a behavior may possibly be explained by different binding modes of the alkaloids to the interleukin structural fragments. Occurrence of the polyamine alkaloid 5-N-methylmaytenine was reported for the first time for the Menispermaceae family, as well as the presence of stepharine in A. panurensis.


Subject(s)
Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Computer Simulation , Immunologic Factors/pharmacology , Menispermaceae/chemistry , Alkaloids/metabolism , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cholinesterase Inhibitors/metabolism , Humans , Immunologic Factors/metabolism , Interleukin-6/chemistry , Interleukin-6/metabolism , Interleukin-8/chemistry , Interleukin-8/metabolism , Molecular Docking Simulation , Protein Conformation
19.
J Dairy Sci ; 103(11): 10074-10082, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32896406

ABSTRACT

Here, we examined the effects of Lonicera japonica extract (LJE) on lactation performance, antioxidant status, and endocrine and immune function in heat-stressed mid-lactation dairy cows. Twenty-four healthy Chinese Holstein mid-lactation dairy cows, all with similar milk yield (30.0 ± 1.0 kg/d), parity (2.5 ± 0.3), and days in milk (105 ± 5 d) were allocated to 4 groups using a randomized complete block design: a negative control group (without LJE supplementation; CON) and groups that received LJE at 14, 28, and 56 g/d. The experiment lasted 10 wk over a hot summer, with a pre-feeding period of 2 wk. Cows were exposed to heat stress, as the average temperature-humidity index was greater than 72. The results showed that LJE had no effect on respiration rate; however, it reduced the rectal temperature of dairy cows experiencing heat stress in both a linear and quadratic manner; the lowest (39.03°C) was recorded for the LJE-28 group, lower than the CON group. Supplementation with LJE did not affect dry matter intake, milk yield, or milk composition. The majority of biochemical parameters in serum were unaffected by supplementation with different amounts of LJE; the exception was creatinine, which was reduced quadratically. Compared with the CON group, serum triiodothyronine concentrations increased significantly in the LJE-28 group. Addition of LJE to the diet increased thyroxine concentrations quadratically; values peaked at 18.62 ng/mL in the LJE-28 group. Furthermore, supplementation with increasing amounts of LJE quadratically increased the activity of glutathione peroxidase and total antioxidant capacity in serum but decreased concentration of malondialdehyde. Although we detected no differences in the concentrations of IgA, IgM, or cytokines, dairy cows in the LJE-28 group had higher IgG and IL-4 concentrations than did cows in the CON group. Supplementation with LJE increased concentrations of IgG and IL-4 in the serum quadratically but decreased that of IL-2. Finally, heat shock protein 72 concentrations in the serum tended to fall quadratically as the amount of LJE increased. In summary, LJE had no negative effects on lactation performance but helped to alleviate heat stress by improving antioxidant status and promoting endocrine and immune functions. Supplementation with LJE at 28 g/d is recommended for lactating dairy cows experiencing heat stress during hot summers.


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Lactation/drug effects , Lonicera/chemistry , Milk/metabolism , Plant Extracts/administration & dosage , Animals , Antioxidants/metabolism , Cattle/immunology , Dairying , Diet/veterinary , Endocrine System/metabolism , Female , Glutathione Peroxidase/metabolism , HSP72 Heat-Shock Proteins/blood , Heat-Shock Response , Immunologic Factors/metabolism , Malondialdehyde/blood , Milk/chemistry , Oxidative Stress/drug effects , Parity , Pregnancy , Stress, Physiological
20.
Parasitol Res ; 119(11): 3705-3718, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32901341

ABSTRACT

Excretory-secretory products (ESPs) of parasitic helminths are well known to exert immunostimulation and immunomodulation in hosts. Immune regulation plays a key role in anti-tumour therapy. The present study explored the anti-tumour effect of ESPs released by Angiostrongylus cantonensis. In Hepa1-6 mouse tumour models, ESPs significantly reduced tumour growth. Tumour-bearing mice treated with ESPs had significantly higher CD3+, CD4+, and CD8+ T cell counts than those treated with Freund's adjuvant. In vitro, human hepatocarcinoma HepG2 cells, human lung cancer A549 cells, and normal human liver HL-7702 cells were co-incubated with ESPs for 24 h and 48 h. ESPs significantly accelerated HepG2 apoptosis but had no inhibitory effect on the proliferation of A549 and HL-7702 cells. Apoptotic HepG2 cells displayed condensed nuclei, apoptotic bodies, and swollen endoplasmic reticulum (ER). Expression of the endoplasmic reticulum stress (ERS)-related factors activating transcription factor 6 (ATF6) and C/EBP-homologous protein (CHOP) in HepG2 cells increased with increasing ESP concentration and treatment time. Calreticulin (CRT) is a key effector protein of ESPs, and recombinant calreticulin (rCRT) was produced in BL21 Escherichia coli (E. coli). In contrast to ESPs, rCRT markedly reduced the proliferation of HepG2 cells. The expression levels of ATF6 and CHOP in HepG2 cells treated with 30 µg/mL rCRT significantly increased at 48 h. Notably, these findings synergistically suggest that ESPs and rCRT are promising candidates for anti-tumour immunotherapy.


Subject(s)
Angiostrongylus cantonensis/metabolism , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , A549 Cells , Angiostrongylus cantonensis/genetics , Animals , Apoptosis/drug effects , Calreticulin/genetics , Calreticulin/metabolism , Calreticulin/pharmacology , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/pharmacology , Hep G2 Cells , Humans , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Mice , Neoplasms/pathology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL