Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Rep ; 11(1): 22946, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824341

ABSTRACT

Brewer's spent grain (BSG) is the largest by-product originated from the brewery industry with a high potential for producing carbohydrases by solid-state fermentation. This work aimed to test the efficacy of a carbohydrases-rich extract produced from solid-state fermentation of BSG, to enhance the digestibility of a plant-based diet for European seabass (Dicentrarchus labrax). First, BSG was fermented with A. ibericus to obtain an aqueous lyophilized extract (SSF-BSG extract) and incorporated in a plant-based diet at increasing levels (0-control; 0.1%, 0.2%, and 0.4%). Another diet incorporating a commercial carbohydrases-complex (0.04%; Natugrain; BASF) was formulated. Then, all diets were tested in in vitro and in vivo digestibility assays. In vitro assays, simulating stomach and intestine digestion in European seabass, assessed dietary phosphorus, phytate phosphorus, carbohydrates, and protein hydrolysis, as well as interactive effects between fish enzymes and dietary SSF-BSG extract. After, an in vivo assay was carried out with European seabass juveniles fed selected diets (0-control; 0.1%, and 0.4%). In vitro digestibility assays showed that pentoses release increased 45% with 0.4% SSF-BSG extract and 25% with Natugrain supplemented diets, while amino acids release was not affected. A negative interaction between endogenous fish enzymes and SSF-BSG extract was observed in both diets. The in vivo digestibility assay corroborated in vitro data. Accordingly, the dietary supplementation with 0.4% SSF-BSG increased the digestibility of dry matter, starch, cellulose, glucans, and energy and did not affect protein digestibility. The present work showed the high potential of BSG to produce an added-value functional supplement with high carbohydrases activity and its potential contribution to the circular economy by improving the nutritional value of low-cost and sustainable ingredients that can be included in aquafeeds.


Subject(s)
Animal Feed , Aspergillus/metabolism , Bass/metabolism , Dietary Supplements , Digestion , Edible Grain/microbiology , Fermentation , Glycoside Hydrolases/metabolism , Plant Proteins/metabolism , Waste Products , Animals , Aquaculture , Edible Grain/enzymology , Glycoside Hydrolases/isolation & purification , Industrial Microbiology , Nutritive Value , Plant Proteins/isolation & purification
2.
Appl Environ Microbiol ; 87(23): e0026821, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34524902

ABSTRACT

Glycerol is an eco-friendly solvent that enhances plant biomass decomposition via glycerolysis in many pretreatment methods. Nonetheless, inefficient conversion of glycerol to ethanol by natural Saccharomyces cerevisiae limits its use in these processes. In this study, we have developed an efficient glycerol-converting yeast strain by genetically modifying the oxidation of cytosolic NAD (NADH) by an O2-dependent dynamic shuttle and abolishing both glycerol phosphorylation and biosynthesis in S. cerevisiae strain D452-2, as well as by vigorous expression of whole genes in the dihydroxyacetone (DHA) pathway (Candida utilis glycerol facilitator, Ogataea polymorpha glycerol dehydrogenase, endogenous dihydroxyacetone kinase, and triosephosphate isomerase). The engineered strain showed conversion efficiencies (CE) up to 0.49 g ethanol/g glycerol (98% of theoretical CE), with a production rate of >1 g liter-1 h-1 when glycerol was supplemented in a single fed-batch fermentation in a rich medium. Furthermore, the engineered strain converted a mixture of glycerol and glucose into bioethanol (>86 g/liter) with 92.8% CE. To the best of our knowledge, this is the highest reported titer of bioethanol produced from glycerol and glucose. Notably, we developed a glycerol-utilizing transformant from a parent strain which cannot utilize glycerol as a sole carbon source. The developed strain converted glycerol to ethanol with a productivity of 0.44 g liter-1 h-1 on minimal medium under semiaerobic conditions. Our findings will promote the utilization of glycerol in eco-friendly biorefineries and integrate bioethanol and plant oil industries. IMPORTANCE With the development of efficient lignocellulosic biorefineries, glycerol has attracted attention as an eco-friendly biomass-derived solvent that can enhance the dissociation of lignin and cell wall polysaccharides during the pretreatment process. Coconversion of glycerol with the sugars released from biomass after glycerolysis increases the resources for ethanol production and lowers the burden of component separation. However, low conversion efficiency from glycerol and sugars limits the industrial application of this process. Therefore, the generation of an efficient glycerol-fermenting yeast will promote the applicability of integrated biorefineries. Hence, metabolic flux control in yeast grown on glycerol will lead to the generation of cell factories that produce chemicals, which will boost biodiesel and bioethanol industries. Additionally, the use of glycerol-fermenting yeast will reduce global warming and generation of agricultural waste, leading to the establishment of a sustainable society.


Subject(s)
Ethanol , Glycerol , Saccharomyces cerevisiae , Ethanol/metabolism , Glucose , Glycerol/metabolism , Industrial Microbiology , Microorganisms, Genetically-Modified , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Solvents , Sugars
3.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34536471

ABSTRACT

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Subject(s)
Anabaena/metabolism , Hydroxybutyrates/metabolism , Industrial Microbiology/methods , Polyesters/metabolism , Anabaena/growth & development , Biomass , Phosphorus/metabolism
4.
BMC Biotechnol ; 21(1): 33, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947396

ABSTRACT

BACKGROUND: Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. RESULTS: The substrate optimization for α-amylase production by the Box-Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae, as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. CONCLUSIONS: The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect (p < 0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.


Subject(s)
Aspergillus oryzae/metabolism , Culture Media/metabolism , Fungal Proteins/biosynthesis , Plant Oils/metabolism , alpha-Amylases/biosynthesis , Aspergillus oryzae/genetics , Aspergillus oryzae/growth & development , Bioreactors/microbiology , Culture Media/chemistry , Enzyme Stability , Fermentation , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Industrial Microbiology/instrumentation , Industrial Microbiology/methods , Temperature , Waste Products/analysis , alpha-Amylases/chemistry , alpha-Amylases/genetics
5.
PLoS One ; 16(4): e0249089, 2021.
Article in English | MEDLINE | ID: mdl-33826653

ABSTRACT

The increasing demand for water, food and energy poses challenges for the world´s sustainability. Tropical palm oil is currently the major source of vegetable oil worldwide with a production that exceeds 55 million tons per year, while generating over 200 million tons of palm oil mill effluent (POME). It could potentially be used as a substrate for production of microalgal biomass though. In this study, the microalgal strain Chlamydomonas biconvexa Embrapa|LBA40, originally isolated from a sugarcane vinasse stabilization pond, was selected among 17 strains tested for growth in POME retrieved from anaerobic ponds of a palm oil industrial plant located within the Amazon rainforest region. During cultivation in POME, C. biconvexa Embrapa|LBA40 biomass productivity reached 190.60 mgDW • L-1 • d-1 using 15L airlift flat plate photobioreactors. Carbohydrates comprised the major fraction of algal biomass (31.96%), while the lipidic fraction reached up to 11.3% of dry mass. Reductions of 99% in ammonium and nitrite, as well as 98% reduction in phosphate present in POME were detected after 5 days of algal cultivation. This suggests that the aerobic pond stage, usually used in palm oil industrial plants to reduce POME inorganic load, could be substituted by high rate photobioreactors, significantly reducing the time and area requirements for wastewater treatment. In addition, the complete mitochondrial genome of C. biconvexa Embrapa|LBA40 strain was sequenced, revealing a compact mitogenome, with 15.98 kb in size, a total of 14 genes, of which 9 are protein coding genes. Phylogenetic analysis confirmed the strain taxonomic status within the Chlamydomonas genus, opening up opportunities for future genetic modification and molecular breeding programs in these species.


Subject(s)
Chlamydomonas/metabolism , Industrial Microbiology/methods , Palm Oil/metabolism , Phylogeny , Wastewater/microbiology , Biodegradation, Environmental , Biomass , Chlamydomonas/classification , Chlamydomonas/genetics , Genome, Mitochondrial
6.
Genes (Basel) ; 12(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806162

ABSTRACT

In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with leading technologies in copper extraction. It is foreseen that bioleaching will play a complementary role in either concentration-as it does in Minera Escondida Ltd. (MEL)-or chloride main leaching plants. In that way, it will be possible to maximize mines with installed solvent-extraction and electrowinning capacities that have not been operative since the depletion of their oxide ores. One of the main obstacles for widening bioleaching technology applications is the lack of knowledge about the key events and the attributes of the technology's critical events at the industrial level and mainly in ROM copper bioleaching industrial operations. It is relevant to assess the bed environment where the bacteria-mineral interaction occurs to learn about the limiting factors determining the leaching rate. Thus, due to inability to accurately determine in-situ key variables, their indirect assessment was evaluated by quantifying microbial metabolic-associated responses. Several candidate marker genes were selected to represent the predominant components of the microbial community inhabiting the industrial heap and the metabolisms involved in microbial responses to changes in the heap environment that affect the process performance. The microbial community's predominant components were Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus sp. Oxygen reduction, CO2 and N2 fixation/uptake, iron and sulfur oxidation, and response to osmotic stress were the metabolisms selected regarding research results previously reported in the system. After that, qPCR primers for each candidate gene were designed and validated. The expression profile of the selected genes vs. environmental key variables in pure cultures, column-leaching tests, and the industrial bioleaching heap was defined. We presented the results obtained from the industrial validation of the marker genes selected for assessing CO2 and N2 availability, osmotic stress response, as well as ferrous iron and sulfur oxidation activity in the bioleaching heap process of MEL. We demonstrated that molecular markers are useful for assessing limiting factors like nutrients and air supply, and the impact of the quality of recycled solutions. We also learned about the attributes of variables like CO2, ammonium, and sulfate levels that affect the industrial ROM-scale operation.


Subject(s)
Acidithiobacillus/metabolism , Acids/metabolism , Bacteria/metabolism , Biomarkers/metabolism , Copper/metabolism , Industrial Microbiology/methods , Laboratories/standards , Acidithiobacillus/growth & development , Acidithiobacillus/isolation & purification , Bacteria/growth & development , Bacteria/isolation & purification , Biodiversity , Copper/isolation & purification
7.
Bioprocess Biosyst Eng ; 44(7): 1577-1592, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33687550

ABSTRACT

The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.


Subject(s)
Biotechnology/methods , Industrial Microbiology/methods , Lipopeptides/chemistry , Palm Oil/chemistry , Streptomyces/metabolism , Batch Cell Culture Techniques/methods , Biomass , Bioreactors , Carbon , Culture Media , Fermentation , Surface-Active Agents , Time Factors
8.
Bioprocess Biosyst Eng ; 44(8): 1649-1658, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33687552

ABSTRACT

Pharmaceuticals such as oxytetracycline and paracetamol are extensive chemicals in the aquatic systems. In this study, the removal performance of oxytetracycline and paracetamol was investigated in the same enriched feed water medium by sequencing batch aerobic/anaerobic reactor system. In this context, oxytetracycline and paracetamol in the aerobic phase were removed by a maximum of 66 and 99.8% respectively. At the same time, nitrification and denitrification removals were obtained as 95% and 98%, respectively. On the other hand, oxytetracycline and equivalent O2 flux of oxytetracycline maximum were calculated as 1.18 and 2.14 mg/L.d and the maximum removal volumetric flux of paracetamol and its O2 equivalent flux were determined approximately as 136 and 303 mg/L.d, simultaneously. In addition, oxytetracycline and paracetamol were given to the system in an amount of maximum 1 and 500 mg/L, respectively. Paracetamol has not significantly affected nitrification and denitrification up to 120 mg/L, but 500 mg/L paracetamol has completely finished denitrification in this system. On the other hand, the water environment of sequencing batc reactor has turned into a pitch dark state at 500 mg/L paracetamol feeding. As a result, aerobic bacteria preferred paracetamol rather than oxytetracycline. In other words, aerobic bacteria preferred paracetamol/oxytetracycline as the second electron acceptor after O2.


Subject(s)
Acetaminophen/chemistry , Animal Feed , Bioreactors/microbiology , Oxytetracycline/chemistry , Acetaminophen/analysis , Acetates/chemistry , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Industrial Microbiology , Nitrification , Nitrogen/chemistry , Oxygen/chemistry , Oxytetracycline/analysis , Phosphorus/metabolism , Sewage/microbiology , Waste Disposal, Fluid , Wastewater , Water , Water Purification
9.
Bioprocess Biosyst Eng ; 44(7): 1501-1510, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666753

ABSTRACT

A major hindrance to the effective use of fungi in bioremediation is their inherent slow growth. Despite this, Aspergillus spp. may be used effectively. Our experiments demonstrate that bacteria, although inefficient in hydrocarbon degradation, may be effectively used in a consortium to overcome the lag in fungal utilization of petroleum hydrocarbons. Crude petroleum oil (160 mg; at 8 g/L) in minimal medium was inoculated with a previously isolated biofilm-forming consortium (Aspergillus sp. MM1 and Bacillus sp. MM1) as well as monocultures of each organism and incubated at 30 ℃ under static conditions. Residual oil was analyzed by GC-MS. Crude oil utilization of Aspergillus-Bacillus biofilm was 24 ± 1.4% in 3 days, increased to 66 ± 7% by day 5 and reached 99 ± 0.2% in 7 days. Aspergillus sp. MM1 monoculture degraded only 14 ± 6% in 5 days. However, at the end of 7 days, it was able to utilize 98 ± 2%. Bacillus sp. MM1 monoculture utilized 20 ± 4% in 7 days. This study indicates that there is a reduction of the fungal lag in bioremediation when it is in association with the bacterium. Although in monoculture, Bacillus sp. MM1 is inefficient in crude oil degradation, it synergistically enhances the initial rate of crude petroleum oil degradation of the fungus in the consortium. The rapid initial removal of as much crude oil as possible from contaminated sites is vital to minimize detrimental impacts on biodiversity.


Subject(s)
Aspergillus/metabolism , Bacillus/metabolism , Biofilms , Biotechnology/methods , Industrial Microbiology/methods , Petroleum/metabolism , Biodegradation, Environmental , Biodiversity , Gas Chromatography-Mass Spectrometry , Hydrocarbons/chemistry , Nutrients , Temperature
10.
Bioprocess Biosyst Eng ; 44(4): 831-839, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33683450

ABSTRACT

Sophorolipids (SLs) from Candida batistae has a unique structure that contains ω-hydroxy fatty acids, which can be used as a building block in the polymer and fragrance industries. To improve the production of this industrially important SLs, we optimized the culture medium of C. batistae for the first time. Using an optimized culture medium composed of 50 g/L glucose, 50 g/L rapeseed oil, 5 g/L ammonium nitrate and 5 g/L yeast extract, SLs were produced at a concentration of 24.1 g/L in a flask culture. Sophorolipids production increased by about 19% (28.6 g/L) in a fed-batch fermentation using a 5 L fermentor. Sophorolipids production more increased by about 121% (53.2 g/L), compared with that in a flask culture, in a fed-batch fermentation using a 50 L fermentor, which was about 787% higher than that of the previously reported SLs production (6 g/L). These results indicate that a significant increase in C. batistae-derived SLs production can be achieved by optimization of the culture medium composition and fed-batch fermentation. Finally, we successfully separated and purified the SLs from the culture medium. The improved production of SLs from C. batistae in this study will help facilitate the successful development of applications for the SLs.


Subject(s)
Bioreactors , Biotechnology/methods , Carbon/chemistry , Fermentation , Glycolipids/biosynthesis , Industrial Microbiology/methods , Oleic Acids/chemistry , Saccharomycetales/metabolism , Candida , Culture Media/chemistry , Fatty Acids , Glucose/chemistry , Nitrates/chemistry , Plant Oils/chemistry , Rapeseed Oil/chemistry , Surface-Active Agents/chemistry
11.
Bioprocess Biosyst Eng ; 44(7): 1383-1404, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33660099

ABSTRACT

Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.


Subject(s)
Aspergillus niger/enzymology , Biotechnology/methods , Cross-Linking Reagents/chemistry , Lipase/chemistry , Plant Oils/chemistry , Terpenes/chemistry , Biocatalysis , Culture Media/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Epoxy Compounds/chemistry , Glutaral/chemistry , Hydrogen-Ion Concentration , Industrial Microbiology/methods , Iodine/chemistry , Kinetics , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics
12.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498184

ABSTRACT

The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.


Subject(s)
Green Chemistry Technology/methods , Industrial Microbiology/methods , Metal Nanoparticles/chemistry , Nanomedicine/methods , Selenium/chemistry , Tellurium/chemistry , Animals , Humans , Metal Nanoparticles/therapeutic use
13.
Bioprocess Biosyst Eng ; 44(4): 901-911, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33486577

ABSTRACT

Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.) fulvescens, and the cytotoxicity and anti-cancer activities of the nanoparticles against MCF-7 breast cancer cells were analyzed. Nanoparticle formation was confirmed by solution color change and UV-Vis spectroscopy. The size and distribution of the C. fulvescens-biosynthesized silver nanoparticles (CfAgNPs) were then examined using various analytical methods; the particle size was around 20-22 nm and spherical in shape with no agglomeration. Cytotoxicity analysis revealed that the inhibitory concentration (IC50) of CfAgNPs was 50 µg/ml. MCF-7 cell viability decreased with increasing concentrations of CfAgNPs. MCF-7 cells were evaluated for morphological changes before and after treatment with the CfAgNPs; cells treated with C. fulvescens aqueous algal extract (without CfAgNPs) showed irregular confluent aggregates with round polygonal cells, similar to the untreated control. Tamoxifen- (TMX) and CfAgNPs-treated cells show significant morphological changes. An apoptosis study was conducted using 4',6-diamidino-2-phenylindole (DAPI) staining, in which CfAgNP-treated MCF-7 cells generated bright blue fluorescence and shortened, disjointed chromatin was evident; control cells displayed less bright fluorescence. Flow cytometry analysis revealed that the percentage of cells in late apoptosis was high following treatment with TMX (77.2%) and CfAgNP (74.6%). A novel anti-cancer agent, developed by generating silver nanoparticles from C. fulvescens extract, showed strong cytotoxic activity against MCF-7 cells.


Subject(s)
Breast Neoplasms/drug therapy , Chlorophyta/metabolism , Metal Nanoparticles/chemistry , Nanomedicine/methods , Silver/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Biotechnology/methods , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Drug Delivery Systems , Drug Screening Assays, Antitumor , Female , Flow Cytometry , Green Chemistry Technology/methods , Humans , Indoles/chemistry , Industrial Microbiology/methods , Inhibitory Concentration 50 , MCF-7 Cells , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Particle Size , Plant Extracts/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tamoxifen , X-Ray Diffraction
14.
Bioprocess Biosyst Eng ; 44(4): 809-818, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33389167

ABSTRACT

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.


Subject(s)
Cell Wall/enzymology , Industrial Microbiology/methods , Lipase/chemistry , Soybean Oil/chemistry , Waste Disposal, Fluid/methods , Yarrowia/enzymology , Hydrogen-Ion Concentration , Oleic Acid/chemistry , Peptones/chemistry , Glycine max , Substrate Specificity , Temperature , Time Factors , Ultrasonics
15.
Bioprocess Biosyst Eng ; 44(4): 769-783, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33389169

ABSTRACT

Ultrasound-assisted extraction (UAE) and pressurized hot water extraction (PHWE) were tested as advanced clean methods to obtain polysaccharides from Phoma dimorpha mycelial biomass. These methods were compared to conventional extraction (hot water extraction, HWE) in terms of polysaccharides-enriched fractions (PEF) yield. A central composite rotational design was performed for each extraction method to investigate the influence of independent variables on the yield and to help the selection of the condition with the highest yield using water as an extraction solvent. The best extraction condition of PEF yielded 12.02 wt% and was achieved when using UAE with direct sonication for 30 min under the intensity of 75.11 W/cm2 and pulse factor of 0.57. In the kinetic profiles, the highest yield (15.28 wt%) was obtained at 50 °C under an ultrasound intensity of 75.11 W/cm2 and a pulse factor of 0.93. Structural analysis of extracted polysaccharide was performed using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal property. The water solubility index, water holding capacity, and emulsification index of PEF were 31.3 ± 1.5%, 138.1 ± 3.2%, and 62.9 ± 2.3%, respectively. The submerged fermentation demonstrates the huge potential of Phoma dimorpha to produce polysaccharides with bioemulsifying properties as a biotechnologically cleaner alternative if compared to commercial petroleum-derived compounds. Furthermore, UAE and PHWE are green technologies, which can be operated at an industrial scale for PEF extraction.


Subject(s)
Ascomycota/metabolism , Biomass , Industrial Microbiology/methods , Mycelium/chemistry , Polysaccharides/chemistry , Water/chemistry , Biotechnology , Fermentation , Green Chemistry Technology , Kinetics , Microscopy, Electron, Scanning , Petroleum , Solubility , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry , Ultrasonics , X-Ray Diffraction
16.
Arch Microbiol ; 203(1): 169-181, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32789754

ABSTRACT

The study focuses on the impact of foliar spraying cyanobacterium Spirulina platensis extract and the inoculation with the endophyte N2-fixing Pseudomonas stutzeri, and their mixture in the presence of different nitrogen doses on growth and yield of onion under field conditions. Bioactive compounds of Spirulina and Pseudomonas were analyzed by GC-MC and amino acid production of Spirulina by the amino acid analyzer. Hydrogen cyanide (HCN), indole acetic acid (IAA), ammonia (NH3), pectinase activity, and N2-fixation of Pseudomonas were measured. Plant height (cm), leaf length (cm), number of green leaves, bulb diameter (cm), fresh and dry weight of plant (g), chlorophyll a, b of leaves, bulb weight (g), marketable bulb yield (t. ha-1), cull bulb weight (t. ha-1), total bulb yield (t. ha-1), bulb diameter (cm), total soluble solids (TSS%), dry matter content (DM%), evaluation of storage behavior, and economic feasibility were estimated. Spirulina extract has several bioactive compounds. Pseudomonas can produce HCN, NH3, IAA, pectinase, and nitrogen fixation. The application of mixture with recommended dose of nitrogen increases the onion plant parameters, marketable yield, total bulb yield, bulb weight, bulb diameter, TSS%, DM%, net return, benefit-cost ratio (B:C), lowest cumulative weight loss% of bulbs during storage, and reduce culls weight compared with other treatments in two seasons. Application of S. platensis extract and inoculation with endophyte nitrogen-fixing P. stutzeri enhance the growth and productivity of the onion under different doses of nitrogen fertilizer.


Subject(s)
Onions/growth & development , Onions/microbiology , Pseudomonas stutzeri/physiology , Spirulina/chemistry , Chlorophyll A/analysis , Crops, Agricultural/microbiology , Endophytes/physiology , Fertilizers , Industrial Microbiology , Nitrogen/metabolism , Nitrogen Fixation/physiology , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/microbiology , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/microbiology
17.
Sci Rep ; 10(1): 22229, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335240

ABSTRACT

Cell wall disruption is necessary to maximize lipid extraction yields in conventional species of mass-cultivated microalgae. This study investigated the effect of sonication, solvent choice and number of extractions on the lipid yield, lipid class composition and fatty acid composition of the diatom Porosira glacialis. For comparison, the diatom Odontella aurita and green alga Chlorella vulgaris were included in the study. Sonication effectively disrupted P. glacialis cells, but did not increase the total lipid yield compared to physical stirring (mixing). In all three microalgae, the content of membrane-associated glyco- and phosopholipids in the extracted lipids was strongly dependent on the solvent polarity. A second extraction resulted in higher yields from the microalgae only when polar solvents were used. In conclusion, choice of solvent and number of extractions were the main factors that determined lipid yield and lipid class composition in P. glacialis.


Subject(s)
Chlorella vulgaris/chemistry , Diatoms/chemistry , Lipids/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Solvents/chemistry , Biomass , Cell Wall , Chemical Fractionation , Chromatography, Gas , Chromatography, High Pressure Liquid , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Industrial Microbiology , Lipids/analysis , Lipids/classification
18.
Nat Commun ; 11(1): 5155, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33056995

ABSTRACT

The diverse physiological functions of tocotrienols have listed them as valuable supplementations to α-tocopherol-dominated Vitamin E products. To make tocotrienols more readily available, tocotrienols-producing S. cerevisiae has been constructed by combining the heterologous genes from photosynthetic organisms with the endogenous shikimate pathway and mevalonate pathway. After identification and elimination of metabolic bottlenecks and enhancement of precursors supply, the engineered yeast can produce tocotrienols at yield of up to 7.6 mg/g dry cell weight (DCW). In particular, proper truncation of the N-terminal transit peptide from the plant-sourced enzymes is crucial. To further solve the conflict between cell growth and tocotrienols accumulation so as to enable high-density fermentation, a cold-shock-triggered temperature control system is designed for efficient control of two-stage fermentation, leading to production of 320 mg/L tocotrienols. The success in high-density fermentation of tocotrienols by engineered yeast sheds light on the potential of fermentative production of vitamin E tocochromanols.


Subject(s)
Fermentation/physiology , Industrial Microbiology/methods , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Tocotrienols/metabolism , Acclimatization/genetics , Biosynthetic Pathways/genetics , Cold Temperature/adverse effects , Cold-Shock Response/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
FEMS Microbiol Lett ; 367(17)2020 09 01.
Article in English | MEDLINE | ID: mdl-32832988

ABSTRACT

The biosurfactants have extensive applications in food and petroleum microbiology. The aims of this research were isolation and characterization of thermo-tolerant biosurfactants from highly producing yeast strains. The Bushnell Hass medium was used for screening the biosurfactant-producing yeasts. Biosurfactant presence was evaluated using oil displacement assay and surface tension test. The best biosurfactant-producing strain was named Candida keroseneae GBME-IAUF-2 and its 5.8s-rDNA sequence was deposited in GenBank, NCBI, under the accession number MT012957.1. The thin layer chromatography and Fourier-transform infrared spectroscopy analysis confirmed that the extracted biosurfactant was sophorolipid with a significant surface activity. The purified sophorolipid decreased the surface tension of water from 72 to 29.1 mN/m. Its maximum emulsification index, E24%, was recorded as 60% and preserved 92.06-97.25% of its original activity at 110-120°C. It also preserved 89.11% and 84.73% of its original activity in pH of 9.3 and 10.5, respectively. It preserved 96.66-100% of its original activity in saline extreme conditions. This is the first report of sophorolipid production by the yeast C. keroseneae. According to the high thermal, pH and saline stability, the sophorolipid produced by C. keroseneae GBME-IAUF-2 could be highly recommended for applications in microbial enhanced oil recovery as well as food industries as an excellent emulsifying agent.


Subject(s)
Industrial Microbiology , Petroleum/microbiology , Saccharomycetales/metabolism , Oleic Acids/chemistry , Oleic Acids/metabolism , RNA, Ribosomal, 5.8S/genetics , Saccharomycetales/genetics , Species Specificity
20.
J Agric Food Chem ; 68(35): 9368-9376, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32700528

ABSTRACT

Human milk fat substitute (HMFS) is a class of structured lipids widely used in infant formulas. Herein, HMFS was prepared by Rhodococcus opacus fermentation. The substrate oils suitable for HMFS production were coconut oil (66.1-57.5%), soybean oil (17.5-26.5%), high oleic acid sunflower oil (5.4-4.5%), Antarctic krill oil (9-9.5%), and fungal oil (2%). Six HMFSs were prepared, among which HMFS V and VI were similar to human milk fat from Chinese in terms of fatty acid composition and triacylglycerol species. The sn-2 position of HMFS was occupied by palmitic acid (49.31 and 43.48% in HMFS V and VI, respectively). The major triacylglycerols were OPL, OPO, and LPL, accounting for 15.90, 9.49, and 6.84 and 17.52, 8.44, and 8.55% in HMFS V and VI, respectively. This study is the first to prepare structured lipids intended for infant formula through fermentation, providing a novel strategy for the edible oil industry.


Subject(s)
Fat Substitutes/metabolism , Fatty Acids/metabolism , Milk, Human/metabolism , Rhodococcus/metabolism , Coconut Oil/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fat Substitutes/chemistry , Fatty Acids/chemistry , Fermentation , Humans , Industrial Microbiology , Infant Formula/analysis , Milk, Human/chemistry , Rhodococcus/chemistry , Soybean Oil/metabolism , Sunflower Oil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL