Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.233
Filter
Add more filters

Publication year range
1.
Undersea Hyperb Med ; 51(1): 7-15, 2024.
Article in English | MEDLINE | ID: mdl-38615348

ABSTRACT

Background: Hyperbaric oxygen (HBO2) therapy is an alternative method against the deleterious effects of ischemic/reperfusion (I/R) injury and its inflammatory response. This study assessed the effect of preoperative HBO2 on patients undergoing pancreaticoduodenectomy. Study Design: Patients were randomized via a computer-generated algorithm. Patients in the HBO2 cohort received two sessions of HBO2 the evening before and the morning of surgery. Measurements of inflammatory mediators and self-assessed pain scales were determined pre-and postoperatively. In addition, perioperative variables and long-term survival were collected and analyzed. Data are presented as median (mean ± SD). Results: 33 patients were included; 17 received preoperative HBO2, and 16 did not. There were no intraoperative or postoperative statistical differences between patients with or without preoperative HBO2. Erythrocyte sedimentation rate (ESR), IL-6, and IL-10 increased slightly before returning to normal, while TGF-alpha decreased before increasing. However, there were no differences with or without HBO2. At postoperative day 30, the pain level measured with VAS score (Visual Analog Score) was lower after HBO2 (1 ± 1.3 vs. 3 ± 3.0, p=0.05). Eleven (76%) patients in the HBO2 cohort and 12 (75%) patients in the non- HBO2 had malignant pathology. The percentage of positive lymph nodes in the HBO2 was 7% compared to 14% in the non-HBO2 (p<0.001). Overall survival was inferior after HBO2 compared to the non- HBO2 (p=0.03). Conclusions: Preoperative HBO2 did not affect perioperative outcomes or significantly change the inflammatory mediators for patients undergoing robotic pancreaticoduodenectomy. Long-term survival was inferior after preoperative HBO2. Further randomized controlled studies are required to assess the full impact of this treatment on patients' prognosis.


Subject(s)
Hyperbaric Oxygenation , Humans , Pancreaticoduodenectomy/adverse effects , Oxygen , Inflammation Mediators , Pain , Randomized Controlled Trials as Topic
2.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542876

ABSTRACT

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Subject(s)
Acute Lung Injury , Chive , Drugs, Chinese Herbal , Saponins , Humans , Animals , Mice , NF-kappa B/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Saponins/pharmacology , Lipopolysaccharides/toxicity , Inflammation/drug therapy , Inflammation/prevention & control , Human Umbilical Vein Endothelial Cells , Tumor Necrosis Factor-alpha/pharmacology , Acute Lung Injury/drug therapy , Inflammation Mediators/metabolism
3.
Inflammopharmacology ; 32(2): 1187-1201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367124

ABSTRACT

Atriplex crassifolia (A. crassifolia) is a locally occurring member of Chenopodiaceae family that has been used in folk medicine for the treatment of joint pain and inflammation. The present study was focused to determine the analgesic and anti-inflammatory potential of the plant. n-hexane (ACNH) and methanol (ACM) extracts of A. crassifolia were evaluated for in vitro anti-inflammatory potential using protein denaturation inhibition assay. In vivo anti-inflammatory potential was determined by oral administration of 250, 500, and 1000 mg/kg/day of extracts against carrageenan and formalin-induced paw edema models. Inflammatory mediators such as TNF-α, IL-10, IL-1ß, NF-kB, IL-4, and IL-6 were estimated in blood samples of animals subjected to formalin model of inflammation. Analgesic activity was determined using acetic acid-induced writhing and tail flick assay model. Phytochemical profiling was done by GC-mass spectrophotometer. The results of in vitro anti-inflammatory activity revealed that both ACNH and ACM displayed eminent inhibition of protein denaturation in concentration-dependent manner. In acute in vivo carrageenan-induced paw edema model, both extracts reduced inflammation at 5th and 6th hour of study (p < 0.05). A. crassifolia extracts exhibited significant inhibition against formalin-induced inflammation with maximum effect at 1000 mg/kg. ACNH and ACM significantly augmented the inflammatory mediators (p < 0.05). Levels of TNF-α, IL-6, IL-1ß, and NF-kB were reduced, while those of IL-4 and IL-10 were upregulated. ACNH displayed maximum analgesic effect at 1000 mg/kg, while ACM showed potent activity at 500 and 1000 mg/kg. The extracts restored the CBC, TLC and CRP toward normal. GC-MS analysis revealed the presence of compounds like n-hexadecanoic acid, Phytol, (9E,11E)-octadecadienoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester, 1-hexacosene, vitamin E, campesterol, stigmasterol, gamma sitosterol in both extracts. These compounds have been reported to suppress inflammation by inhibiting inflammatory cytokines. The current study concludes that A. crassifolia possesses significant anti-nociceptive and anti-inflammatory potential owing to the presence of phytochemicals.


Subject(s)
Atriplex , Interleukin-10 , Animals , Carrageenan , Atriplex/metabolism , Plant Extracts , Gas Chromatography-Mass Spectrometry , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Interleukin-4 , Interleukin-6 , Anti-Inflammatory Agents , Analgesics , Inflammation/drug therapy , Inflammation/chemically induced , Pain/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Formaldehyde , Inflammation Mediators/metabolism
4.
Int J Biol Macromol ; 261(Pt 2): 129874, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307430

ABSTRACT

Bletilla Striata (BS) Polysaccharide (BSP) is one of the main components of the traditional Chinese medicinal plant Bletilla striata Rchb. F. BSP has been widely used in antimicrobial and hemostasis treatments in clinics. Despite its use in skin disease treatment and cosmetology, the effects of BSP on wound healing remain unclear. Here we investigated the anti-inflammatory, antioxidant, and analgesic effects of BSP and explored its impact on morphological changes and inflammatory mediators during wound healing. A carrageenan-induced mouse paw edema model was established to evaluate the anti-inflammatory effect of BSP. Antioxidant indicators, including NO, SOD, and MDA, were measured in the blood and liver. The increased pain threshold induced by BSP was also determined using the hot plate test. A mouse excisional wound model was applied to evaluate the wound healing rate, and HE staining and Masson staining were used to detect tissue structure changes. In addition, ELISA was employed to detect the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß in serum. BSP significantly decreased the concentration of NO and MDA in serum and liver while increasing SOD activity. It exhibited a notable improvement in mouse paw edema induced by carrageenan. BSP dose-dependently delayed the appearance of licking behavior in mice, indicating its analgesic effect. Compared to the control group, the wound healing rate was significantly improved in the BSP treatment group. HE and Masson staining results showed that the BSP and 'Jingwanhong' ointment groups had slightly milder inflammatory responses and significantly promoted more new granulation tissue formation. The levels of serum inflammatory mediators TNF-α, IL-1ß, and IL-6 were reduced to varying degrees. The results demonstrated that BSP possesses anti-inflammatory, antioxidant, analgesic, and wound healing properties, and it may promote wound healing through inhibition of inflammatory cytokine synthesis and release.


Subject(s)
Antioxidants , Tumor Necrosis Factor-alpha , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carrageenan/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6 , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Cytokines/metabolism , Superoxide Dismutase/pharmacology , Wound Healing , Edema/chemically induced , Edema/drug therapy , Inflammation Mediators/pharmacology
5.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339101

ABSTRACT

Nigella sativa (NS) is a native herb consumed habitually in several countries worldwide, possessing manifold therapeutic properties. Among them, anti-inflammatory features have been reported, presumably relating to mechanisms involved in the nuclear factor kappa-B pathway, among others. Given the observed association between neuroimmune factors and mental illness, the primary aim of the present study was to examine the effects of chronic NS use on manic-like behavior in rats, as well as analyze levels of brain inflammatory mediators following NS intake. Using male and female rats, baseline tests were performed; thereafter, rats were fed either regular food (control) or NS-containing food (treatment) for four weeks. Following intervention, behavioral tests were induced (an open field test, sucrose consumption test, three-chamber sociality test, and amphetamine-induced hyperactivity test). Subsequently, brain samples were extracted, and inflammatory mediators were evaluated, including interleukin-6, leukotriene B4, prostaglandin E2, tumor necrosis factor-α, and nuclear phosphorylated-p65. Our findings show NS to result in a marked antimanic-like effect, in tandem with a positive modulation of select inflammatory mediators among male and female rats. The findings reinforce the proposed therapeutic advantages relating to NS ingestion.


Subject(s)
Antimanic Agents , Encephalitis , Nigella sativa , Rats , Male , Female , Animals , Plant Oils , Encephalitis/drug therapy , Inflammation Mediators
6.
Aging Cell ; 23(4): e14093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38287646

ABSTRACT

Vitamin D3 replacement in older insufficient adults significantly improves their antigen-specific varicella zoster virus (VZV) cutaneous immunity. However, the mechanisms involved in this enhancement of cutaneous immunity are not known. Here, we show for the first time that vitamin D3 blocks the senescence-associated secretory phenotype (SASP) production by senescent fibroblasts by partially inhibiting the p38 MAPK pathway. Furthermore, transcriptomic analysis of skin biopsies from older subjects after vitamin D3 supplementation shows that vitamin D3 inhibits the same inflammatory pathways in response to saline as the specific p38 inhibitor, losmapimod, which also enhances immunity in the skin of older subjects. Vitamin D3 supplementation therefore may enhance immunity during ageing in part by blocking p38 MAPK signalling and in turn inhibit SASP production from senescent cells in vivo.


Subject(s)
Cellular Senescence , Cholecalciferol , Adult , Humans , Aged , Cellular Senescence/genetics , Cholecalciferol/pharmacology , Cholecalciferol/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Aging , Fibroblasts/metabolism , Inflammation Mediators/metabolism , Immunity
7.
Phytomedicine ; 124: 155309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237261

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative condition characterized by the progressive loss of dopaminergic neurons within the substantia nigra. Neuroinflammation plays a pivotal role in the pathogenesis of PD, involving the activation of microglia cells, heightened production of proinflammatory cytokines, and perturbations in the composition of the gut microbiota. Rubusoside (Ru), the principal steviol bisglucoside present in Rubus chingii var. suavissimus (S.K.Lee) L.T.Lu (Rosaceae), has been documented for its anti-inflammatory properties in diverse disease models. Nonetheless, there is an imperative need to comprehensively assess and elucidate the protective and anti-inflammatory attributes of Ru concerning PD, as well as to uncover the underlying mechanism involved. OBJECTIVE: The aim of this study is to evaluate the neuroprotective and anti-inflammatory effects of Ru on PD and investigate its potential mechanisms associated with microbes. RESEARCH DESIGN AND METHODS: We pre-treated mice and cell lines with Ru in order to simulate the progression of PD and the neuroinflammatory state. The mouse model was induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), SN4741 cells were induced by 1-methyl-4-phenylpyridine (mpp+), and BV-2 cells were induced by lipopolysaccharide (LPS). We assessed the impact of Ru on motor function, neuroinflammation, neuron apoptosis, the composition of gut microbes, and their metabolites. RESULTS: Ru treatment reduces the release of pro-inflammatory mediators by inhibiting microglia activation. It also prevents neuronal apoptosis, thereby safeguarding dopaminergic neurons and ameliorating motor dysfunction. Furthermore, it induces alterations in the fecal microbiota composition and metabolites profile in PD mice. In vitro experiments have demonstrated that Ru inhibits neuronal apoptosis in SN4741 cells induced by mpp+, suppresses the production of pro-inflammatory mediators, and activates the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (p38 MAPK), and nuclear factor kappa-B (NF-κB) signaling pathways. CONCLUSION: Ru exhibits inhibitory effects on the MPTP-induced PD model by mitigating neuroinflammation and neuronal apoptosis while also inducing changes in the gut microbiota and metabolite composition.


Subject(s)
Diterpenes, Kaurane , Gastrointestinal Microbiome , Glucosides , Neuroprotective Agents , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Neuroinflammatory Diseases , Anti-Inflammatory Agents/therapeutic use , 1-Methyl-4-phenylpyridinium , Apoptosis , Inflammation Mediators/metabolism , Dopaminergic Neurons , Mice, Inbred C57BL , Disease Models, Animal , Microglia , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
8.
Phytother Res ; 38(3): 1494-1508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272574

ABSTRACT

Anthocyanins, due to their antioxidant effects, are candidates to reduce inflammation and the risk of inflammatory diseases. Therefore, through conducting a systematic review and meta-analysis, we tried to find the effect of purified anthocyanins on serum levels of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Databases including, ISI Web of Science, Scopus, ClinicalTrials.gov, PubMed, and Cochrane Library were searched up to June 2023. The meta-analysis was done by calculating mean differences and their standard deviations. Calculating the statistical heterogeneity of intervention effects was performed through I-squared statistics and Cochran's Q test. The pooled estimate showed a significant decrease in serum levels of CRP, TNF-α, and IL-6 (weighted mean difference (WMD) = -0.12 mg/L, 95% confidence interval (CI) = -0.21 to -0.02, p = 0.013; WMD = -1.37 pg/mL, 95% CI = -1.79 to -0.96; p < 0.001; WMD = -1.43 pg/mL, 95% CI = -1.87 to -1.00; p < 0.001, respectively). Subgroup analysis results revealed purified anthocyanins significantly decreased serum levels of CRP among participants with serum levels of CRP≥1.52 mg/L, at-risk/unhealthy status, and in trials with intervention duration ≥84 days, anthocyanins dose ≥320 mg/day, and sample size ≥85 subjects. Regarding TNF-α and IL-6, out results showed that there was a significant effect of purified anthocyanins on serum levels of TNF-α and IL-6 in most subgroups. The results of our study indicated that purified anthocyanins significantly decreased serum levels of CRP, TNF-α, and IL-6. However, further high-quality studies are needed to firmly establish the efficacy of purified anthocyanins.


Subject(s)
Anthocyanins , Dietary Supplements , Humans , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha , Inflammation Mediators , Randomized Controlled Trials as Topic , Inflammation/metabolism , C-Reactive Protein/analysis , Biomarkers
9.
Biol Trace Elem Res ; 202(5): 1910-1925, 2024 May.
Article in English | MEDLINE | ID: mdl-37606878

ABSTRACT

Selenium can protect against inflammation through its incorporation in selenoenzymes; therefore, in this study, we assessed the effect of parenteral selenium on C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) through a systematic review and meta-analysis on randomized controlled trials (RCTs). A systematic search was performed in the databases, including PubMed, Scopus, Cochrane, clinicaltrials.gov, and ISI Web of Science, up to October 2022, with no limitation in study location or publication time. We calculated the effect size by the mean change from baseline in serum concentration of selected inflammatory mediators and their standard deviations. DerSimonian and Laird random effects model was used to estimate the heterogeneity and summary of the overall effects. Included studies in this systematic review and meta-analysis were 10 and 8 RCTs, respectively. Our results revealed parenteral selenium significantly decreased serum IL-6 (Weighted Mean Difference (WMD) = -3.85 pg/ml; 95% confidence interval (CI) = -7.37, -0.34 pg/ml; p = 0.032) but did not significantly change serum levels of CRP (WMD = 4.58 mg/L; 95% CI = -6.11, 15.27 mg/L; P = 0.401) compared to the comparison groups. According to our results, parenteral selenium supplementation might reduce serum levels of inflammatory mediators.


Subject(s)
Selenium , Humans , Biomarkers , C-Reactive Protein/analysis , Dietary Supplements , Inflammation/metabolism , Inflammation Mediators , Interleukin-6/metabolism , Randomized Controlled Trials as Topic , Selenium/pharmacology , Tumor Necrosis Factor-alpha
10.
Prostaglandins Other Lipid Mediat ; 170: 106798, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977352

ABSTRACT

Rheumatoid arthritis (RA) is classified as a persistent inflammatory autoimmune disorder leading to the subsequent erosion of articular cartilage and bone tissue originating from the synovium. The fundamental objective of therapeutic interventions in RA has been the suppression of inflammation. Nevertheless, conventional medicines that lack target specificity may exhibit unpredictable effects on cell metabolism. In recent times, there has been evidence suggesting that specialized pro-resolving mediators (SPMs), which are lipid metabolites, have a role in facilitating the resolution of inflammation and the reestablishment of tissue homeostasis. SPMs are synthesized by immune cells through the enzymatic conversion of omega-3 fatty acids. In the context of RA, there is a possibility of dysregulation in the production of these SPMs. In this review, we delve into the present comprehension of the endogenous functions of SPMs in RA as lipids that exhibit pro-resolutive, protective, and immunoresolvent properties.


Subject(s)
Arthritis, Rheumatoid , Fatty Acids, Omega-3 , Humans , Inflammation/drug therapy , Inflammation/metabolism , Fatty Acids, Omega-3/therapeutic use , Arthritis, Rheumatoid/drug therapy , Inflammation Mediators/metabolism
11.
J Ethnopharmacol ; 321: 117502, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38030020

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: P. peruviana fruit, native to Andean region, is cultivated worldwide for its adaptability to various soil natures and climatic conditions. It is increasingly consumed for its high nutritional profile and history of ethnomedical uses including treatment of arthritis. Little pharmacological evidences support this folk use except for previous in vitro study that reported significant inhibition of protein denaturation. AIM OF THE STUDY: The study aims at providing new in vivo evidence on antiarthritic activity of P. peruviana fruits in vivo that justifies its traditional use through mechanism-based experiment. MATERIAL AND METHODS: Inhibition of inflammatory mediators is considered one of the key treatments to alleviate painful symptoms of rheumatoid arthritis (RA). Anti-inflammatory activity was assessed against COX-1 and COX-2 activity in vitro. Serum TNFα, IL-1ß and IL-6 were traced using in vivo model of adjuvant-induced arthritis. Gross/inflammatory changes in rat paw, relative mass indices of spleen and liver were further investigated together with joint tissue histoarchitecture. Seven metabolites from different phytochemical classes, that were previously reported in P. peruviana fruit, were evaluated in silico against TNF-α target protein (PDB ID: 2AZ5) to assess their inhibitory effect. This was followed by assessment of their drug-likeness based on Lipinski's rule according to their physicochemical and pharmacokinetic properties. RESULTS: High dose of extract (E-1000 mg) improved adjuvant-induced cachexia and attenuated immune-inflammatory responses in paw and serum parameters, with equipotent effect to MTX, in addition to minimal side effect profile on spleen and liver. Histopathological study of knee joint tissues confirmed dose-dependent improvement in arthritic groups treated with P. peruviana fruit extracts. The insilico study recommended steroidal lactones withaperuvin E/C and hydroxywithanolide E as promising lead compounds for inhibiting TNF enzyme as evidenced by docking scores of 6.301, 5.488 and 5.763 kcal/mol, respectively, fitting as well the Lipinski's rule of drug likeness. CONCLUSION: The study provided novel approach that rationalize folk use of P. peruviana fruit in treatment of arthritis.


Subject(s)
Arthritis, Experimental , Physalis , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Fruit/metabolism , Inflammation Mediators/metabolism , Arthritis, Experimental/pathology , Tumor Necrosis Factor-alpha
12.
J Ethnopharmacol ; 319(Pt 3): 117243, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37777025

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xingbei antitussive granules (XB) is a classic Chinese Medicine prescription for treating post-infectious cough(PIC), based on the Sanao Decoction from Formularies of the Bureau of People's Welfare Pharmacies in the Song Dynasty and Jiegeng decoction from Essentials of the Golden Chamber in the Han Dynasty. However, the therapeutic effects and pharmacological mechanisms are still ambiguous. In the present study, we endeavored to elucidate these underlying mechanisms. AIMS OF THE STUDY: This study aimed to explore the potential impact and mechanism of XB on PIC, and provide a scientific basis for its clinical application. MATERIALS AND METHODS: Cigarette smoking (CS) combined with lipopolysaccharide (LPS) nasal drops were administered to induce the PIC guinea pig with cough hypersensitivity status. Subsequently, the model guinea pigs were treated with XB and the cough frequency was observed by the capsaicin cough provocation test. The pathological changes of lung tissue were assessed by HE staining, and the levels of inflammatory mediators, mast cell degranulating substances, and neuropeptides were detected. The protein and mRNA expression of transient receptor potential vanilloid type 1(TRPV1), proteinase-activated receptor2(PAR2), and protein kinase C (PKC) were measured by Immunohistochemical staining, Western blot, and RT-qPCR. Changes in the abundance and composition of respiratory bacterial microbiota were determined by 16S rRNA sequencing. RESULTS: After XB treatment, the model guinea pigs showed a dose-dependent decrease in cough frequency, along with a significant alleviation in inflammatory infiltration of lung tissue and a reduction in inflammatory mediators. In addition, XB high-dose treatment significantly decreased the levels of mast cell Tryptase as well as ß-hexosaminidase (ß-Hex) and downregulated the expression of TRPV1, PAR2, and p-PKC. Simultaneously, levels of neuropeptides like substance P (SP), calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and nerve growth factor (NGF) were improved. Besides, XB also can modulate the structure of respiratory bacterial microbiota and restore homeostasis. CONCLUSION: XB treatment alleviates cough hypersensitivity and inflammatory responses, inhibits the degranulation of mast cells, and ameliorates neurogenic inflammation in PIC guinea pigs whose mechanism may be associated with the inhibition of Tryptase/PAR2/PKC/TRPV1 and the recovery of respiratory bacterial microbiota.


Subject(s)
Antitussive Agents , Communicable Diseases , Humans , Guinea Pigs , Animals , Swine , Antitussive Agents/pharmacology , Antitussive Agents/therapeutic use , Cough/drug therapy , Tryptases , RNA, Ribosomal, 16S , Inflammation Mediators , TRPV Cation Channels
13.
Chem Biodivers ; 21(2): e202301653, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158718

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive cartilage and bone erosion. This work aimed to evaluate the metabolomic profile of Medicago sativa L. (MS) (alfalfa) seeds and explore its therapeutic impact against RA in rats. Arthritis was induced by complete Freund's adjuvant (CFA) and its severity was assessed by the arthritis index. Treatment with MS seeds butanol fraction and interlukin-1 receptor antagonist (IL-1RA) were evaluated through measuring interlukin-1 receptor (IL-1R) type 1 gene expression, interlukin-1 beta (IL-1ß), oxidative stress markers, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), caspase-3 (Cas-3), intracellular adhesion molecule-1 (ICAM-1), DNA fragmentation, and chromosomal damage. Total phenolics/ flavonoids content in the ethyl acetate, butanol fraction and crude extract of MS seeds were estimated. The major identified compounds were Quercetin, Trans-taxifolin, Gallic acid, 7,4'-Dihydroxyflavone, Cinnamic acid, Kudzusaponin SA4, Isorhamnetin 3-O-beta-D-2'',3'',4''-triacetylglucopyranoside, Apigenin, 5,7,4'-Trihydroxy-3'-methoxyflavone, Desmethylxanthohumol, Pantothenic acid, Soyasapogenol E, Malvidin, Helilandin B, Stigmasterol, and Wairol. Treatment with MS seeds butanol fraction and IL-1RA enhanced all the biochemical parameters and the histopathological features of the ankle joint. In conclusion, Trans-taxifolin was isolated for the first time from the genus Medicago. MS butanol fraction seeds extract and IL-1 RA were considered as anti-rheumatic agents.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Medicago sativa/metabolism , Anti-Inflammatory Agents/pharmacology , Phytotherapy , Inflammation Mediators/metabolism , Inflammation Mediators/therapeutic use , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Interleukins/metabolism , Interleukins/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Oxidative Stress , Butanols , Cytokines/metabolism
14.
J Mater Chem B ; 11(48): 11505-11518, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38038124

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by synovial inflammation, cartilage damage and bone erosion. In the progression of RA, the inflammatory mediators including ROS, NO, TNF-α, and IL-6 play important roles in the aggravation of inflammation. Hence, reducing the generation and release of inflammatory mediators is of great importance. However, the high dose and frequent administration of clinical anti-inflammatory drugs such as glucocorticoids (GCs) usually lead to severe side effects. The development of nanotechnology provides a promising strategy to overcome these issues. Here, polyphenol-based nanoparticles with inherent anti-oxidative and anti-inflammatory activities were developed and used as a kind of nanocarrier to deliver dexamethasone (Dex). The in vitro experiments confirmed that the nanoparticles and drugs could act synergistically for suppressing inflammatory mediators in the LPS/INF-γ-induced inflammatory cell model. After intravenous administration, the Dex-loaded nanoparticles with good biosafety showed effective accumulation in inflamed joints and improved therapeutic efficacy by inducing anesis of synovial inflammation and cartilage destruction over free Dex in a collagen-induced arthritis (CIA) mouse model. The results demonstrated that polyphenol-based nanoparticles with therapeutic functions may serve as an innovative platform to synergize with chemotherapeutic agents for enhanced treatment of inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , Nanomedicine , Mice , Animals , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Inflammation Mediators , Tea
15.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958514

ABSTRACT

The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.


Subject(s)
Fatty Acids, Omega-3 , Liver Diseases , Humans , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Macrophages/metabolism , Inflammation/metabolism , Docosahexaenoic Acids/metabolism , Anti-Inflammatory Agents/therapeutic use , Liver Diseases/metabolism , Phenotype , Inflammation Mediators/metabolism
16.
Inflammopharmacology ; 31(6): 3243-3262, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936023

ABSTRACT

Persea americana Mill. (avocado fruit) has many health benefits when added to our diet due to various pharmacological activities, such as preventing bone loss and inflammation, modulating immune response and acting as an antioxidant. In the current study, the total ethanol extract (TEE) of the fruit was investigated for in vitro antioxidant and anti-inflammatory activity via DPPH and cyclooxygenase enzyme inhibition. Biological evaluation of the antiarthritic effect of the fruit extract was further investigated in vivo using Complete Freund's Adjuvant (CFA) arthritis model, where the average percentages of body weight change, inhibition of paw edema, basal paw diameter/weight and spleen index were estimated for all animal groups. Inflammatory mediators such as serum IL-6 and TNF-α were also determined, in addition to histopathological examination of the dissected limbs isolated from all experimental animals. Eighty-one metabolites belonging to different chemical classes were detected in the TEE of P. americana fruit via UPLC/HR-ESI-MS/MS. Two classes of lyso-glycerophospholipids; lyso-glycerophosphoethanolamines and lysoglycerophosphocholines were detected for the first time in avocado fruit in the positive mode. The TEE of fruit exhibited significant antioxidant and anti-inflammatory activity in vitro. In vivo anti-arthritic activity of the fruit TEE improved paw parameters, inflammatory mediators and spleen index. Histopathological findings showed marked improvements in the arthritic condition of the excised limbs. Therefore, avocado fruit could be proposed to be a powerful antioxidant and antiarthritic natural product.


Subject(s)
Arthritis, Experimental , Persea , Animals , Persea/chemistry , Fruit/chemistry , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Tandem Mass Spectrometry , Anti-Inflammatory Agents , Arthritis, Experimental/chemically induced , Ethanol/chemistry , Phytochemicals/therapeutic use , Inflammation Mediators/metabolism
17.
Int Immunopharmacol ; 125(Pt A): 111102, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922567

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease, which is characterized by inflammation, with many symptoms including diarrhea, abdominal pain, bloody stool, and weight loss. It is difficult to completely cure and promising therapeutic drug candidates are urgently needed. Citropten, a coumarin-like compound found in traditional Chinese medicine such as Finger Citron Fruit, notopterygium root and citrus peel, has been shown to inhibit the proliferation of tumor cells, protect against depression and suppress the production of inflammatory mediators. In this study, we demonstrated that citropten could alleviate dextran sulfate sodium (DSS)-induced acute and recurrent colitis in mice, with significant improvement in body weight loss, disease activity index, shortened colon length and histological changes. Moreover, citropten dramatically decreased the production of pro-inflammatory mediators in colon tissues and effectively suppressed the proportion of Th17 cells in spleen. Mechanism investigations revealed that citropten significantly inhibited the activation of NF-κB and JAK/STAT3 signaling pathways, thus leading to decreased inflammation, Th17 cells and alleviative colitis. These findings provide novel insights into the anti-colitis effect of citropten, which may be a promising drug candidate for treatment of IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/pathology , Coumarins/pharmacology , Coumarins/therapeutic use , Disease Models, Animal , Inflammation/metabolism , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , NF-kappa B/metabolism
18.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003333

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Omega-3 , Humans , Healthy Volunteers , Chromatography, Liquid , Pilot Projects , Tandem Mass Spectrometry , Inflammation , Platelet Activating Factor , Inflammation Mediators
19.
Medicina (Kaunas) ; 59(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38003966

ABSTRACT

Background and Objectives: Fragaria nubicola has never been evaluated scientifically for its anti-arthritic potential despite its use in folkloric systems of medicine. The research was conducted to assess the potential of F. nubicola against rheumatoid arthritis. Materials and Methods: The current study provided scientific evidence by evaluating the effects of plants using an in vivo CFA-induced model of arthritic rats and subsequent microscopic histopathological evaluation of ankle joints along with the determination of paw edema using a digital water displacement plethysmometer. The study also gave insight by determining levels of pro-inflammatory cytokines, matrix metalloproteinase enzymes (MMPs), prostaglandin E2 (PGE2), nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and biochemical and hematological parameters. GCMS analysis was also conducted for the identification of possible anti-inflammatory plant constituents. Results: The data showed that F. nubicola-treated groups attenuated the progression of arthritis and paw edema. Microscopic histopathological evaluation validated the anti-arthritic potential by showing amelioration of bone erosion, infiltration of inflammatory cells, and pannus formation. RT-PCR analysis displayed that treatment with F. nubicola down-regulated IL1ß, IL6, TNFα, NF-κB, VEGF, MMP2, MMP3, and MMP9 levels. Moreover, ELISA exhibited a reduction in levels of PGE2 levels in treatment groups. The levels of RBCs, platelets, WBCs, and Hb content were found to be nearly similar to negative control in the treated group. Statistically, a non-significant difference was found when all groups were compared for urea, creatinine, ALT, and AST analysis, indicating the safety of plant extract and fractions at test doses. GCMS analysis of extract and fractions showed the existence of many anti-inflammatory and antioxidant phytochemicals. Conclusion: In conclusion, F. nubicola possessed anti-arthritic properties that might be attributed to the amelioration of MMPs and pro-inflammatory cytokines.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Fragaria , Rats , Animals , Rats, Sprague-Dawley , Fragaria/metabolism , Vascular Endothelial Growth Factor A , Inflammation Mediators , NF-kappa B , Dinoprostone/therapeutic use , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cytokines/metabolism , Edema/drug therapy , Matrix Metalloproteinases
20.
Biomed Pharmacother ; 167: 115608, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801902

ABSTRACT

BACKGROUND: Gelsemium elegans (Gardner & Chapm.) Benth (G. elegans) has been widely used as a traditional folk medicine in China and Southeast Asia. As the most abundant alkaloid in G. elegans, Koumine (KM) has been revealed the effect of inflammatory attenuation modulating by macrophage activation and polarization. PURPOSE: This study aimed to explore the effect of KM on modulation of microglia polarization that led to the suppression of neuroinflammation and further improved neurodegenerative behavior. METHODS: Inflammatory mediators, microglia M1 and M2 phenotype markers and Nrf2/HO-1 pathway related protein were assessed in LPS-induced BV2 cells and LPS-treated mice by RT-PCR, immunohistochemistry, immunofluorescence and Western blotting. Moreover, the learning and memory abilities of mice were evaluated by Morris water maze test, and the neuronal damage was evaluated by the Nissl staining. RESULTS: KM attenuated LPS-induced viability and morphological changes in BV2 microglial cells. Our findings showed that KM activated the Nrf2/HO-1 signaling pathway to promote phenotypic switch from M1 to M2 phenotypes. This switch suppresses the release of inflammatory mediators in LPS-induced BV2 cells. Meanwhile, KM attenuated neuroinflammation through modulating microglia polarization and subsequently reversed the behavioral alterations in LPS-induced mice model of neuroinflammation. CONCLUSIONS: KM may alleviate neuroinflammation by regulating microglia polarization with the involvement of Nrf2/HO-1 pathway, resulting of the neuroprotective effect.


Subject(s)
NF-E2-Related Factor 2 , Neuroinflammatory Diseases , Animals , Mice , NF-E2-Related Factor 2/metabolism , Microglia , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Inflammation Mediators/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL