Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Med Food ; 24(12): 1293-1303, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34491844

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed and self-prescribed drugs to treat inflammation and pain associated with several conditions. Although their efficacy and overall safety have been recognized when used according to medical prescriptions and for a short period time, their acute impact on enteric physiology has rarely been studied. NSAIDs are known to cause gastrointestinal side effects due to their intrinsic mechanism of action, which involves prostaglandins synthesis, leading to impaired mucopolysaccharide layer production. Despite this well-known and investigated side effect, the short- and long-term influences of acute administration of these drugs on the biochemical environment of enteric cells are not well understood. This study investigates the rate of adenosine triphosphate (ATP) loss and permeability alterations occurring in a model of human enteric cells, as a consequence of acute administration of NSAIDs as major perpetrators of enteric toxicity. For the first time, we investigate the ability of a novel ATP-containing formulation to prevent ATP hydrolysis in the stomach and ensure its delivery at the proximal duodenal site.


Subject(s)
Adenosine Triphosphate , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Dietary Supplements , Intestine, Small , Adenosine Triphosphate/therapeutic use , Humans , Intestine, Small/cytology , Intestine, Small/drug effects
2.
Nutrients ; 13(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204790

ABSTRACT

The beneficial effects of human milk suppressing the development of intestinal pathologies such as necrotizing enterocolitis in preterm infants are widely known. Human milk (HM) is rich in a multitude of bioactive factors that play major roles in promoting postnatal maturation, differentiation, and the development of the microbiome. Previous studies showed that HM is rich in hyaluronan (HA) especially in colostrum and early milk. This study aims to determine the role of HA 35 KDa, a HM HA mimic, on intestinal proliferation, differentiation, and the development of the intestinal microbiome. We show that oral HA 35 KDa supplementation for 7 days in mouse pups leads to increased villus length and crypt depth, and increased goblet and Paneth cells, compared to controls. We also show that HA 35 KDa leads to an increased predominance of Clostridiales Ruminococcaceae, Lactobacillales Lactobacillaceae, and Clostridiales Lachnospiraceae. In seeking the mechanisms involved in the changes, bulk RNA seq was performed on samples from the terminal ileum and identified upregulation in several genes essential for cellular growth, proliferation, and survival. Taken together, this study shows that HA 35 KDa supplemented to mouse pups promotes intestinal epithelial cell proliferation, as well as the development of Paneth cells and goblet cell subsets. HA 35 KDa also impacted the intestinal microbiota; the implications of these responses need to be determined.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome/drug effects , Hyaluronic Acid/pharmacology , Intestine, Small/growth & development , Animals , Animals, Newborn , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Goblet Cells/cytology , Intestinal Mucosa/drug effects , Intestine, Small/cytology , Intestines/cytology , Intestines/growth & development , Mice , Paneth Cells/cytology
3.
Biosci Biotechnol Biochem ; 85(7): 1729-1736, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-33877300

ABSTRACT

Pectin in Diospyros kaki (persimmon) is a complex polysaccharide and is classified as a dietary fiber. Pectin is characterized by the presence of side chains of neutral sugars, such as galactose residues; however, the structure and properties of these sugars vary greatly depending on the plant species from which it is derived. Here, we report the structural features of pectin extracted from persimmon. The polysaccharide was low-methoxy pectin with a degree of methyl esterification <50% and ratio of side chain galactan to arabinan in the rhamnogalacturonan-I region of pectin of 3-20. To investigate the physiological function of pectin from persimmon, we performed a coculture assay using Caco-2 cells. As a result, it was shown that the proliferation of undifferentiated Caco-2 cells was promoted, and further, the importance of arabinogalactan among the pectin structures was shown.


Subject(s)
Diospyros/chemistry , Galactans/chemistry , Intestine, Small/metabolism , Pectins/chemistry , Caco-2 Cells , Epithelial Cells/cytology , Humans , Intestine, Small/cytology
4.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353157

ABSTRACT

Acrylamide is one of the harmful substances present in food. The present study aimed to establish the effect of acrylamide supplementation in tolerable daily intake (TDI) dose (0.5 µg/kg b.w./day) and a dose ten times higher than TDI (5 µg/kg b.w./day) on the population of vasoactive intestinal peptide-like immunoreactive (VIP-LI) neurons in the porcine small intestine and the degree of the co-localization of VIP with other neuroactive substances (neuronal nitric oxide synthase (nNOS), substance P (SP), and cocaine- and amphetamine-regulated transcript peptide (CART)). In our work, 15 Danish landrace gilts (5 in each experimental group) received capsules (empty or with low or high doses of acrylamide) for a period of 28 days with their morning feeding. Using double immunofluorescence staining, we established that acrylamide supplementation increased the number of neurons showing immunoreactivity towards VIP in all types of enteric nervous system (ENS) plexuses and fragments of the small intestine studied. Moreover, both doses of acrylamide led to changes in the degree of co-localization of VIP with nNOS, SP, and CART in intramural neurons. The observed changes may be the adaptation of neurons to local inflammation, oxidative stress, or the direct toxic effects of acrylamide on intestinal neurons, also referred to as neuronal plasticity.


Subject(s)
Acrylamide/pharmacology , Enteric Nervous System/cytology , Intestine, Small/cytology , Neurons/cytology , Vasoactive Intestinal Peptide/immunology , Animals , Dietary Supplements , Enteric Nervous System/drug effects , Enteric Nervous System/immunology , Enteric Nervous System/metabolism , Intestine, Small/drug effects , Intestine, Small/immunology , Intestine, Small/metabolism , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/immunology , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Substance P/metabolism , Swine
5.
Toxicol Appl Pharmacol ; 403: 115155, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32710956

ABSTRACT

Human exposures to environmental metals, including uranium (U) and arsenic (As) are a global public health concern. Chronic exposures to U and As are linked to many adverse health effects including, immune suppression and autoimmunity. The gastrointestinal (GI) tract is home to many immune cells vital in the maintenance of systemic immune health. However, very little is known about the immunotoxicity of U and As at this site. The present study examined the burden of U and As exposure in the GI tract as well as the resultant immunotoxicity to intraepithelial lymphocytes (IELs) and innate immune cells of the small intestine following chronic drinking water exposures of male and female mice to U (in the form of uranyl acetate, UA) and As (in the form of sodium arsenite, As3+). Exposure to U or As3+ resulted in high levels of U or As in the GI tract of male and female mice, respectively. A reduction of small intestinal CD4+ IELs (TCRαß+, CD8αα+) was found following As3+ exposure, whereas U produced widespread suppression of CD4- IEL subsets (TCRαß+ and TCRγδ+). Evaluation of innate immune cell subsets in the small intestinal lamina propria revealed a decrease in mature macrophages, along with a corresponding increase in immature/proinflammatory macrophages following As3+ exposures. These data show that exposures to two prevalent environmental contaminants, U and As produce significant immunotoxicity in the GI tract. Collectively, these findings provide a critical framework for understanding the underlying immune health issues reported in human populations chronically exposed to environmental metals.


Subject(s)
Arsenic/toxicity , Immunity, Innate/drug effects , Intestine, Small/cytology , Uranium/toxicity , Administration, Oral , Animals , Drinking Water , Female , Intestine, Small/drug effects , Male , Mice , Mice, Inbred C57BL , Sex Factors
6.
Biol Pharm Bull ; 43(4): 707-715, 2020.
Article in English | MEDLINE | ID: mdl-32238713

ABSTRACT

Chaihu-Shugan-San (CSS) has been widely used as an alternative treatment for gastrointestinal (GI) diseases in East Asia. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract. In the present study, we examined the action of CSS on pacemaker potentials in cultured ICCs from the mouse small intestine in vitro and on GI motility in vivo. We used the electrophysiological methods to measure the pacemaker potentials in ICCs. GI motility was investigated by measuring intestinal transit rates (ITR). CSS inhibited the pacemaker potentials in a dose-dependent manner. The capsazepine did not block the effect of CSS. However, the effects of CSS were blocked by glibenclamide. In addition, NG-nitro-L-arginine methyl ester (L-NAME) also blocked the CSS-induced effects. Pretreatment with SQ-22536 or with KT-5720 did not suppress the effects of CSS; however, pretreatment with ODQ or KT-5823 did. Furthermore, CSS significantly suppressed murine ITR enhancement by neostigmine in vivo. These results suggest that CSS exerts inhibitory effects on the pacemaker potentials of ICCs via nitric oxide (NO)/cGMP and ATP-sensitive K+ channel dependent and transient receptor potential vanilloid 1 (TRPV1) channel independent pathways. Accordingly, CSS could provide the basis for the development of new treatments for GI motility dysfunction.


Subject(s)
Interstitial Cells of Cajal/drug effects , Intestine, Small/cytology , Plant Extracts/pharmacology , Animals , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/physiology , Gastrointestinal Motility/drug effects , Guanylate Cyclase/physiology , Interstitial Cells of Cajal/physiology , Intestine, Small/physiology , KATP Channels/physiology , Male , Mice, Inbred ICR , Nitric Oxide/physiology , Proto-Oncogene Proteins c-kit/metabolism , TRPV Cation Channels/physiology
7.
Digestion ; 101(3): 227-238, 2020.
Article in English | MEDLINE | ID: mdl-30889598

ABSTRACT

BACKGROUND: Rikkunshito has been used to treat gastrointestinal (GI) disorders. The purpose of this study was to investigate the effects of Rikkunshito, a traditional Japanese herbal medicine, on the pacemaker potentials of interstitial cells of Cajal (ICCs) from the small intestines of mice. METHODS: We isolated ICCs from the small intestines of mice, and the whole-cell patch-clamp configuration was used to record the pacemaker potentials in cultured ICCs and membrane currents. RESULTS: Rikkunshito depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with GSK1614343 or (D-Lys3)-growth hormone-releasing peptide-6 inhibited Rikkunshito-induced depolarization of pacemaker potentials. Intracellular GDP-ß-S inhibited Rikkunshito-induced effects. In Ca2+-free solution or in the presence of thapsigargin, Rikkunshito did not depolarize pacemaker potentials. Moreover, in the presence of U-73122 or xestospongin C, Rikkunshito-induced effects were inhibited. However, in the presence of staurosporine, Go6976 or Rottlerin, Rikkunshito depolarized pacemaker potentials. Furthermore, Rikkunshito inhibited both transient receptor potentials melastatin 7 (TRPM7) and Ca2+-activated Cl- channels (ANO1) currents. CONCLUSION: Rikkunshito depolarized pacemaker potentials of ICCs via ghrelin receptor and G protein through internal or external Ca2+-, phospholipase C-, and inositol triphosphate-dependent and protein kinase C-, TRPM7-, and ANO1-independent pathways. The study shows that Rikkunshito may alleviate GI motility disorders through its depolarizing effects on ICCs.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gastrointestinal Motility/drug effects , Interstitial Cells of Cajal/drug effects , Membrane Potentials/drug effects , Receptors, Ghrelin/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Gastrointestinal Motility/physiology , Interstitial Cells of Cajal/physiology , Intestine, Small/cytology , Intestine, Small/physiology , Mice , Patch-Clamp Techniques , Primary Cell Culture , Signal Transduction/drug effects
8.
Digestion ; 101(5): 536-551, 2020.
Article in English | MEDLINE | ID: mdl-31185476

ABSTRACT

BACKGROUND: Banhasasim-tang (BHSST) is a classic herbal formulation in traditional Chinese medicine widely used for gastrointestinal (GI) tract motility disorder. We investigated the effects of BHSST on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) in small intestine in vitro and its effects on GI motor functions in vivo. METHODS: We isolated ICCs from the small intestines and recorded pacemaker potentials in cultured ICCs with the whole-cell patch-clamp configuration in vitro. Intestinal transit rates (ITR%) were investigated in normal mice and GI motility dysfunction (GMD) mouse models in vivo. RESULTS: BHSST (20-50 mg/mL) depolarized pacemaker potentials and decreased their amplitudes in a concentration-dependent manner. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not inhibit BHSST-induced pacemaker potential depolarization. However, when we applied 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; a muscarinic M3 receptor antagonist), BHSST-induced effects were blocked. Pretreatment with Y25130 (a 5-HT3 receptor antagonist) blocked BHSST-induced effects in ICCs. In addition, when we applied 4-DAMP and Y25130 together, BHSST-induced effects were completely blocked. Pretreatment with Ca2+-free solution or thapsigargin inhibited BHSST-induced effects. Moreover, BHSST blocked both the transient receptor potential melastatin (TRPM) 7 and voltage-sensitive calcium-activated chloride (anoctamin-1, ANO1) channels. In normal mice, ITR% values were significantly increased by BHSST in a dose-dependent manner. The ITR% of GMD mice was significantly reduced relative to those of normal mice, which were significantly reversed by BHSST in a dose-dependent manner. CONCLUSION: These results suggested that BHSST depolarizes the pacemaker potentials of ICCs in a dose-dependent manner through the M3 and 5-HT3 receptors via internal and external Ca2+-dependent and TRPM7- and ANO1-independent pathways in vitro. Moreover, BHSST increased ITR% in vivo in normal mice and GMD mouse models. Taken together, the results of this study showed that BHSST had the potential for development as a prokinetic agent in GI motility function.


Subject(s)
Dyspepsia/drug therapy , Gastrointestinal Transit/drug effects , Interstitial Cells of Cajal/drug effects , Intestine, Small/drug effects , Membrane Potentials/drug effects , Plant Extracts/pharmacology , Animals , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Dyspepsia/etiology , Gastrointestinal Transit/physiology , HEK293 Cells , Humans , Interstitial Cells of Cajal/physiology , Intestine, Small/cytology , Intestine, Small/physiopathology , Male , Mice , Mice, Inbred ICR , Patch-Clamp Techniques , Plant Extracts/therapeutic use , Primary Cell Culture , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serotonin 5-HT3 Receptor Antagonists , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
9.
Mol Nutr Food Res ; 63(14): e1801363, 2019 07.
Article in English | MEDLINE | ID: mdl-31116489

ABSTRACT

SCOPE: The prebiotic regulation of the gut microbiota is a promising strategy to induce protective humoral and mucosal immune responses. The potential immune-improving effects of pectin oligosaccharides (POS) in healthy mice and the potential mechanism mediated by specific intestinal bacteria are investigated. METHODS AND RESULTS: POS is prepared using a hydrogen-peroxide-assisted degradation. Mice that consumed diets containing POS are tested for microbial community shifts, short-chain fatty acids (SCFAs), and immunoglobulin (Ig) production using quantitative real-time polymerase chain reaction, gas chromatography, and ELISA kits. Pearson's correlation analyses are performed between Ig production and specific intestinal bacteria or SCFAs. POS treatment significantly improves the growth of healthy mice. Moreover, 4-week POS administration results in a profound change in intestinal microbial composition and a significantly higher fecal concentration of acetate, which leads to substantial increases of the levels of fecal secretory immunoglobulin A and serum IgG. CONCLUSIONS: The results suggest that the inclusion of POS in a diet can increase Ig production and optimize the composition of the gut microbiota. A significant correlation is observed between changes in Ig production and specific intestinal bacteria or acetate, providing insight into the mechanism of POS as a potential immune-enhancing supplement.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immunoglobulins/blood , Oligosaccharides/pharmacology , Pectins/chemistry , Animals , Colon/drug effects , Dietary Supplements , Dose-Response Relationship, Drug , Fatty Acids, Volatile/metabolism , Feces/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Goblet Cells/drug effects , Immunoglobulin A, Secretory/metabolism , Intestine, Small/cytology , Intestine, Small/drug effects , Male , Mice, Inbred BALB C , Oligosaccharides/administration & dosage , Prebiotics
10.
Molecules ; 24(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609730

ABSTRACT

The intestinal epithelial barrier plays a key protective role in the gut lumen. Bovine lactoferrin (bLF) has been reported to improve the intestinal epithelial barrier function, but its impact on tight junction (TJ) proteins has been rarely described. Human intestinal epithelial crypt cells (HIECs) were more similar to those in the human small intestine, compared with the well-established Caco-2 cells. Accordingly, both HIECs and Caco-2 cells were investigated in this study to determine the effects of bioactive protein bLF on their growth promotion and intestinal barrier function. The results showed that bLF promoted cell growth and arrested cell-cycle progression at the G2/M-phase. Moreover, bLF decreased paracellular permeability and increased alkaline phosphatase activity and transepithelial electrical resistance, strengthening barrier function. Immunofluorescence, western blot and quantitative real-time polymerase chain reaction revealed that bLF significantly increased the expression of three tight junction proteins-claudin-1, occludin, and ZO-1-at both the mRNA and protein levels, and consequently strengthened the barrier function of the two cell models. bLF in general showed higher activity in Caco-2 cells, however, HIECs also exhibited desired responses to barrier function. Therefore, bLF may be incorporated into functional foods for treatment of inflammatory bowel diseases which are caused by loss of barrier integrity.


Subject(s)
Gastrointestinal Agents/pharmacology , Intestinal Absorption/drug effects , Lactoferrin/pharmacology , Tight Junction Proteins/metabolism , Alkaline Phosphatase/metabolism , Animals , Caco-2 Cells , Cattle , Cell Differentiation/drug effects , Cell Survival/drug effects , Dietary Supplements , Epithelial Cells/drug effects , Gene Expression Regulation , Humans , Intestine, Small/cytology , Intestine, Small/metabolism , Permeability , Tight Junctions/metabolism
11.
Nutrients ; 10(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029467

ABSTRACT

Chia seeds (Salvia hispanica) provide an unusually high content of α-linolenic acid with several potential health benefits, but few studies have examined the long-term intake of n-3 fatty acid-rich plant foods such as chia. In this work, we investigated some of the effects of a diet containing 10% chia seeds versus a conventional isocaloric diet for 10 and 13 months on body measurements, musculoskeletal system, the liver, and the intestines of 20 male Sprague-Dawley rats assigned into two groups. The n-6/n-3 ratios for the control and chia diets were 7.46 and 1.07, respectively. For the first 10 months of the diet, the body parameters and weights were similar, but at 13 months, the bone mineral content (BMC) of the chia-fed rats was significantly higher than that of the controls whether in total or proximal areas of the left tibia. Also, significant positive correlations were found between the age of the chia group and the bone mineral density, BMC, weight of the musculoskeletal system, final body weight, and skin weight. Liver and intestinal examinations showed improved morphology associated with lower lipid deposit in hepatocytes and increased intestinal muscle layers and crypt size in the chia group. This study provides new data suggesting the potential benefits associated with the long-term intake of chia seeds.


Subject(s)
Diet , Fatty Acids, Omega-3/therapeutic use , Intestinal Diseases/prevention & control , Liver Diseases/prevention & control , Osteoporosis/prevention & control , Salvia , Seeds , Absorptiometry, Photon , Animals , Bone Density , Bone Development , Bone and Bones/diagnostic imaging , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/analysis , Intestinal Diseases/pathology , Intestinal Mucosa/cytology , Intestinal Mucosa/growth & development , Intestinal Mucosa/pathology , Intestine, Small/cytology , Intestine, Small/growth & development , Intestine, Small/pathology , Liver/cytology , Liver/growth & development , Liver/pathology , Liver Diseases/pathology , Male , Nutritive Value , Osteoporosis/diagnostic imaging , Random Allocation , Rats, Sprague-Dawley , Salvia/chemistry , Seeds/chemistry , Time Factors
12.
Nutrients ; 10(5)2018 May 09.
Article in English | MEDLINE | ID: mdl-29747456

ABSTRACT

The absorption and antioxidant activity of polyphenols from grape pomace (GP) are important aspects of its valorization as a feed additive in the diet of weaned piglets. This study aimed to evaluate the presence of polyphenols from GP both in vitro in IPEC cells and in vivo in the duodenum and colon of piglets fed with diets containing or not 5% GP and also to compare and correlate the aspects of their in vitro and in vivo absorption. Total polyphenolic content (TPC) and antioxidant status (TAS, CAT, SOD and GPx enzyme activity, and lipid peroxidation-TBARS level) were assessed in duodenum and colon of piglets fed or not a diet with 5% GP. The results of UV-Vis spectroscopy demonstrated that in cellular and extracellular medium the GP polyphenols were oxidized (between λmax = 276 nm and λmax = 627.0 nm) with the formation of o-quinones and dimers. LC-MS analysis indicated a procyanidin trimer possibly C2, and a procyanidin dimer as the major polyphenols identified in GP, 12.8% of the procyanidin trimer and 23% of the procyanidin dimer respectively being also found in the compound feed. Procyanidin trimer C2 is the compound accumulated in duodenum, 73% of it being found in the colon of control piglets, and 62.5% in the colon of GP piglets. Correlations exist between the in vitro and in vivo investigations regarding the qualitative evaluation of GP polyphenols in the cells (λmax at 287.1 nm) and in the gut (λmax at 287.5 nm), as oxidated metabolic products. Beside the presence of polyphenols metabolites this study shows also the presence of the unmetabolized procyanidin trimers in duodenum and colon tissue, an important point in evaluating the benefic actions of these molecules at intestinal level. Moreover the in vivo study shows that a 5% GP in piglet’s diet increased the total antioxidant status (TAS) and decreased lipid peroxidantion (TBARS) in both duodenum and colon, and increased SOD activity in duodenum and CAT and GPx activity in colon. These parameters are modulated by the different polyphenols absorbed, mainly by the procyanidin trimers and catechin on one side and the polyphenols metabolites on the other side.


Subject(s)
Intestinal Absorption/drug effects , Polyphenols/pharmacokinetics , Vitis/chemistry , Animals , Animals, Newborn , Antioxidants/pharmacokinetics , Biflavonoids/pharmacokinetics , Catalase/metabolism , Catechin/pharmacokinetics , Cell Survival/drug effects , Diet/veterinary , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Glutathione Peroxidase/metabolism , Intestine, Small/cytology , Intestine, Small/drug effects , Intestine, Small/metabolism , Lipid Peroxidation/drug effects , Plant Extracts/pharmacokinetics , Proanthocyanidins/pharmacokinetics , Superoxide Dismutase/metabolism , Swine , Thiobarbituric Acid Reactive Substances/metabolism
13.
Digestion ; 98(1): 56-68, 2018.
Article in English | MEDLINE | ID: mdl-29672308

ABSTRACT

BACKGROUND: The Gamisoyo-san (GSS) has been used for -improving the gastrointestinal (GI) symptoms. The purpose of this study was to investigate the effects of GSS, a traditional Chinese herbal medicine, on the pacemaker potentials of mouse small intestinal interstitial cells of Cajal (ICCs). METHODS: ICCs from the small intestines were dissociated and cultured. Whole-cell patch-clamp configuration was used to record pacemaker potentials and membrane currents. RESULTS: GSS depolarized ICC pacemaker potentials in a dose-dependent manner. Pretreatment with 4-diphenylacetoxypiperidinium iodide completely inhibited GSS-induced pacemaker potential depolarizations. Intracellular GDP-ß-S inhibited GSS-induced effects, and in the presence of U-73122, GSS-induced effects were inhibited. Also, GSS in the presence of a Ca2+-free solution or thapsigargin did not depolarize pacemaker potentials. However, in the presence of calphostin C, GSS slightly depolarized pacemaker potentials. Furthermore, GSS inhibited both transient receptor potential melastatin7 and Ca2+-activated Cl- channel (anoctamin1) currents. CONCLUSION: GSS depolarized pacemaker potentials of ICCs via G protein and muscarinic M3 receptor signaling pathways and through internal or external Ca2+-, phospholipase C-, and protein kinase C-dependent and transient receptor potential melastatin 7-, and anoctamin 1-independent pathways. The study shows that GSS may regulate GI tract motility, suggesting that GSS could be a basis for developing novel prokinetic agents for treating GI motility dysfunctions.


Subject(s)
Biological Clocks/drug effects , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Motility/drug effects , Interstitial Cells of Cajal/drug effects , Intestine, Small/drug effects , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Estrenes/pharmacology , Interstitial Cells of Cajal/cytology , Interstitial Cells of Cajal/physiology , Intestine, Small/cytology , Intestine, Small/physiology , Medicine, Chinese Traditional/methods , Membrane Potentials/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Models, Animal , Patch-Clamp Techniques , Pyrrolidinones/pharmacology , Signal Transduction/drug effects
14.
Pharm Res ; 35(4): 72, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29476278

ABSTRACT

PURPOSE: The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction. METHODS: The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data. Drug-drug interactions were examined using efflux transporter substrates and inhibitors. RESULTS: The 3D-intestinal microtissues recapitulate the structural features and physiological barrier properties of the human small intestine. The microtissues also expressed drug transporters and metabolizing enzymes found on the intestinal wall. Functionally, the SMI microtissues were able to discriminate between low and high permeability drugs and correlated better with human absorption data (r2 = 0.91) compared to Caco-2 cells (r2 = 0.71). Finally, the functionality of efflux transporters was confirmed using efflux substrates and inhibitors which resulted in efflux ratios of >2.0 fold and by a decrease in efflux ratios following the addition of inhibitors. CONCLUSION: The SMI microtissues appear to be a useful pre-clinical tool for predicting drug bioavailability of orally administered drugs.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Interactions , Intestinal Absorption , Intestine, Small/cytology , Tissue Culture Techniques/methods , Administration, Oral , Adult , Biological Availability , Caco-2 Cells , Epithelial Cells , Female , Fibroblasts , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Primary Cell Culture , Young Adult
15.
Cell Physiol Biochem ; 43(5): 1790-1802, 2017.
Article in English | MEDLINE | ID: mdl-29049988

ABSTRACT

BACKGROUND: Magnolia officinalis Rehder and EH Wilson (M. officinalis) are traditional Chinese medicines widely used for gastrointestinal (GI) tract motility disorder in Asian countries. We investigated the effects of an ethanol extract of M. officinalis (MOE) on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) in vitro and its effects on GI motor functions in vivo. METHODS: We isolated ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record the pacemaker potentials in cultured ICCs in vitro. Both gastric emptying (GE) and intestinal transit rates (ITRs) were investigated in normal and GI motility dysfunction (GMD) mice models in vivo. RESULTS: MOE depolarized ICC pacemaker potentials dose-dependently. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) and 4-DAMP (a muscarinic M3 receptor antagonist) inhibited the effects of MOE on the pacemaker potential relative to treatment with MOE alone. In addition, MOE depolarized pacemaker potentials after pretreatment with Y25130 (a 5-HT3 receptor antagonist), GR113808 (a 5-HT4 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). However, pretreatment with RS39604 (a 5-HT4 receptor antagonist) blocked MOE-induced pacemaker potential depolarizations. Intracellular GDPßS inhibited MOE-induced pacemaker potential depolarization, as did pretreatment with Ca2+ free solution or thapsigargin. In normal mice, the GE and ITR values were significantly and dose-dependently increased by MOE. In loperamide-and cisplatin-induced GE delay models, MOE administration reversed the GE deficits. The ITRs of the GMD mice were significantly reduced relative to those of normal mice, which were significantly and dose-dependently reversed by MOE. CONCLUSION: These results suggest that MOE dose-dependently depolarizes ICCs pacemaker potentials through M2 and M3 receptors via internal and external Ca2+ regulation through G protein pathways in vitro. Moreover, MOE increased GE and ITRs in vivo in normal and GMD mouse models. Taken together, the results of this study show that MOE have the potential for development as a gastroprokinetic agent in GI motility function.


Subject(s)
Interstitial Cells of Cajal/drug effects , Interstitial Cells of Cajal/metabolism , Intestine, Small/cytology , Magnolia/chemistry , Plant Bark/classification , Plant Extracts/pharmacology , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/metabolism , Animals , Cell Line , Cells, Cultured , Gastric Emptying/drug effects , Gastrointestinal Motility/drug effects , Male , Membrane Potentials/drug effects , Mice , Patch-Clamp Techniques , Plant Extracts/chemistry , Stem Cell Factor/metabolism
16.
World J Gastroenterol ; 23(29): 5313-5323, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28839431

ABSTRACT

AIM: To investigate the effects of a water extract of Hwangryunhaedok-tang (HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal (ICCs). METHODS: We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an anti-c-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode (I = 0). All experiments were performed at 30 °C-32 °C. RESULTS: HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT3 receptor antagonist (Y25130) or a 5-HT4 receptor antagonist (RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist (SB269970) did not. Intracellular GDPßS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca2+-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca2+-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor (calphostin C) or a Rho kinase inhibitor (Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization. CONCLUSION: These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT3 and 5-HT4 receptors via external and internal Ca2+ regulation and via G protein-, PKC- and Rho kinase-independent pathways.


Subject(s)
Biological Clocks/drug effects , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Motility/drug effects , Interstitial Cells of Cajal/drug effects , Intestine, Small/physiology , Membrane Potentials/drug effects , Plant Extracts/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium/metabolism , Cells, Cultured , Drugs, Chinese Herbal/chemistry , Enzyme Inhibitors/pharmacology , GTP-Binding Proteins/metabolism , Interstitial Cells of Cajal/physiology , Intestine, Small/cytology , Mice , Mice, Inbred ICR , Oxazines/pharmacology , Patch-Clamp Techniques , Phenols/pharmacology , Piperidines/pharmacology , Plant Extracts/chemistry , Propane/analogs & derivatives , Propane/pharmacology , Protein Kinase C/metabolism , Receptors, Serotonin/metabolism , Serotonin 5-HT3 Receptor Antagonists/pharmacology , Serotonin 5-HT4 Receptor Antagonists/pharmacology , Sulfonamides/pharmacology , Thapsigargin/pharmacology , rho-Associated Kinases/metabolism
17.
World J Gastroenterol ; 23(6): 964-975, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28246470

ABSTRACT

AIM: To investigate a suitable long-term culture system and optimal cryopreservation of intestinal organoid to improve organoid-based therapy by acquiring large numbers of cells. METHODS: Crypts were isolated from jejunum of C57BL/6 mouse. Two hundred crypts were cultured in organoid medium with either epidermal growth factor/Noggin/R-spondin1 (ENR) or ENR/CHIR99021/VPA (ENR-CV). For subculture, organoids cultured on day 7 were passaged using enzyme-free cell dissociation buffer (STEMCELL Technologies). The passage was performed once per week until indicated passage. For cryopreservation, undissociated and dissociated organoids were resuspended in freezing medium with or without Rho kinase inhibitor subjected to different treatment times. The characteristics of intestinal organoids upon extended passage and freeze-thaw were analyzed using EdU staining, methyl thiazolyl tetrazolium assay, qPCR and time-lapse live cell imaging. RESULTS: We established a three-dimensional culture system for murine small intestinal organoids using ENR and ENR-CV media. Both conditions yielded organoids with a crypt-villus architecture exhibiting Lgr5+ cells and differentiated intestinal epithelial cells as shown by morphological and biochemical analysis. However, during extended passage (more than 3 mo), a comparative analysis revealed that continuous passaging under ENR-CV conditions, but not ENR conditions induced phenotypic changes as observed by morphological transition, reduced numbers of Lgr5+ cells and inconsistent expression of markers for differentiated intestinal epithelial cell types. We also found that recovery of long-term cryopreserved organoids was significantly affected by the organoid state, i.e., whether dissociation was applied, and the timing of treatment with the Rho-kinase inhibitor Y-27632. Furthermore, the retention of typical morphological characteristics of intestinal organoids such as the crypt-villus structure from freeze-thawed cells was observed by live cell imaging. CONCLUSION: The maintenance of the characteristics of intestinal organoids upon extended passage is mediated by ENR condition, but not ENR-CV condition. Identified long-term cryopreservation may contribute to the establishment of standardized cryopreservation protocols for intestinal organoids for use in clinical applications.


Subject(s)
Amides/pharmacology , Cell Culture Techniques/methods , Cryopreservation/methods , Enzyme Inhibitors/pharmacology , Intestinal Mucosa/cytology , Intestine, Small/cytology , Organoids/physiology , Pyridines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Biological Therapy/methods , Cell Differentiation , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Time Factors
18.
Poult Sci ; 96(3): 593-601, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28201632

ABSTRACT

The purpose of this research was to investigate the effects of dietary lysophospholipid (LPL) supplementation on low-energy, crude protein, and selected amino acids on growth performance, intestinal morphology, blood metabolites, inflammatory response, and carcass traits in broiler chickens. A total of 300 one-day-old male chicks (Ross 308) were assigned to 5 treatments, with 6 replications of 10 birds each in a completely randomized design. The 5 treatments were: positive control (PC) without LPL supplementation and adequate in all nutrients, negative control (NC) without LPL, and reduced 150 kcal/kg of metabolizable energy and reduced 5 to 6% of crude protein and selected amino acids including Lys, Met, Thr, and Trp in a calculated amount relative to the PC, NC + 0.05% LPL (LPL05), NC + 0.10% LPL (LPL10), and NC + 0.15% LPL (LPL15). Feeding LPL linearly improved growth performance, feed conversion ratio, ether extract, and protein digestibility. LPL supplementation on low-energy and nitrogenous diets showed significant enhancements in metabolic profiles of blood glucose, protein utilization, and immune system functions. These improvements influenced carcass composition, especially in relative weights of pancreas and breast muscle. In contrast, LPL addition showed no significant effects on relative weights of immune organs, gizzard, and abdominal fat. The NC birds were more susceptible to inflammation via modulating the secretion of interleukin-1 (IL-1) and increasing crypt depth in the jejunal and duodenal segments. However, the inclusion of 0.05% LPL to the NC diet could alleviate inflammation with increased jejunal villi height, ratio of villi height to crypt depth, and decreased IL-1 level. Overall, LPL promotes growth performance, nutrient utilization, gut health, anti-inflammation, and muscle yields when applied to diets of broiler chickens with lower levels of energy, crude protein, and selected amino acids.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Chickens/physiology , Diet/veterinary , Dietary Supplements , Lysophospholipids , Animal Feed/analysis , Animals , Blood Chemical Analysis/veterinary , Chickens/anatomy & histology , Chickens/growth & development , Digestion/drug effects , Intestinal Mucosa/cytology , Intestine, Small/cytology , Male , Random Allocation
19.
J Anim Sci ; 95(1): 257-269, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28177347

ABSTRACT

Weanling pigs ( = 108, 21 d of age, 5.82 ± 0.16 kg initial BW) were assigned to a 2 × 2 factorial arrangement of treatments to evaluate the effects of dietary levels of CP (high- and low-CP diets) and dried citrus pulp (DCP; 0% and 7.5%) on growth performance, small intestinal morphology, and hindgut fermentation. Pigs were blocked by initial BW and allotted to 1 of 9 pens, each containing 3 pigs. The high-CP diets consisted of feeding 20% and 21% CP levels throughout phase 1 (0 to 14 d) and phase 2 (14 to 28 d), respectively. For the low-CP diets, CP levels were reduced by 4% units as compared with the high-CP diets in both phases. Crystalline AA were supplied to maintain an ideal AA pattern. Pig BW and pen feed disappearance were recorded weekly. On d 7 and 28 postweaning, 1 pig from each pen was euthanized for collection of small intestinal tissues and digesta from cecum and colon. There were no CP × DCP interactions for growth performance and gut morphology. Although the low-CP diet decreased ADG ( = 0.03) and G:F ( = 0.02) from d 21 to 28 postweaning, overall performance was unaffected by the treatments. On d 7 postweaning, pigs fed the low-CP diet tended to have increased ( = 0.09) crypt depth in the duodenum. Low-CP diets tended to increase ( = 0.06) crypt depth and reduce ( = 0.08) villus:crypt ratio in the jejunum on d 7. Dietary treatments did not affect ileal morphology. On d 7 postweaning, low-CP diets tended to reduce ( = 0.09) cecal total VFA, whereas dietary DCP inclusion tended to decrease ( = 0.07) colonic propionate. Including 7.5% DCP to the diet decreased ( < 0.05) colonic isovalerate and ammonia N concentrations on d 7 only for pigs fed the low-CP diet. On d 28 postweaning, DCP inclusion in low-CP diets decreased ( < 0.05) butyrate, isovalerate, and valerate concentrations in the cecum, as well as isovalerate, valerate, and ammonia N concentrations in the colon. Including 7.5% DCP to the diet increased ( < 0.05) acetate:propionate ratio in the hindgut on both d 7 and 28 postweaning only for pigs fed the high-CP diet. Lactate concentration was unaffected by the treatments. These results indicate that feeding low-CP AA-supplemented diets did not compromise overall growth performance, but slightly increased damage in the gut morphology of weanling pigs. Moreover, adding 7.5% DCP to low-CP AA-supplemented diets shifted the fermentation pattern in the hindgut of weanling pigs by decreasing protein fermentation metabolites.


Subject(s)
Citrus , Dietary Supplements , Swine/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cecum/metabolism , Diet/veterinary , Dietary Proteins/metabolism , Fermentation , Ileum/cytology , Intestine, Small/cytology , Male , Swine/growth & development
20.
J Nutr Biochem ; 34: 146-55, 2016 08.
Article in English | MEDLINE | ID: mdl-27322812

ABSTRACT

Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations.


Subject(s)
Dietary Supplements , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/metabolism , Phenylethyl Alcohol/analogs & derivatives , Animals , Cell Line , Cells, Cultured , Cross-Over Studies , Double-Blind Method , Humans , Intestinal Mucosa/cytology , Intestine, Small/cytology , Male , Mice, Inbred C57BL , Organ Specificity , Organoids , Phenylethyl Alcohol/administration & dosage , Phenylethyl Alcohol/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL