Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542215

ABSTRACT

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Subject(s)
Camellia sinensis , Humans , Introns/genetics , Camellia sinensis/genetics , Genetic Markers , Genome, Plant , Plant Breeding , Tea
3.
Sci Rep ; 13(1): 22431, 2023 12 17.
Article in English | MEDLINE | ID: mdl-38104200

ABSTRACT

Endophytic fungi play an important role in the growth and development of traditional Chinese medicine plants. We isolated a strain of Acrocalymma vagum from the endophytic fungi of the traditional Chinese plants Paris. To accurately identify this endophytic fungal species of interest, we sequenced the mitochondrial genome of A. vagum, which is the first discovered mitochondrial genome in Massarineae. The A. vagum mitochondrial genome consists of a 35,079-bp closed circular DNA molecule containing 36 genes. Then, we compared the general sequence characteristics of A. vagum with those of Pleosporales, and the second structure of the 22 tRNAs was predicted. The phylogenetic relationship of A. vagum was constructed using two different data sets (protein-coding genes and amino acids). The phylogenetic tree shows that A. vagum is located at the root of Pleosporales. The analysis of introns shows that the number of introns increases with the increase in branch length. The results showed that monophyly was confirmed for all families in Pleosporales except for Pleosporaceae. A. vagum is an ancient species in the Pleosporales, and Pleosporaceae may require further revision. In Pleosporales, the number of introns is positively correlated with branch length, providing data for further study on the origin of introns.


Subject(s)
Genome, Mitochondrial , Humans , Phylogeny , Introns , RNA, Transfer/genetics , Paris
4.
BMC Genomics ; 24(1): 538, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697255

ABSTRACT

Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.


Subject(s)
Codon Usage , Magnoliopsida , Female , Pregnancy , Humans , Amino Acids , Introns , Mutation
5.
Brain Struct Funct ; 227(8): 2809-2820, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36197505

ABSTRACT

Dysregulation of stress response systems may mediate the detrimental effects of childhood trauma (CT) on mental health. FKBP5 regulates glucocorticoid receptor sensitivity and exerts pleiotropic effects on intracellular signaling, neurobiology and behavior. We investigated whether CT, alone and in combination with rs1360780 genotype, is associated with altered FKBP5 methylation and whether CT-associated methylation profiles are associated with anxiety proneness (AP) and structural brain volumes. Ninety-four adolescents completed the Childhood Trauma Questionnaire, and a composite AP score was generated from the Childhood Anxiety Sensitivity Index and the State-Trait Anxiety Inventory-Trait measure. Mean methylation values for 12 regulatory regions and 25 individual CpG sites were determined using high-accuracy measurement via targeted bisulfite sequencing. FKBP5 rs1360780 genotype and structural MRI data were available for a subset of participants (n = 71 and n = 75, respectively). Regression models revealed an inverse association between methylation of three intron 7 CpG sites (35558438, 35558566 and 35558710) and right thalamus volume. CpG35558438 methylation was positively associated with AP scores. Our data indicate that an intron 7 methylation profile, consistent with lower FKBP5 expression and elevated high sensitivity glucocorticoid receptor levels, is associated with higher AP and smaller right thalamus volume. Research into the mechanisms underlying the intron 7 methylation-thalamus volume relationship, and whether it confers increased risk for long-term psychopathology by altering the regulatory threshold of stress responding, is required.


Subject(s)
DNA Methylation , Receptors, Glucocorticoid , Humans , Adolescent , Introns/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tacrolimus Binding Proteins/genetics , Genotype , Anxiety/genetics , Thalamus/diagnostic imaging , Thalamus/metabolism , Polymorphism, Single Nucleotide
6.
Sci Rep ; 12(1): 16233, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171247

ABSTRACT

Marker-assisted breeding and tagging of important quantitative trait loci for beneficial traits are two important strategies for the genetic improvement of plants. However, the scarcity of diverse and informative genetic markers covering the entire tea genome limits our ability to achieve such goals. In the present study, we used a comparative genomic approach to mine the tea genomes of Camellia sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS) to identify the markers to differentiate tea genotypes. In our study, 43 and 60 Camellia sinensis miniature inverted-repeat transposable element (CsMITE) families were identified in these two sequenced tea genomes, with 23,170 and 37,958 putative CsMITE sequences, respectively. In addition, we identified 4912 non-redundant, Camellia sinensis intron length polymorphic (CsILP) markers, 85.8% of which were shared by both the CSS and CSA genomes. To validate, a subset of randomly chosen 10 CsMITE markers and 15 CsILP markers were tested and found to be polymorphic among the 36 highly diverse tea genotypes. These genome-wide markers, which were identified for the first time in tea plants, will be a valuable resource for genetic diversity analysis as well as marker-assisted breeding of tea genotypes for quality improvement.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , DNA Transposable Elements/genetics , Genetic Markers , Humans , Introns/genetics , Plant Breeding , Tea
7.
Gene ; 830: 146496, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35504437

ABSTRACT

Intron retention (IR) is a regulatory mechanism that can retard protein production by acting at the level of mRNA processing. We recently demonstrated that IR occurs at the pre-symptomatic state during the aging process of a mouse model of aging, providing a promising biomarker for that state, and can be restored to the normal state by juzentaihoto (JTT), a Japanese herbal medicine (Kampo) (Okada et al. 2021). Here we characterized the genes that accumulate retained introns, examined the biological significance of increased IR in these genes for the host, and determined whether drugs other than JTT can have this effect. By analyzing RNA-sequencing data generated from the hippocampus of the 19-week-old SAMP8 mouse, a model for studying age-related depression and Alzheimer's disease, we showed that genes with increased IR are generally involved in multiple metabolic pathways and have pivotal roles in sensing homeostasis. We thus propose that IR is a stress response and works to fine-tune the expression of many downstream target genes, leading to lower levels of their translation under stress conditions. Interestingly, Kampo medicines, as well as other organic compounds, restored splicing of a specific set of retained introns in these sensor genes in accordance with the physiological recovery conditions of the host, which corresponds with the recovery of transcripts represented by differentially expressed genes. Thus, analysis of IR genes may have broad applicability in evaluating the pre-symptomatic state based on the extent of IR of selective sensor genes, opening a promising early diagnosis of any diseases and a strategy for evaluating efficacies of several drugs based on the extent of IR restoration of these sensor genes.


Subject(s)
Alzheimer Disease , Plants, Medicinal , Alzheimer Disease/genetics , Animals , Introns/genetics , Japan , Mice , Plants, Medicinal/genetics , RNA Splicing , Sequence Analysis, RNA
8.
Dis Model Mech ; 15(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-35014671

ABSTRACT

Alternative splicing is a process by which a single gene is able to encode multiple different protein isoforms. It is regulated by the inclusion or exclusion of introns and exons that are joined in different patterns prior to protein translation, thus enabling transcriptomic and proteomic diversity. It is now widely accepted that alternative splicing is dysregulated across nearly all cancer types. This widespread dysregulation means that nearly all cellular processes are affected - these include processes synonymous with the hallmarks of cancer - evasion of apoptosis, tissue invasion and metastasis, altered cellular metabolism, genome instability and drug resistance. Emerging evidence indicates that the dysregulation of alternative splicing also promotes a permissive environment for increased tumour heterogeneity and cellular plasticity. These are fundamental regulators of a patient's response to therapy. In this Review, we introduce the mechanisms of alternative splicing and the role of aberrant splicing in cancer, with particular focus on newfound evidence of alternative splicing promoting tumour heterogeneity, cellular plasticity and altered metabolism. We discuss recent in vivo models generated to study alternative splicing and the importance of these for understanding complex tumourigenic processes. Finally, we review the effects of alternative splicing on immune evasion, cell death and genome instability, and how targeting these might enhance therapeutic efficacy.


Subject(s)
Alternative Splicing , Neoplasms , Alternative Splicing/genetics , Carcinogenesis/genetics , Humans , Introns , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Proteomics , RNA Splicing
9.
J Nat Med ; 76(1): 69-86, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34482450

ABSTRACT

Recently, Curcuma rhizome-related foods with claimed health benefits have been used worldwide; however, correct identification and quality assessment have not been conducted. Due to the wide distribution and morphological similarities of Curcuma species, the classification of some species is debated and nomenclature is inconsistent among countries. In this study, to elucidate specific molecular markers of medicinally used Curcuma species in Asia, and to solve the confusion on the reported botanical origin of crude drugs, molecular analysis based on the intron length polymorphism (ILP) in genes encoding diketide-CoA synthase and curcumin synthase and the trnK intron sequences was performed using 59 plant specimens and 42 crude drug samples from 13 Curcuma species, obtained from Asian countries. The ILP patterns of the respective species from both plant specimens and crude drug samples revealed high consistency in C. aromatica, C. zedoaria, C. phaeocaulis, C. aeruginosa, C. wenyujin, and C. zanthorrhiza, but showed intraspecies polymorphism in C. longa, C. kwangsiensis, C. amada, C. mangga and C. comosa. The C. longa specimens and samples were separated into three subgroups which were highly consistent with their geographical origins. Based on the ILP markers and the trnK intron sequences, the botanical origins of "Khamin oi" from Thailand were correctly determined to be C. longa or a hybrid between C. longa and other species, and "Wan narn kum" from Thailand and "Kasturi manjal" from India were correctly determined to be C. zanthorrhiza.


Subject(s)
Curcuma , Curcumin , Coenzyme A , Curcuma/genetics , Introns/genetics , Thailand
10.
J Nat Med ; 76(1): 276-280, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34495455

ABSTRACT

Intron length polymorphism (ILP) markers in genes encoding diketide-CoA synthase (DCS) and curcumin synthase (CURS) showed high identification rates in 13 Curcuma species from Asia. However, the sequences of the intron regions have not yet been analyzed. To elucidate the sequence differences in intron regions of the DCS and CURS genes and to search for specific sequences suitable for the identification of Curcuma species, a large number of sequences were determined through subcloning coupled with sequencing analysis of six Curcuma plant specimens belonging to five species that showed distinct ILP patterns. More than 30 sequences of each region from each specimen were grouped into genes DCS1, DCS2, or CURS1-3 and subsequently the sequences of the same genes were compared. Sequences belonging to the same gene showed inter-species similarity, and thus, these intron sequences were less informative within each single-gene region. The determined sequences from each specimen showed 3-5 kinds of sequence lengths in DCS intron I region, and 5-7 kinds of sequence lengths in CURS intron region. The length of determined sequences and the fragment number in each intron region were different among species, or specimens in C. longa, which were in accordance with the fragment lengths and numbers in their corresponding ILP patterns.


Subject(s)
Curcuma , Curcumin , Coenzyme A , Curcuma/genetics , Introns/genetics , Polymorphism, Genetic
11.
Genes (Basel) ; 12(10)2021 10 09.
Article in English | MEDLINE | ID: mdl-34680983

ABSTRACT

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play critical roles in regulating diverse aspects of plant growth and development, including vegetative phase change, plant architecture, anthocyanin accumulation, lateral root growth, etc. In the present study, 15 SPL genes were identified based on the genome data of Codonopsis pilosula, a well-known medicinal plant. Phylogenetic analysis clustered CpSPLs into eight groups (G1-G8) along with SPLs from Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Physcomitrella patens. CpSPLs in the same group share similar gene structure and conserved motif composition. Cis-acting elements responding to light, stress and phytohormone widely exist in their promoter regions. Our qRT-PCR results indicated that 15 CpSPLs were differentially expressed in different tissues (root, stem, leaf, flower and calyx), different developmental periods (1, 2 and 3 months after germination) and various conditions (NaCl, MeJA and ABA treatment). Compared with the control, overexpression of CpSPL2 or CpSPL10 significantly promoted not only the growth of hairy roots, but also the accumulation of total saponins and lobetyolin. Our results established a foundation for further investigation of CpSPLs and provided novel insights into their biological functions. As far as we know, this is the first experimental research on gene function in C. pilosula.


Subject(s)
Codonopsis/genetics , Genome, Plant , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/genetics , Codonopsis/growth & development , Codonopsis/metabolism , Exons , Gene Expression Profiling , Introns , Phylogeny , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription Factors/physiology
12.
Genome ; 64(11): 1021-1028, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34609923

ABSTRACT

Garlic (Allium sativum), a widely distributed plant with great cultural and medicinal significance, is one of the most popular herbal dietary supplements in Europe and North America. Garlic supplements are consumed for a variety of reasons, including for their purported antihypertensive, antibacterial, and anticarcinogenic effects. The steady increase in the global herbal dietary supplement market paired with a global patchwork of regulatory frameworks makes the development of assays for authentication of these products increasingly important. A DNA mini-barcode assay was developed using the P6 loop of the plastid trnLUAA intron to positively identify A. sativum products. Analysis of 43 commercially available garlic herbal dietary supplements produced mini-barcode sequences for 33 supplements, all of which contained detectable amounts of A. sativum. The trnLUAA P6 mini-barcode can be highly useful for specimen identification, particularly for samples that may contain degraded DNA.


Subject(s)
DNA Barcoding, Taxonomic , Dietary Supplements/standards , Garlic/genetics , Introns
13.
Gene ; 794: 145752, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34082065

ABSTRACT

Intron retention (IR) is an important regulatory mechanism that affects gene expression and protein functions. Using klotho mice at the pre-symptomatic state, we discovered that retained-introns accumulated in several organs including the liver and that among these retained introns in the liver a subset was recovered to the normal state by a Japanese traditional herbal medicine. This is the first report of IR recovery by a medicine. IR-recovered genes fell into two categories: those involved in liver-specific metabolism and in splicing. Metabolome analysis of the liver showed that the klotho mice were under starvation stress. In addition, our differentially expressed gene analysis showed that liver metabolism was actually recovered by the herbal medicine at the transcriptional level. By analogy with the widespread accumulation of intron-retained pre-mRNAs induced by heat shock stress, we propose a model in which retained-introns in klotho mice were induced by an aging stress and in which this medicine-related IR recovery is indicative of the actual recovery of liver-specific metabolic function to the healthy state. Accumulation of retained-introns was also observed at the pre-symptomatic state of aging in wild-type mice and may be an excellent marker for this state in general.


Subject(s)
Aging/genetics , Gene Expression Profiling/methods , Genetic Markers/drug effects , Glucuronidase/genetics , Liver/chemistry , Phytochemicals/administration & dosage , Aging/drug effects , Alternative Splicing , Animals , Gene Expression Regulation/drug effects , Heat-Shock Response , Introns , Japan , Klotho Proteins , Liver/drug effects , Medicine, Traditional , Metabolomics , Mice , Models, Animal , Phytochemicals/pharmacology , RNA Precursors/genetics , Sequence Analysis, RNA
14.
Plant Reprod ; 34(3): 225-242, 2021 09.
Article in English | MEDLINE | ID: mdl-34019149

ABSTRACT

KEY MESSAGE: Intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during early stages of pollen development. To improve our understanding of the gene regulatory mechanisms that drive developmental processes, we performed a genome-wide study of alternative splicing and isoform switching during five key stages of pollen development in field mustard, Brassica rapa. Surprisingly, for several hundred genes (12.3% of the genes analysed), isoform switching results in stage-specific expression of intron-retaining transcripts at the meiotic stage of pollen development. In such cases, we report temporally regulated switching between expression of a canonical, translatable isoform and an intron-retaining transcript that is predicted to produce a truncated and presumably inactive protein. The results suggest a new pervasive mechanism underlying modulation of protein levels in a plant developmental program. The effect is not based on gene expression induction but on the type of transcript produced. We conclude that intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during meiosis, especially genes related to ribosome biogenesis, mRNA transport and nuclear envelope architecture. We also propose that stage-specific expression of a non-functional isoform of Brassica rapa BrSDG8, a non-redundant member of histone methyltransferase gene family, linked to alternative splicing regulation, may contribute to the intron retention observed.


Subject(s)
Genome-Wide Association Study , Meiosis , Alternative Splicing , Gene Expression Regulation, Plant , Introns/genetics , Meiosis/genetics , Pollen/genetics
15.
CRISPR J ; 4(2): 191-206, 2021 04.
Article in English | MEDLINE | ID: mdl-33876953

ABSTRACT

X-linked agammaglobulinemia (XLA) is a monogenic primary immune deficiency characterized by very low levels of immunoglobulins and greatly increased risks for recurrent and severe infections. Patients with XLA have a loss-of-function mutation in the Bruton's tyrosine kinase (BTK) gene and fail to produce mature B lymphocytes. Gene editing in the hematopoietic stem cells of XLA patients to correct or replace the defective gene should restore B cell development and the humoral immune response. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 platform to precisely target integration of a corrective, codon-optimized BTK complementary DNA (cDNA) cassette into its endogenous locus. This process is driven by homologous recombination and should place the transgenic BTK under transcriptional control of its endogenous regulatory elements. Each integrated copy of this cDNA in BTK-deficient K562 cells produced only 11% as much BTK protein as the wild-type gene. The donor cDNA was modified to include the terminal intron of the BTK gene. Successful integration of the intron-containing BTK donor led to a nearly twofold increase in BTK expression per cell over the base donor. However, this donor variant was too large to package into an adeno-associated viral vector for delivery into primary cells. Donors containing truncated variants of the terminal intron also produced elevated expression, although to a lesser degree than the full intron. Addition of the Woodchuck hepatitis virus posttranscriptional regulatory element led to a large boost in BTK transgene expression. Combining these modifications led to a BTK donor template that generated nearly physiological levels of BTK expression in cell lines. These reagents were then optimized to maximize integration rates into human hematopoietic stem and progenitor cells, which have reached potentially therapeutic levels in vitro. The novel donor modifications support effective gene therapy for XLA and will likely assist in the development of other gene editing-based therapies for genetic disorders.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinemia/genetics , Agammaglobulinemia/therapy , CRISPR-Cas Systems , Gene Editing/methods , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Genetic Therapy , Agammaglobulinaemia Tyrosine Kinase/deficiency , Agammaglobulinaemia Tyrosine Kinase/metabolism , B-Lymphocytes , Codon , DNA, Complementary/genetics , Genetic Loci , Humans , Introns , K562 Cells , Mutation , Organisms, Genetically Modified
16.
Hum Mutat ; 42(1): 19-24, 2021 01.
Article in English | MEDLINE | ID: mdl-33169436

ABSTRACT

The diagnosis of Mendelian disorders following uninformative exome and genome sequencing remains a challenging and often unmet need. Following uninformative exome and genome sequencing of a family quartet including two siblings with suspected mitochondrial disorder, RNA sequencing (RNAseq) was pursued in one sibling. Long-read amplicon sequencing was used to determine and quantify transcript structure. Immunoblotting studies and quantitative proteomics were performed to demonstrate functional impact. Differential expression analysis of RNAseq data identified significantly decreased expression of the mitochondrial OXPHOS Complex I subunit NDUFB10 associated with a cryptic exon in intron 1 of NDUFB10, that included an in-frame stop codon. The cryptic exon contained a rare intronic variant that was homozygous in both affected siblings. Immunoblot and quantitative proteomic analysis of fibroblasts revealed decreased abundance of Complex I subunits, providing evidence of isolated Complex I deficiency. Through multiomic analysis we present data implicating a deep intronic variant in NDUFB10 as the cause of mitochondrial disease in two individuals, providing further support of the gene-disease association. This study highlights the importance of transcriptomic and proteomic analyses as complementary diagnostic tools in patients undergoing genome-wide diagnostic evaluation.


Subject(s)
Mitochondrial Diseases , NADH Dehydrogenase/genetics , Proteomics , Electron Transport Complex I/genetics , Humans , Introns/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation
17.
Mol Immunol ; 129: 12-20, 2021 01.
Article in English | MEDLINE | ID: mdl-33254075

ABSTRACT

Cryptocaryon irritans is an obligate parasitic ciliate protozoan that can infect various commercially important mariculture teleosts and cause high lethality and economic loss, especially Larimichthys crocea. Current methods of controlling or preventing this parasite with chemicals or antibiotics are widely considered to be environmentally harmful. The antiparasitic activity of some antimicrobial peptides (AMPs) attracted extensive attention of scholars. In the study, a novel piscidin 5-like type 4 (termed Lc-P5L4) excavated from comparative transcriptome of C. irritans - immuned L. crocea was identified and characterized. Sequence analysis shows the full-length cDNA of Lc-P5L4 is 539 bp containing an open reading frame (ORF) of 198 bp which encodes a peptide of 65 amino acid residues. The genome consists of three exons and two introns which exist in its ORF, and all the exon-intron boundaries are in accordance with classical GT-AG rule (GT/intron/AG). Multiple alignments indicate the signal peptides share highly conserved identity, while mature peptides are more diverse. Phylogenetic analysis displays Lc-P5L4 clusters together with other members of piscidin 5-like family. Next, quantitative Real-time PCR (qRT-PCR) detection found C. irritans infection could upregulate Lc-P5L4 expression level in all tested tissues significantly, it appeared earliest upregulation in the theronts infection stage in the head kidney; the expression contents reached to maximum level in the intestine, gill and muscle during trophonts falling off stage; while it was just upregulated during secondary bacterial infection stage in the liver and spleen. The data showed Lc-P5L4 upregulation time points were in accordance with different infection stages. With recombinant Lc-P5L4 (rLc-P5L4) obtained through Escherichia coli system, in vitro assay showed rLc-P5L4 could cause cilia deactivation, cell bodiesclumping and sticking to each other, then cell membrane rupture and contents leakage. The data illustrated Lc-P5L4 played critical roles in the immune defense against C. irritans infection, and provided another proof that piscidins exhibit multiple anti- C. irritans features.


Subject(s)
Antiparasitic Agents/metabolism , Ciliophora/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Perciformes/genetics , Perciformes/metabolism , Amino Acids/genetics , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/parasitology , Ciliophora Infections/genetics , Ciliophora Infections/metabolism , Ciliophora Infections/parasitology , DNA, Complementary/genetics , Exons/genetics , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Diseases/parasitology , Genome/genetics , Introns/genetics , Liver/metabolism , Liver/parasitology , Open Reading Frames/genetics , Perciformes/parasitology , Phylogeny , Spleen/metabolism , Spleen/parasitology , Transcriptome/genetics , Up-Regulation/genetics
18.
J Immunol ; 204(11): 3030-3041, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32321755

ABSTRACT

LILRB1 is a highly polymorphic receptor expressed by subsets of innate and adaptive immune cells associated with viral and autoimmune diseases and targeted by pathogens for immune evasion. LILRB1 expression on human NK cells is variegated, and the frequency of LILRB1+ cells differs among people. However, little is known about the processes and factors mediating LILRB1 transcription in NK cells. LILRB1 gene expression in lymphoid and myeloid cells arises from two distinct promoters that are separated by the first exon and intron. In this study, we identified a polymorphic 3-kb region within LILRB1 intron 1 that is epigenetically marked as an active enhancer in human lymphoid cells and not monocytes. This region possesses multiple YY1 sites, and complexes of the promoter/enhancer combination were isolated using anti-YY1 in chromatin immunoprecipitation-loop. CRISPR-mediated deletion of the 3-kb region lowers LILRB1 expression in human NKL cells. Together, these results indicate the enhancer in intron 1 binds YY1 and suggest YY1 provides a scaffold function enabling enhancer function in regulating LILRB1 gene transcription in human NK cells.


Subject(s)
Enhancer Elements, Genetic/genetics , Killer Cells, Natural/immunology , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Promoter Regions, Genetic/genetics , YY1 Transcription Factor/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , Gene Expression Regulation , Humans , Introns/genetics , Leukocyte Immunoglobulin-like Receptor B1/genetics , Polymorphism, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Transcriptional Activation , YY1 Transcription Factor/genetics
19.
Gene ; 742: 144603, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32198126

ABSTRACT

Adverse environmental conditions, such as salinity, cold, drought, heavy metals, and pathogens affect the yield and quality of Salvia miltiorrhiza, a well-known medicinal plant used for the treatment of cardiovascular and cerebrovascular diseases. Superoxide dismutase (SOD), a key enzyme of antioxidant system in plants, plays a vital role in protecting plants against various biotic and abiotic stresses via scavenging the reactive oxygen species produced by organisms. However, little is known about the SOD gene family in S. miltiorrhiza. In this study, eight SOD genes, including three Cu/Zn-SODs, two Fe-SODs and three Mn-SODs, were identified in the S. miltiorrhiza genome. Their gene structures, promoters, protein features, phylogenetic relationships, and expression profiles were comprehensively investigated. Gene structure analysis implied that most SmSODs have different introns/exons distrbution patterns. Many cis-elements related to different stress responses or plant hormones were found in the promoter of each SmSOD. Expression profile analysis indicated that SmSODs exhibited diverse responses to cold, salt, drought, heavy metal, and plant hormones. Additionally, 31 types of TFs regulating SmSODs were predicted and analyzed. These findings provided valuable information for further researches on the functions and applications of SmSODs in S. miltiorrhiza growth and adaptation to stress.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family/genetics , Plant Proteins/genetics , Salvia miltiorrhiza/genetics , Superoxide Dismutase/genetics , Acclimatization/genetics , Droughts , Exons/genetics , Gene Expression Profiling , Introns/genetics , Phylogeny , Plant Breeding , Plant Proteins/metabolism , Salinity , Salvia miltiorrhiza/enzymology , Stress, Physiological/genetics , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
20.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383823

ABSTRACT

The basic region-leucine zipper (bZIP) transcription factors (TFs) form homodimers and heterodimers via the coil-coil region. The bZIP dimerization network influences gene expression across plant development and in response to a range of environmental stresses. The recent release of the most comprehensive potato reference genome was used to identify 80 StbZIP genes and to characterize their gene structure, phylogenetic relationships, and gene expression profiles. The StbZIP genes have undergone 22 segmental and one tandem duplication events. Ka/Ks analysis suggested that most duplications experienced purifying selection. Amino acid sequence alignments and phylogenetic comparisons made with the Arabidopsis bZIP family were used to assign the StbZIP genes to functional groups based on the Arabidopsis orthologs. The patterns of introns and exons were conserved within the assigned functional groups which are supportive of the phylogeny and evidence of a common progenitor. Inspection of the leucine repeat heptads within the bZIP domains identified a pattern of attractive pairs favoring homodimerization, and repulsive pairs favoring heterodimerization. These patterns of attractive and repulsive heptads were similar within each functional group for Arabidopsis and S. tuberosum orthologs. High-throughput RNA-seq data indicated the most highly expressed and repressed genes that might play significant roles in tissue growth and development, abiotic stress response, and response to pathogens including Potato virus X. These data provide useful information for further functional analysis of the StbZIP gene family and their potential applications in crop improvement.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Multigene Family , Solanum tuberosum/genetics , Amino Acid Motifs , Basic-Leucine Zipper Transcription Factors/metabolism , Binding Sites , Chromosome Mapping , Conserved Sequence , Exons , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Order , Genome, Plant , Introns , Organ Specificity , Phylogeny , Promoter Regions, Genetic , Solanum tuberosum/classification , Solanum tuberosum/metabolism , Stress, Physiological , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL