ABSTRACT
The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.
Subject(s)
Larix , Pollination , Pollen Tube , Pollen/metabolism , Ions/metabolism , GerminationABSTRACT
Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.
Subject(s)
Calcium , Deer , Mice , Animals , Calcium/metabolism , Deer/metabolism , Cell Proliferation , Calcium, Dietary/metabolism , Peptides/pharmacology , Peptides/metabolism , Ions/metabolism , Ions/pharmacology , OsteoblastsABSTRACT
This review provides a concise overview of the cellular and clinical aspects of the role of zinc, an essential micronutrient, in human physiology and discusses zinc-related pathological states. Zinc cannot be stored in significant amounts, so regular dietary intake is essential. ZIP4 and/or ZnT5B transport dietary zinc ions from the duodenum into the enterocyte, ZnT1 transports zinc ions from the enterocyte into the circulation, and ZnT5B (bidirectional zinc transporter) facilitates endogenous zinc secretion into the intestinal lumen. Putative promoters of zinc absorption that increase its bioavailability include amino acids released from protein digestion and citrate, whereas dietary phytates, casein and calcium can reduce zinc bioavailability. In circulation, 70% of zinc is bound to albumin, and the majority in the body is found in skeletal muscle and bone. Zinc excretion is via faeces (predominantly), urine, sweat, menstrual flow and semen. Excessive zinc intake can inhibit the absorption of copper and iron, leading to copper deficiency and anaemia, respectively. Zinc toxicity can adversely affect the lipid profile and immune system, and its treatment depends on the mode of zinc acquisition. Acquired zinc deficiency usually presents later in life alongside risk factors like malabsorption syndromes, but medications like diuretics and angiotensin-receptor blockers can also cause zinc deficiency. Inherited zinc deficiency condition acrodermatitis enteropathica, which occurs due to mutation in the SLC39A4 gene (encoding ZIP4), presents from birth. Treatment involves zinc supplementation via zinc gluconate, zinc sulphate or zinc chloride. Notably, oral zinc supplementation may decrease the absorption of drugs like ciprofloxacin, doxycycline and risedronate.
Subject(s)
Acrodermatitis , Cation Transport Proteins , Copper , Zinc/deficiency , Humans , Copper/metabolism , Zinc/therapeutic use , Intestines/pathology , Ions/metabolism , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolismABSTRACT
The objective of this experiment was to examine the effects of supplementation and dose of rumen-protected choline (RPC) on markers of inflammation and metabolism in liver and mammary tissue during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC (20.4 g/d of choline ions; CHOL45), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30), or no RPC (CON) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 µg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM (CHOL45, n = 9; CHOL45-LPS, n = 9; CHOL30, n = 11; CHOL30-LPS, n = 10; CON, n = 10; CON-LPS, n = 9). Hepatic and mammary tissues were collected from all cows on d 17 postpartum. Hepatic and mammary tissues were collected at â¼7.5 and 8 h, respectively, after the LPS challenge. An additional mammary biopsy was conducted on LPS-challenged cows (CHOL45-LPS, CHOL30-LPS, and CON-LPS) at 48 h postchallenge. Hepatic and mammary RNA copy numbers were quantified for genes involved in apoptosis, methylation, inflammation, oxidative stress, and mitochondrial function using NanoString technology. Targeted metabolomics was conducted only on mammary tissue samples (both 8 and 48 h biopsies) to quantify 143 metabolites including choline metabolites, amino acids, biogenic amines and derivatives, organic acids, carnitines, and glucose. Hepatic IFNG was greater in CHOL45 as compared with CON in unchallenged cows, suggesting an improvement in type 1 immune responses. Hepatic CASP3 was greater in CHOL45-LPS as compared with CON-LPS, suggesting greater apoptosis. Mammary IL6 was reduced in CHOL30-LPS cows as compared with CHOL45-LPS and CON-LPS (8 and 48 h). Mammary GPX4 and COX5A were reduced in CHOL30-LPS as compared with CON-LPS (8 h), and SDHA was reduced in CHOL30-LPS as compared with CON-LPS (8 and 48 h). Both CHOL30-LPS and CHOL45-LPS cows had lesser mammary ATP5J than CON-LPS, suggesting that dietary RPC supplementation altered mitochondrial function following LPS challenge. Treatment did not affect mammary concentrations of any metabolite in unchallenged cows, and only 4 metabolites were affected by dietary RPC supplementation in LPS-challenged cows. Mammary concentrations of isobutyric acid and 2 acyl-carnitines (C4:1 and C10:2) were reduced in CHOL45-LPS as compared with CHOL30-LPS and CON-LPS. Taken together, reductions in medium- and short-chain carnitines along with an increase in long-chain carnitines in mammary tissue from CHOL45-LPS cows suggests less fatty acid entry into the ß oxidation pathway. Although the intramammary LPS challenge profoundly affected markers for inflammation and metabolism in liver and mammary tissue, dietary RPC supplementation had minimal effects on inflammatory markers and the mammary metabolome.
Subject(s)
Cattle Diseases , Lipopolysaccharides , Female , Cattle , Animals , Lipopolysaccharides/pharmacology , Choline/metabolism , Dietary Supplements , Lactation , Rumen/metabolism , Milk/chemistry , Diet/veterinary , Liver/metabolism , Inflammation/veterinary , Inflammation/metabolism , Ions/analysis , Ions/metabolism , Ions/pharmacology , Cattle Diseases/metabolismABSTRACT
De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.
Subject(s)
Brain Diseases , Humans , Child , Mutation/genetics , GTP-Binding Proteins/metabolism , Ions/metabolism , Guanosine Triphosphate , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolismABSTRACT
Recent studies have suggested that dietary rumen-protected choline (RPC) supplementation can modulate immune function, attenuate inflammation, and improve performance in periparturient dairy cattle; however, this has yet to be evaluated during a mastitis challenge. Therefore, the objective of this study was to examine the effects of supplementation and dose of RPC on metabolism, inflammation, and performance during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows (parity, mean ± SD, 1.9 ± 1.1 at enrollment) were blocked by calving month and randomly assigned within block to receive either 45 g/d of RPC (20.4 g/d of choline ions; CHOL45, n = 18), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30, n = 21), or no RPC (CON, n = 19) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 µg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM. Before the challenge, CHOL45 and CHOL30 cows produced 3.4 and 3.8 (±1.2 SED) kg/d more milk than CON, respectively. Dietary RPC supplementation did not mitigate the milk loss associated with the intramammary LPS challenge; however, CHOL45 and CHOL30 cows produced 3.1 and 3.5 (±1.4 SED) kg/d more milk than CON, respectively in the carryover period (22 to 84 DIM). Dietary RPC supplementation enhanced plasma ß-hydroxybutyrate (BHB) concentrations before the LPS challenge, and increased plasma nonesterified fatty acids (NEFA) and acetylcarnitine concentrations during the LPS challenge, potentially reflecting greater adipose tissue mobilization, fatty acid transport and oxidation. Aside from trimethylamine N-oxide and sarcosine, which were increased in CHOL45-LPS as compared with CON-LPS, most other choline metabolite concentrations in plasma were unaffected by treatment, likely because more choline was being secreted in milk. Plasma lactic acid concentrations were decreased in CHOL45-LPS and CHOL30-LPS as compared with CON-LPS, suggesting a reduction in glycolysis or an enhancement in the flux through the lactic acid cycle to support gluconeogenesis. Plasma concentrations of fumaric acid, a byproduct of AA catabolism and the urea cycle, were increased in both choline groups as compared with CON-LPS during the LPS challenge. Cows in the CHOL45 group had greater plasma antioxidant potential before the LPS challenge and reduced plasma methionine sulfoxide concentrations during the LPS challenge compared with CON-LPS, suggesting an improvement in oxidant status. Nevertheless, concentrations of inflammatory markers such as haptoglobin and tumor necrosis factor α (TNFα) were not affected by treatment. Taken together, our data suggest that the effects of dietary RPC supplementation on milk yield could be mediated through metabolic pathways and are unlikely to be related to the resolution of inflammation in periparturient dairy cattle. Lastly, dose responses to dietary RPC supplementation were not found for various economically important outcomes including milk yield, limiting the justification for feeding a greater dietary RPC dose in industry.
Subject(s)
Cattle Diseases , Lipopolysaccharides , Pregnancy , Female , Cattle , Animals , Lipopolysaccharides/pharmacology , Choline/pharmacology , Choline/metabolism , Dietary Supplements , Lactation/physiology , Rumen/metabolism , Diet/veterinary , Milk/metabolism , Inflammation/veterinary , Inflammation/metabolism , Lactic Acid/metabolism , Ions/metabolism , Ions/pharmacology , Cattle Diseases/metabolismABSTRACT
Salt stress is considered one of the major abiotic stresses that impair agricultural production, while boron (B) is indispensable for plant cell composition and has also been found to alleviate salt stress. However, the regulatory mechanism of how B improves salt resistance via cell wall modification remains unknown. The present study primarily focused on investigating the mechanisms of B-mediated alleviation of salt stress in terms of osmotic substances, cell wall structure and components and ion homeostasis. The results showed that salt stress hindered plant biomass and root growth in cotton. Moreover, salt stress disrupted the morphology of the root cell wall as evidenced by Transmission Electron Microscope (TEM) analysis. The presence of B effectively alleviated these adverse effects, promoting the accumulation of proline, soluble protein, and soluble sugar, while reducing the content of Na+ and Cl- and augmenting the content of K+ and Ca2+ in the roots. Furthermore, X-ray diffraction (XRD) analysis demonstrated a decline in the crystallinity of roots cellulose. Boron supply also reduced the contents of chelated pectin and alkali-soluble pectin. Fourier-transform infrared spectroscopy (FTIR) analysis further affirmed that exogenous B led to a decline in cellulose accumulation. In conclusion, B offered a promising strategy for mitigating the adverse impact of salt stress and enhancing plant growth by countering osmotic and ionic stresses and modifying root cell wall components. This study may provide invaluable insights into the role of B in ameliorating the effects of salt stress on plants, which could have implications for sustainable agriculture.
Subject(s)
Boron , Salt Stress , Boron/pharmacology , Boron/metabolism , Cell Wall/metabolism , Ions/metabolism , Cellulose/metabolism , Pectins/metabolism , Homeostasis , Plant Roots/metabolismABSTRACT
Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.
Subject(s)
Rahnella , Selenium , Selenium/chemistry , Selenium/metabolism , Rahnella/genetics , Rahnella/metabolism , Selenious Acid/pharmacology , Selenious Acid/metabolism , Ions/metabolism , Sulfites/metabolismABSTRACT
The chemical toxicity and the oxidative stress induced by the internal exposure of uranium is responsible for the long-term adverse effect of in vivo contamination of uranium. An agent with simultaneous removal capability of uranium and excess reactive oxygen species (ROS) is highly desired. Herein, the lacunary Keggin-type polyoxometalate (POM) is demonstrated to selectively bind with uranyl ions in the presence of excess essential divalent ions and exhibits a compelling ROS scavenging efficiency of 78.8%. In vivo uranium decorporation assays illustrate the uranium sequestration efficiencies of 74.0%, 49.4%, and 37.1% from kidneys by prophylactic, prompt, and delayed administration of lacunary POM solution, respectively. The superior ROS quenching and uranium removal performance in comparison with all reported bifunctional agents endow lacunary polyoxometalates as novel agents to effectively protect people from injuries caused by the internal exposure of actinides.
Subject(s)
Uranium , Humans , Uranium/metabolism , Reactive Oxygen Species/metabolism , Kidney/metabolism , Ions/metabolismABSTRACT
Data-dependent acquisition (DDA) is widely utilized for metabolite identification in natural product research and food science, which, however, can suffer from low coverage. A potential solution to improve DDA coverage is to include the precursor ions list (PIL). Here, we aimed to construct a PIL-containing DDA strategy based on an in-house library of ginsenosides (VLG) and identify ginsenosides simultaneously from seven Panax herbal extracts. VLG, combined with mass defect filtering, could efficiently screen the ginsenoside precursors and elaborate the separate PIL involved in DDA for each ginseng extract. Consequently, we could characterize 500 ginsenosides, including 176 ones with unknown masses. Using the Panax ginseng extract, the superiority of this strategy was embodied in targeting more known ginsenoside masses and newly acquiring the MS2 spectra of 13 components. Conclusively, knowledge-based large-scale molecular prediction and PIL-DDA can represent a powerful targeted/untargeted strategy beneficial to novel natural compound discovery.
Subject(s)
Biological Products , Ginsenosides , Panax , Biological Products/metabolism , Chromatography, High Pressure Liquid , Ginsenosides/metabolism , Ions/metabolism , Libraries, Digital , Panax/metabolism , Plant Extracts/metabolismABSTRACT
The pollution of aquatic ecosystems due to the elevated concentration of a variety of contaminants, such as metal ions, poses a threat to humankind, as these ecosystems are in high relevance with human activities and survivability. The exposure in heavy metal ions is responsible for many severe chronic and pathogenic diseases and some types of cancer as well. Metal ions of the groups 11 (Cu, Ag, Au), 12 (Zn, Cd, Hg), 14 (Sn, Pb) and 15 (Sb, Bi) highly interfere with proteins leading to DNA damage and oxidative stress. While, the detection of these contaminants is mainly based on physicochemical analysis, the chemical determination, however, is deemed ineffective in some cases because of their complex nature. The development of biological models for the evaluation of the presence of metal ions is an attractive solution, which provides more insights regarding their effects. The present work critically reviews the reports published regarding the toxicity assessment of heavy metal ions through Allium cepa and Artemia salina assays. The in vivo toxicity of the agents is not only dose depended, but it is also strongly affected by their ligand type. However, there is no comprehensive study which compares the biological effect of chemical agents against Allium cepa and Artemia salina. Reports that include metal ions and complexes interaction with either Allium cepa or Artemia salina bio-indicators are included in the review.
Subject(s)
Mercury , Metals, Heavy , Animals , Artemia/metabolism , Cadmium/metabolism , Chemistry, Bioinorganic , Ecosystem , Humans , Ions/metabolism , Lead , Ligands , Mercury/pharmacology , Metals, Heavy/metabolism , Metals, Heavy/toxicity , OnionsABSTRACT
Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.
Subject(s)
Hordeum , Manganese , Phosphorus , Plant Leaves , Chlorophyll A/analysis , Hordeum/metabolism , Ions/metabolism , Manganese/metabolism , Nutrients/analysis , Phosphorus/metabolism , Plant Leaves/metabolism , SoilABSTRACT
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract's activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1â¼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Subject(s)
Proanthocyanidins , Viola , Animals , Flavonoids , Ions/metabolism , Plant Extracts/pharmacology , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Tandem Mass SpectrometryABSTRACT
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.
Subject(s)
Salmonella typhimurium , Sigma Factor , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Ions/metabolism , Iron/metabolism , Magnesium/metabolism , Manganese/metabolism , Serogroup , Sigma Factor/genetics , Sigma Factor/metabolismABSTRACT
Transition metals, such as zinc, are essential micronutrients in all organisms, but also highly toxic in excessive amounts. Heavy-metal transporting P-type (PIB) ATPases are crucial for homeostasis, conferring cellular detoxification and redistribution through transport of these ions across cellular membranes. No structural information is available for the PIB-4-ATPases, the subclass with the broadest cargo scope, and hence even their topology remains elusive. Here, we present structures and complementary functional analyses of an archetypal PIB-4-ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the architecture, devoid of classical so-called heavy-metal-binding domains (HMBDs), and provide fundamentally new insights into the mechanism and diversity of heavy-metal transporters. We reveal several novel P-type ATPase features, including a dual role in heavy-metal release and as an internal counter ion of an invariant histidine. We also establish that the turnover of PIB-ATPases is potassium independent, contrasting to many other P-type ATPases. Combined with new inhibitory compounds, our results open up for efforts in for example drug discovery, since PIB-4-ATPases function as virulence factors in many pathogens.
Heavy metals such as zinc and cobalt are toxic at high levels, yet most organisms need tiny amounts for their cells to work properly. As a result, proteins studded through the cell membrane act as gatekeepers to finetune import and export. These proteins are central to health and disease; their defect can lead to fatal illnesses in humans, and they also help bacteria infect other organisms. Despite their importance, little is known about some of these metal-export proteins. This is particularly the case for PIB-4-ATPases, a subclass found in plants and bacteria and which includes, for example, a metal transporter required for bacteria to cause tuberculosis. Intricate knowledge of the three-dimensional structure of these proteins would help to understand how they select metals, shuttle the compounds in and out of cells, and are controlled by other cellular processes. To reveal this three-dimensional organisation, Grønberg et al. used X-ray diffraction, where high-energy radiation is passed through crystals of protein to reveal the positions of atoms. They focused on a type of PIB-4-ATPases found in bacteria as an example. The work showed that the protein does not contain the metal-binding regions seen in other classes of metal exporters; however, it sports unique features that are crucial for metal transport such as an adapted pathway for the transport of zinc and cobalt across the membrane. In addition, Grønberg et al. tested thousands of compounds to see if they could block the activity of the protein, identifying two that could kill bacteria. This better understanding of how PIB-4-ATPases work could help to engineer plants capable of removing heavy metals from contaminated soils, as well as uncover new compounds to be used as antibiotics.
Subject(s)
Ions/metabolism , Metals, Heavy/metabolism , P-type ATPases/chemistry , P-type ATPases/metabolism , Rhodobacteraceae/enzymology , Binding Sites , Biological Transport , Cation Transport Proteins/metabolism , Models, Molecular , P-type ATPases/classification , Protein Conformation , Rhodobacteraceae/classification , Zinc/metabolismABSTRACT
In continuation of phytochemical investigations of the methanolic extract of Dictyopteris hoytii, we have obtained twelve compounds (1-12) through column chromatography. Herein, three compounds, namely, dimethyl 2-bromoterepthalate (3), dimethyl 2,6-dibromoterepthalate (4), and (E)-3-(4-(dimethoxymethyl)phenyl) acrylic acid (5) are isolated for the first time as a natural product, while the rest of the compounds (1, 2, 6-12) are known and isolated for the first time from this source. The structures of the isolated compounds were elucidated by advanced spectroscopic 1D and 2D NMR techniques including 1H, 13C, DEPT, HSQC, HMBC, COSY, NEOSY, and HR-MS and comparison with the reported literature. Furthermore, eight compounds (13-20) previously isolated by our group from the same source along with the currently isolated compounds (1-12) were screened against the CA-II enzyme. All compounds, except 6, 8, 14, and 17, were evaluated for in vitro bovine carbonic anhydrase-II (CA-II) inhibitory activity. Eventually, eleven compounds (1, 4, 5, 7, 9, 10, 12, 13, 15, 18, and 19) exhibited significant inhibitory activity against CA-II with IC50 values ranging from 13.4 to 71.6 µM. Additionally, the active molecules were subjected to molecular docking studies to predict the binding behavior of those compounds. It was observed that the compounds exhibit the inhibitory potential by specifically interacting with the ZN ion present in the active site of CA-II. In addition to ZN ion, two residues (His94 and Thr199) play an important role in binding with the compounds that possess a carboxylate group in their structure.
Subject(s)
Biological Products/chemistry , Biological Products/metabolism , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/metabolism , Molecular Docking Simulation/methods , Phaeophyceae/chemistry , Phytochemicals/chemistry , Phytochemicals/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Animals , Carbonic Anhydrase II/antagonists & inhibitors , Catalytic Domain , Cattle , Humans , Inhibitory Concentration 50 , Ions/metabolism , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Structure-Activity Relationship , Zinc/metabolismABSTRACT
The aim of this study was to propose a complete approach for macroalgae biomass valorization into products useful for sustainable agriculture and environmental protection. In the first stage, the effects of macroalgal extracts and ZnO NPs (zinc oxide nanoparticles) on the germination and growth of radish were examined. Macroalgal extract was produced from freshwater macroalga, i.e., Cladophora glomerata by ultrasound assisted extraction (UAE). The extract was used to biosynthesize zinc oxide nanoparticles. In germination tests, extracts and solutions of ZnO NPs were applied on paper substrate before sowing. In the second stage, sorption properties of macroalga, post-extraction residue, and ZnO NPs to absorb Cr(III) ions were examined. In the germination tests, the highest values of hypocotyl length (the edible part of radish), i.e., 3.3 and 2.6 cm were obtained for 60 and 80% extract (among the tested concentrations 20, 40, 60, 80, and 100%) and 10 and 50 mg/L NPs, respectively. The highest sorption capacity of Cr(III) ions (344.8 mg/g) was obtained by both macroalga and post-extraction residue at a pH of 5 and initial Cr(III) ions concentration of 200 mg/L. This study proves that macroalgae and products based on them can be applied in both sustainable agriculture and wastewater treatment.
Subject(s)
Biomass , Chlorophyta/chemistry , Chromium , Hypocotyl/growth & development , Nanoparticles/chemistry , Plant Extracts/chemistry , Raphanus/growth & development , Seaweed/chemistry , Zinc Oxide , Chromium/chemistry , Chromium/metabolism , Ions/chemistry , Ions/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacologyABSTRACT
At the morphological and anatomical levels, the ionome, or the elemental composition of an organism, is an understudied area of plant biology. In particular, the ionomic responses of plant-pathogen interactions are scarcely described, and there are no studies on immune reactions. In this study we explored two X-ray fluorescence (XRF)-based ionome visualisation methods (benchtop- and synchrotron-based micro-XRF [µXRF]), as well as the quantitative inductively coupled plasma optical emission spectroscopy (ICP-OES) method, to investigate the changes that occur in the ionome of compatible and incompatible plant-pathogen interactions. We utilised the agronomically important and comprehensively studied interaction between potato (Solanum tuberosum) and the late blight oomycete pathogen Phytophthora infestans as an example. We used one late blight-susceptible potato cultivar and two resistant transgenic plant lines (only differing from the susceptible cultivar in one or three resistance genes) both in control and P. infestans-inoculated conditions. In the lesions from the compatible interaction, we observed rearrangements of several elements, including a decrease of the mobile macronutrient potassium (K) and an increase in iron (Fe) and manganese (Mn), compared with the tissue outside the lesion. Interestingly, we observed distinctly different distribution patterns of accumulation at the site of inoculation in the resistant lines for calcium (Ca), magnesium (Mg), Mn and silicon (Si) compared to the susceptible cultivar. The results reveal different ionomes in diseased plants compared to resistant plants. Our results demonstrate a technical advance and pave the way for deeper studies of the plant-pathogen ionome in the future.
Subject(s)
Host-Pathogen Interactions/physiology , Ions/analysis , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Spectrum Analysis/methods , Disease Susceptibility , Ions/metabolism , Metals/metabolism , Phosphorus/metabolism , Plant Diseases/microbiology , Plants, Genetically Modified , Spectrometry, X-Ray Emission/instrumentation , Spectrometry, X-Ray Emission/methods , Spectrum Analysis/instrumentation , SynchrotronsABSTRACT
Red cabbage (RC) and purple sweet potato (PSP) are naturally rich in acylated cyanidin glycosides that can bind metal ions and develop intramolecular π-stacking interactions between the cyanidin chromophore and the phenolic acyl residues. In this work, a large set of RC and PSP anthocyanins was investigated for its coloring properties in the presence of iron and aluminum ions. Although relatively modest, the structural differences between RC and PSP anthocyanins, i.e., the acylation site at the external glucose of the sophorosyl moiety (C2-OH for RC vs. C6-OH for PSP) and the presence of coordinating acyl groups (caffeoyl) in PSP anthocyanins only, made a large difference in the color expressed by their metal complexes. For instance, the Al3+-induced bathochromic shifts for RC anthocyanins reached ca. 50 nm at pH 6 and pH 7, vs. at best ca. 20 nm for PSP anthocyanins. With Fe2+ (quickly oxidized to Fe3+ in the complexes), the bathochromic shifts for RC anthocyanins were higher, i.e., up to ca. 90 nm at pH 7 and 110 nm at pH 5.7. A kinetic analysis at different metal/ligand molar ratios combined with an investigation by high-resolution mass spectrometry suggested the formation of metal-anthocyanin complexes of 1:1, 1:2, and 1:3 stoichiometries. Contrary to predictions based on steric hindrance, acylation by noncoordinating acyl residues favored metal binding and resulted in complexes having much higher molar absorption coefficients. Moreover, the competition between metal binding and water addition to the free ligands (leading to colorless forms) was less severe, although very dependent on the acylation site(s). Overall, anthocyanins from purple sweet potato, and even more from red cabbage, have a strong potential for development as food colorants expressing red to blue hues depending on pH and metal ion.
Subject(s)
Anthocyanins/chemistry , Brassica/chemistry , Ipomoea batatas/chemistry , Pigments, Biological/chemistry , Acylation , Aluminum/chemistry , Aluminum/metabolism , Anthocyanins/metabolism , Brassica/metabolism , Chelating Agents/metabolism , Chromatography, High Pressure Liquid/methods , Color , Food Coloring Agents , Hydrogen-Ion Concentration , Ions/metabolism , Ipomoea batatas/metabolism , Iron/chemistry , Iron/metabolism , Kinetics , Metals/metabolism , Phenols/metabolism , Plant Extracts/chemistryABSTRACT
The functional mechanism of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13-cis retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond. The retinal converts back into an all-trans conformation in the O-intermediate, which is the key state for sodium transport. However, retinal carbon and Schiff base nitrogen chemical shifts differ from those observed in the KR2 dark state all-trans conformation, indicating a perturbation through the nearby bound sodium ion. Our findings are supplemented by optical and infrared spectroscopy and are discussed in the context of known three-dimensional structures.