Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Appl Radiat Isot ; 187: 110332, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35717903

ABSTRACT

Magnetic resonance imaging (MRI) during brachytherapy may alter the dose distribution of radioactive sources implanted in the tumor. This study investigates the impact of a magnetic field of 1.5 T, 3 T, and 7 T strengths on the dose distribution of high dose rate Co-60, Ir-192, and Yb-169, and low dose rate I-125 sources, using Geant4 Monte Carlo toolkit. After validating the simulation results by calculating the AAPM-TG43 dosimetric parameters, seven sources of each radioisotope were simulated in a water phantom, and their dose distributions were compared under the influence of a magnetic field. The simulation results indicate that using Co-60 brachytherapy under the MRI guidance is not recommended. Furthermore, the impact of a magnetic field of up to 7 T strength on the dose distribution of Ir-192, Yb-169, and I-125 sources is negligible, provided that there is no air pocket near brachytherapy sources.


Subject(s)
Brachytherapy , Iridium Radioisotopes , Brachytherapy/methods , Cobalt Radioisotopes/therapeutic use , Iodine Radioisotopes , Iridium Radioisotopes/therapeutic use , Magnetic Fields , Monte Carlo Method , Radiometry/methods , Radiotherapy Dosage
2.
Phys Med Biol ; 65(13): 135007, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32434159

ABSTRACT

Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.2) and compared with experimental results obtained using Burlin cavity theory formalism. The Ir-192 source is verified using TG-43 parameters and dose enhancement factors (DEFs) from GNPs are simulated for three different mass percentages of gold in the GNP solution. These results are compared to DEFs previously reported experimentally by our group (Bassiri et al 2019 Med. Phys.) for a GNP-containing volume in an apparatus designed in-house to measure dose enhancement with GNPs for high dose rate (HDR) Ir-192 brachytherapy. An HDR Ir-192 Microselectron v2 r HDR brachytherapy source was modeled using MCNP6.2 using the TG-43 formalism in water. Anisotropy and radial dose function were verified against known values. An apparatus designed to measure dose enhancement to a 0.75 cm3 volume of GNPs from an Ir-192 brachytherapy seed with average energy of 0.38 MeV was built in-house and modeled using MCNP6.2. Burlin cavity correction factors were applied to experimental measurements. The macroscopic DEF was calculated for GNPs of size 30 nm at mass percentages of gold of 0.28%, 0.56% and 0.77%, using the repeating structures capability of MCNP6.2. DEF was calculated by dividing dose to the GNP solution by dose to water in the same volume. The radial dose function and anisotropy factor values at varying angles and distances were accurate when compared against known values. DEFs of 1.018 ± 0.003, 1.031 ± 0.003, and 1.041 ± 0.003 for GNP solutions containing mass percent of gold of 0.28%, 0.56% and 0.77%, respectively, were computed. These DEFs were within 2% of experimental values with Burlin cavity correction factors applied for all three mass percentages of gold.


Subject(s)
Brachytherapy/methods , Gold/chemistry , Iridium Radioisotopes/therapeutic use , Metal Nanoparticles , Monte Carlo Method , Radiation Dosage , Anisotropy , Humans , Radiotherapy Dosage , Water
3.
Brachytherapy ; 19(2): 255-263, 2020.
Article in English | MEDLINE | ID: mdl-31964601

ABSTRACT

PURPOSE: Several radionuclides with high (60Co, 75Se) and intermediate (169Yb, 153Gd) energies have been investigated as alternatives to 192Ir for high-dose-rate brachytherapy. The purpose of this study was to evaluate the impact of tissue heterogeneities for these five high- to intermediate-energy sources in prostate and head & neck brachytherapy. METHODS AND MATERIALS: Treatment plans were generated for a cohort of prostate (n = 10) and oral tongue (n = 10) patients. Dose calculations were performed using RapidBrachyMCTPS, an in-house Geant4-based Monte Carlo treatment planning system. Treatment plans were simulated using 60Co, 192Ir, 75Se, 169Yb, and 153Gd as the active core of the microSelectron v2 source. Two dose calculation scenarios were presented: (1) dose to water in water (Dw,w), and (2) dose to medium in medium (Dm,m). RESULTS: Dw,w overestimates planning target volume coverage compared with Dm,m, regardless of photon energy. The average planning target volume D90 reduction was ∼1% for high-energy sources, whereas larger differences were observed for intermediate-energy sources (1%-2% for prostate and 4%-7% for oral tongue). Dose differences were not clinically relevant (<5%) for soft tissues in general. Going from Dw,w to Dm,m, bone doses were increased two- to three-fold for 169Yb and four- to five-fold for 153Gd, whereas the ratio was close to ∼1 for high-energy sources. CONCLUSIONS: Dw,w underestimates the dose to bones and, to a lesser extent, overestimates the dose to soft tissues for radionuclides with average energies lower than 192Ir. Further studies regarding bone toxicities are needed before intermediate-energy sources can be adopted in cases where bones are in close vicinity to the tumor.


Subject(s)
Bone and Bones , Brachytherapy/methods , Prostatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Radiotherapy Planning, Computer-Assisted , Tongue Neoplasms/radiotherapy , Cobalt Radioisotopes/therapeutic use , Computer Simulation , Gadolinium/therapeutic use , Humans , Iridium Radioisotopes/therapeutic use , Male , Radiation Dosage , Radiotherapy Dosage , Selenium Radioisotopes/therapeutic use , Ytterbium/therapeutic use
4.
Phys Med Biol ; 64(22): 225018, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31491777

ABSTRACT

Many brachytherapy (BT) errors could be detected with real-time in vivo dosimetry technology. Inorganic scintillation detectors (ISDs) have demonstrated promising capabilities for BT, because some ISD materials can generate scintillation signals large enough that (a) the background signal emitted in the fiber-optic cable (stem signal) is insignificant, and (b) small detector volumes can be used to avoid volume averaging effects in steep dose gradients near BT sources. We investigated the characteristics of five ISD materials to identify one that is appropriate for BT. ISDs consisting of a 0.26 to 1.0 mm3 volume of ruby (Al2O3:Cr), a mixture of Y2O3:Eu and YVO4:Eu, ZnSe:O, or CsI:Tl coupled to a fiber-optic cable were irradiated in a water-equivalent phantom using a high-dose-rate 192Ir BT source. Detectors based on plastic scintillators BCF-12 and BCF-60 (0.8 mm3 volume) were used as a reference. Measurements demonstrated that the ruby, Y2O3:Eu+YVO4:Eu, ZnSe:O, and CsI:Tl ISDs emitted scintillation signals that were up to 19, 19, 250, and 880 times greater, respectively, than that of the BCF-12 detector. While the total signals of the plastic scintillation detectors were dominated by the stem signal for source positions 0.5 cm from the fiber-optic cable and >3.5 cm from the scintillator volume, the stem signal for the ruby and Y2O3:Eu+YVO4:Eu ISDs were <1% of the total signal for source positions <3.4 and <4.4 cm from the scintillator, respectively, and <0.7% and <0.5% for the ZnSe:O and CsI:Tl ISDs, respectively, for positions ⩽8.0 cm. In contrast to the other ISDs, the Y2O3:Eu+YVO4:Eu ISD exhibited unstable scintillation and significant afterglow. All ISDs exhibited significant energy dependence, i.e. their dose response to distance-dependent 192Ir energy spectra differed significantly from the absorbed dose in water. Provided that energy dependence is accounted for, ZnSe:O ISDs are promising for use in error detection and patient safety monitoring during BT.


Subject(s)
Brachytherapy/instrumentation , Inorganic Chemicals , Iridium Radioisotopes/therapeutic use , Scintillation Counting/instrumentation , Humans , Optical Fibers , Phantoms, Imaging , Radiometry
5.
Phys Med Biol ; 63(8): 085004, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29488467

ABSTRACT

Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k = 1 combined measurement uncertainties of the two standards: D NRC/D LCR = 1.011, standard uncertainty = 2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer's stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe3+) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.


Subject(s)
Brachytherapy/methods , Ferrous Compounds , Iridium Radioisotopes/therapeutic use , Radiometry/standards , Solutions , Water , Brazil , Canada , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Reference Standards , Uncertainty
6.
Med Phys ; 45(1): 429-437, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29171060

ABSTRACT

PURPOSE: Experimental dosimetry of high-dose-rate (HDR) 192 Ir brachytherapy (BT) sources is complicated due to high dose and dose-rate gradients, and softening of photon energy spectrum with depth. A single crystal synthetic diamond detector microDiamond (PTW 60019, Freiburg, Germany) has a small active volume, high sensitivity, direct readout, and nearly water-equivalent active volume. The purpose of this study was to evaluate the suitability of microDiamond detectors for the determination of absorbed dose to water around HDR 192 Ir BT sources. Three microDiamond detectors were used, allowing for the comparison of their properties. METHODS: In-phantom measurements were performed using microSelectron and VariSource iX HDR 192 Ir BT treatment units. Their treatment planning systems (TPSs), Oncentra (v. 4.3) and BrachyVision (v. 13.6), respectively, were used to create irradiation plans for a cubic PMMA phantom with the microDiamond positioned at one of three source-to-detector distances (SDDs) (1.5, 2.5, and 5.5 cm) at a time. The source was stepped in increments of 0.5 cm over a total length of 6 cm to yield absorbed dose of 2 Gy at the nominal reference-point of the detector. Detectors were calibrated in 60 Co beam in terms of absorbed dose to water, and Monte Carlo (MC) calculated beam quality correction factors were applied to account for absorbed-dose energy dependence. Phantom correction factors were applied to account for differences in dimensions between the measurement phantom and a water phantom used for absorbed dose calculations made with a TPS. The same measurements were made with all three of the detectors. Additionally, dose-rate dependence and stability of the detectors were evaluated in 60 Co beam. RESULTS: The percentage differences between experimentally determined and TPS-calculated absorbed doses to water were from -1.3% to +2.9%. The values agreed to within experimental uncertainties, which were from 1.9% to 4.3% (k = 2) depending on the detector, SDD and treatment delivery unit. No dose-rate or intrinsic energy dependence corrections were applied. All microDiamonds were comparable in terms of preirradiation dose, stability of the readings and energy response, and showed a good agreement. CONCLUSIONS: The results indicate that the microDiamond is potentially suitable for the determination of absorbed dose to water around HDR 192 Ir BT sources and may be used for independent verification of TPS's calculations, as well as for QA measurements of HDR 192 Ir BT treatment delivery units at clinical sites.


Subject(s)
Brachytherapy/instrumentation , Iridium Radioisotopes/therapeutic use , Radiation Dosimeters , Radiometry/instrumentation , Calibration , Cobalt/therapeutic use , Computer Simulation , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Water
7.
Int J Radiat Oncol Biol Phys ; 100(1): 270-277, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29102279

ABSTRACT

PURPOSE: Radioisotopes such as 75Se, 169Yb, and 153Gd have photon energy spectra and half-lives that make them excellent candidates as alternatives to 192Ir for high-dose-rate brachytherapy. The aim of the present study was to evaluate the relative biological effectiveness (RBE) of current (192Ir, 125I, 103Pd) and alternative (75Se, 169Yb, 153Gd) brachytherapy radionuclides using Monte Carlo simulations of lineal energy distributions. METHODS AND MATERIALS: Brachytherapy sources (microSelectron v2 [192Ir, 75Se, 169Yb, 153Gd], SelectSeed [125I], and TheraSeed [103Pd]) were placed in the center of a spherical water phantom with a radius of 40 cm using the Geant4 Monte Carlo simulation toolkit. The kinetic energy of all primary, scattered, and fluorescence photons interacting in a scoring volume were tallied at various depths from the source. Electron tracks were generated by sampling the photon interaction spectrum and tracking all the interactions down to 10 eV using the event-by-event capabilities of the Geant4-DNA models. The dose mean lineal energy (y¯D) values were obtained through random sampling of transfer points and overlaying spherical scoring volumes within the associated volume of the tracks. The scoring volume diameter was determined by fitting the y¯D ratio for 125I to its observed RBE. RESULTS: y¯D increased with the increasing distance from the source for 192Ir, 75Se, and 169Yb, remained constant for 153Gd and 125I, and decreased for 103Pd. The diameter at which the y¯D ratio coincided with the RBE of 1.15 to 1.20 for 125I was ∼25 to 40 nm. The RBE (reference 1 MeV photons) at high doses and dose rates for 192Ir, 75Se, 169Yb, 153Gd, 125I, and 103Pd was 1.028 to 1.034, 1.05 to 1.07, 1.12 to 1.15, 1.16 to 1.21, 1.15 to 1.20, and 1.17 to 1.22, respectively. CONCLUSIONS: The radiation quality of the radionuclides under investigation was greater than that of high-energy photons. The present study has provided a set of values to modify the prescription doses for brachytherapy to account for the variation in radiation quality among radionuclides.


Subject(s)
Brachytherapy , Radioisotopes/therapeutic use , Radiotherapy Dosage , Relative Biological Effectiveness , Gadolinium/therapeutic use , Iodine Radioisotopes/therapeutic use , Iridium Radioisotopes/therapeutic use , Linear Energy Transfer , Monte Carlo Method , Phantoms, Imaging , Radiometry/methods , Selenium Radioisotopes/therapeutic use , Ytterbium/therapeutic use
8.
Brachytherapy ; 16(5): 1044-1056, 2017.
Article in English | MEDLINE | ID: mdl-28624329

ABSTRACT

PURPOSE: To determine the relative dose rate distribution in water for the Bebig 20 mm and 30 mm skin applicators and report results in a form suitable for potential clinical use. Results for both skin applicators are also provided in the form of a hybrid Task Group 43 (TG-43) dosimetry technique. Furthermore, the radiation leakage around both skin applicators from the radiation protection point of view and the impact of the geometrical source position uncertainties are studied and reported. METHODS AND MATERIALS: Monte Carlo simulations were performed using the MCNP 6.1 general purpose code, which was benchmarked against published dosimetry data for the Bebig Ir2.A85-2 high-dose-rate iridium-192 source, as well as the dosimetry data for the two Elekta skin applicators. Both Bebig skin applicators were modeled, and the dose rate distributions in a water phantom were calculated. The dosimetric quantities derived according to a hybrid TG-43 dosimetry technique are provided with their corresponding uncertainty values. The air kerma rate in air was simulated in the vicinity of each skin applicator to assess the radiation leakage. RESULTS AND CONCLUSIONS: Results from the Monte Carlo simulations of both skin applicators are presented in the form of figures and relative dose rate tables, and additionally with the aid of the quantities defined in the hybrid TG-43 dosimetry technique and their corresponding uncertainty values. Their output factors, flatness, and penumbra values were found comparable to the Elekta skin applicators. The radiation shielding was evaluated to be adequate. The effect of potential uncertainties in source positioning on dosimetry should be investigated as part of applicator commissioning.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Skin Neoplasms/radiotherapy , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Protection , Radiometry/methods , Radiotherapy Dosage , Uncertainty , Water
9.
Phys Med Biol ; 61(21): 7744-7764, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27740947

ABSTRACT

We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.


Subject(s)
Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Lasers, Solid-State , Optical Fibers , Scintillation Counting/instrumentation , Humans , Luminescence
10.
Strahlenther Onkol ; 192(4): 248-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26803316

ABSTRACT

PURPOSE: To evaluate the effects of rectal enemas on rectal doses during postoperative high-dose-rate (HDR) vaginal cuff brachytherapy (VCB). PATIENTS AND METHODS: This prospective trial included 59 patients. Two rectal cleansing enemas were self-administered before the second fraction, and fraction 1 was considered the basal status. Dose-volume histogram (DVH) values were generated for the rectum and correlated with rectal volume variation. Statistical analyses used paired and unpaired t-tests. RESULTS: Despite a significant 15 % reduction in mean rectal volume (44.07 vs. 52.15 cc, p = 0.0018), 35.6 % of patients had larger rectums after rectal enemas. No significant rectal enema-related DVH differences were observed compared to the basal data. Although not statistically significant, rectal cleansing-associated increases in mean rectal DVH values were observed: D0.1 cc: 6.6 vs. 7.21 Gy; D1 cc: 5.35 vs. 5.52 Gy; D2 cc: 4.67 vs. 4.72 Gy, before and after rectal cleaning, respectively (where Dx cc is the dose to the most exposed x cm(3)). No differences were observed in DVH parameters according to rectal volume increase or decrease after the enema. Patients whose rectal volume increased also had significantly larger DVH parameters, except for D5 %, D25 %, and D50 %. In contrast, in patients whose rectal volume decreased, significance was only seen for D25 % and D50 % (Dx % dose covering x % of the volume). In the latter patients, nonsignificant reductions in D2 cc, D5 cc and V5 Gy (volume receiving at least 5 Gy) were observed. CONCLUSION: The current rectal enemas protocol was ineffective in significantly modifying rectal DVH parameters for HDR-VCB.


Subject(s)
Adenocarcinoma/therapy , Brachytherapy/methods , Carcinoma, Squamous Cell/therapy , Endometrial Neoplasms/therapy , Enema , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Adjuvant/methods , Radiotherapy, High-Energy , Rectum/radiation effects , Uterine Cervical Neoplasms/therapy , Adenocarcinoma/pathology , Adult , Aged , Carcinoma, Squamous Cell/pathology , Dose Fractionation, Radiation , Endometrial Neoplasms/pathology , Female , Humans , Imaging, Three-Dimensional , Iridium Radioisotopes/therapeutic use , Middle Aged , Neoplasm Staging , Organ Size , Prospective Studies , Tomography, X-Ray Computed , Uterine Cervical Neoplasms/pathology
11.
Med Phys ; 42(6): 3048-61, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26127057

ABSTRACT

PURPOSE: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) (192)Ir source and a virtual water phantom were designed, which can be imported into a TPS. METHODS: A hypothetical, generic HDR (192)Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic (192)Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra(®) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS™ ]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR (192)Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. RESULTS: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ace algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ace at clinically relevant distances. CONCLUSIONS: A hypothetical, generic HDR (192)Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.


Subject(s)
Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Humans , Phantoms, Imaging , Radiotherapy Dosage , Water
12.
Phys Med Biol ; 60(11): 4565-79, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26009538

ABSTRACT

Dose calculation in high dose rate brachytherapy with (192)Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for (192)Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.


Subject(s)
Algorithms , Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Radiation Monitoring/methods , Radiopharmaceuticals/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Radiation Monitoring/standards , Radiotherapy Dosage , Water/chemistry
13.
Phys Med Biol ; 60(11): 4481-95, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25988983

ABSTRACT

The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays.An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength.Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%.Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%.The combined standard uncertainty in the determination of absorbed dose to water at the reference position for TG-43 (1 cm from the source on the transverse axis, in a water phantom) was estimated to be 0.8% with the dominant uncertainty coming from the determination of the G-value. A comparison with absorbed dose to water obtained using the product of air-kerma strength and the dose rate constant gave agreement within 1.5% for three different Ir-192 sources, which is within the combined standard uncertainties of the two methods.


Subject(s)
Brachytherapy/methods , Ferrous Compounds/radiation effects , Iridium Radioisotopes/therapeutic use , Radiometry/standards , Solutions/radiation effects , Monte Carlo Method , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Water
14.
Phys Med Biol ; 60(1): 175-93, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25489724

ABSTRACT

The response of the alanine dosimeter to radiation from an Ir-192 source with respect to the absorbed dose to water, relative to Co-60 radiation, was determined experimentally as well as by Monte Carlo simulations. The experimental and Monte Carlo results for the response agree well within the limits of uncertainty. The relative response decreases with an increasing distance between the measurement volume and the source from approximately 98% at a 1 cm distance to 96% at 5 cm. The present data are more accurate, but agree well with data published by Schaeken et al (2011 Phys. Med. Biol. 56 6625-34). The decrease of the relative response with an increasing distance that had already been observed by these authors is confirmed. In the appendix, the properties of the alanine dosimeter with respect to volume and sensitivity corrections are investigated. The inhomogeneous distribution of the detection probability that was taken into account for the analysis was determined experimentally.


Subject(s)
Alanine/radiation effects , Brachytherapy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Iridium Radioisotopes/therapeutic use , Radiometry/instrumentation , Water/chemistry , Algorithms , Cobalt Radioisotopes , Computer Simulation , Electron Spin Resonance Spectroscopy/methods , Humans , Monte Carlo Method , Polymethyl Methacrylate/chemistry , Radiation Dosage , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uncertainty
15.
PLoS One ; 9(12): e115155, 2014.
Article in English | MEDLINE | ID: mdl-25521914

ABSTRACT

High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.


Subject(s)
Brachytherapy/standards , Ferrous Compounds/radiation effects , Iridium Radioisotopes/therapeutic use , Radiometry/methods , Solutions/radiation effects , Absorption, Radiation , Algorithms , Brachytherapy/methods , Feasibility Studies , Radiotherapy Dosage/standards , Water/chemistry
16.
Phys Med ; 30(7): 782-90, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25008150

ABSTRACT

PURPOSE: To investigate dose perturbations created by high-atomic number (Z) materials in high dose rate (HDR) Iridium-192 ((192)Ir) treatment region. METHODS AND MATERIALS: A specially designed parallel plate ion chamber with 5 µm thick window was used to measure the dose rates from (192)Ir source downstream of the high-Z materials. A Monte Carlo (MC) code was employed to calculate the dose rates in both upstream and downstream of the high-Z interfaces at distances ranging from 0.01 to 2 mm. The dose perturbation factor (DPF) was defined as the ratio of dose rate with and without high-Z material in a water phantom. For verifying the Z dependence, both 0.1- and 1.0 mm-thick sheets of Pb, Au, Ta, Sn, Cu, Fe, Ti and Al were used. RESULTS/CONCLUSIONS: The DPF depends on the Z and thickness of layer. At the downstream of a 0.1 mm layer of Pb, Au, Ta, Sn, Cu, Fe, Ti and Al, the DPF by MC were 3.73, 3.42, 3.04, 1.71, 1.04, 0.98, 0.92, or 0.94 respectively. When Z is greater than or equal to 50, the MC and experimental results disagree significantly (>20%) due to large DPF gradient but are in agreement for Z less than or equal to 29. Thin layers of Z greater than or equal to 50 near a (192)Ir source in water produce significant dose perturbations (i.e. increases) in the vicinity of the medium-high-Z interfaces and may thus cause local over-dose in (192)Ir brachytherapy. Conversely, this effect may potentially be used to deliver locally higher doses to targeted tissue.


Subject(s)
Iridium Radioisotopes/therapeutic use , Radiation Dosage , Radiometry/instrumentation , Brachytherapy , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Water
17.
Biomed Res Int ; 2014: 946213, 2014.
Article in English | MEDLINE | ID: mdl-24804263

ABSTRACT

This study used MCNPX code to investigate the brachytherapy (192)Ir dose distributions in water, bone, and lung tissue and performed radiophotoluminescent glass dosimeter measurements to verify the obtained MCNPX results. The results showed that the dose-rate constant, radial dose function, and anisotropy function in water were highly consistent with data in the literature. However, the lung dose near the source would be overestimated by up to 12%, if the lung tissue is assumed to be water, and, hence, if a tumor is located in the lung, the tumor dose will be overestimated, if the material density is not taken into consideration. In contrast, the lung dose far from the source would be underestimated by up to 30%. Radial dose functions were found to depend not only on the phantom size but also on the material density. The phantom size affects the radial dose function in bone more than those in the other tissues. On the other hand, the anisotropy function in lung tissue was not dependent on the radial distance. Our simulation results could represent valid clinical reference data and be used to improve the accuracy of the doses delivered during brachytherapy applied to patients with lung cancer.


Subject(s)
Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Radiotherapy Dosage , Humans , Monte Carlo Method , Phantoms, Imaging , Radiometry/methods , Water/chemistry
18.
Med Phys ; 41(5): 051703, 2014 May.
Article in English | MEDLINE | ID: mdl-24784369

ABSTRACT

PURPOSE: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). METHODS: A wire-mounted 62 GBq(153)Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 µm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 µm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0-5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. RESULTS: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D(98%)), I-RSBT reduced urethral D(0.1cc) below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D(1cc) was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D(1cc) was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq (153)Gd sources. CONCLUSIONS: For the case considered, the proposed(153)Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29%-44% if the clinician allows a urethral dose gradient volume of 0-5 mm around the urethra to receive a dose below the prescription. A multisource approach is necessary in order to deliver the proposed (153)Gd-based I-RSBT technique in reasonable treatment times.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Prostatic Neoplasms/radiotherapy , Catheters , Equipment Design , Gadolinium/therapeutic use , Humans , Iridium Radioisotopes/therapeutic use , Male , Monte Carlo Method , Needles , Nickel , Platinum Compounds , Radiation Protection , Radioisotopes/therapeutic use , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Rectum/radiation effects , Time Factors , Titanium , Urethra/radiation effects , Urinary Bladder/radiation effects
19.
Med Phys ; 41(2): 022104, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24506636

ABSTRACT

PURPOSE: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR)(192)Ir sources, as well as electronic brachytherapy sources. Part I of this paper discussed the applicators used with electronic brachytherapy sources. Part II will discuss those used with HDR (192)Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. METHODS: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and(192)Ir sources (Part II). Air-kerma rate measurements for the (192)Ir sources were completed with several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. RESULTS: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. CONCLUSIONS: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.


Subject(s)
Brachytherapy/instrumentation , Iridium Radioisotopes/therapeutic use , Radiation Dosage , Radiometry/instrumentation , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Uncertainty , Water
20.
Med Phys ; 41(1): 011711, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24387503

ABSTRACT

PURPOSE: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. METHODS: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. RESULTS: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. CONCLUSIONS: This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.


Subject(s)
Brachytherapy , Copper , Iridium Radioisotopes/therapeutic use , Lithium Compounds , Magnesium , Phosphorus , Thermoluminescent Dosimetry/methods , Water , Calibration , Humans , Monte Carlo Method , Thermoluminescent Dosimetry/instrumentation , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL