Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 922
Filter
Add more filters

Publication year range
1.
Neurochem Int ; 176: 105725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561151

ABSTRACT

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Subject(s)
Anticonvulsants , Brain , Deferasirox , Epilepsy , Iron Chelating Agents , Iron , Membrane Proteins , Animals , Male , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain/drug effects , Brain/metabolism , Deferasirox/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Kindling, Neurologic/drug effects , Pentylenetetrazole/toxicity , Rats, Sprague-Dawley , Membrane Proteins/drug effects , Membrane Proteins/metabolism
2.
Br J Haematol ; 204(5): 2049-2056, 2024 May.
Article in English | MEDLINE | ID: mdl-38343073

ABSTRACT

Iron overload from repeated transfusions has a negative impact on cardiac function, and iron chelation therapy may help prevent cardiac dysfunction in transfusion-dependent patients with myelodysplastic syndromes (MDS). TELESTO (NCT00940602) was a prospective, placebo-controlled, randomised study to evaluate the iron chelator deferasirox in patients with low- or intermediate-1-risk MDS and iron overload. Echocardiographic parameters were collected at screening and during treatment. Patients receiving deferasirox experienced a significant decrease in the composite risk of hospitalisation for congestive heart failure (CHF) or worsening of cardiac function (HR = 0.23; 95% CI: 0.05, 0.99; nominal p = 0.0322) versus placebo. No significant differences between the arms were found in left ventricular ejection fraction, ventricular diameter and mass or pulmonary artery pressure. The absolute number of events was low, but the enrolled patients were younger than average for patients with MDS, with no serious cardiac comorbidities and a modest cardiovascular risk profile. These results support the effectiveness of deferasirox in preventing cardiac damage caused by iron overload in this patient population. Identification of patients developing CHF is challenging due to the lack of distinctive echocardiographic features. The treatment of iron overload may be important to prevent cardiac dysfunction in these patients, even those with moderate CHF risk.


Subject(s)
Deferasirox , Iron Chelating Agents , Iron Overload , Myelodysplastic Syndromes , Humans , Deferasirox/therapeutic use , Myelodysplastic Syndromes/therapy , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/complications , Male , Female , Iron Chelating Agents/therapeutic use , Middle Aged , Aged , Iron Overload/etiology , Iron Overload/drug therapy , Prospective Studies , Benzoates/therapeutic use , Benzoates/adverse effects , Heart Failure/etiology , Transfusion Reaction/etiology , Echocardiography , Adult , Aged, 80 and over , Triazoles/therapeutic use , Triazoles/adverse effects , Blood Transfusion
3.
Health Qual Life Outcomes ; 22(1): 14, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38302961

ABSTRACT

Understanding consequences of poor chelation compliance is crucial given the enormous burden of post-transfusional iron overload complications. We systematically reviewed iron-chelation therapy (ICT) compliance, and the relationship between compliance with health outcome and health-related quality of life (HRQoL) in thalassaemia patients. Several reviewers performed systematic search strategy of literature through PubMed, Scopus, and EBSCOhost. The preferred reporting items of systematic reviews and meta-analyses (PRISMA) guidelines were followed. Of 4917 studies, 20 publications were included. The ICT compliance rate ranges from 20.93 to 75.3%. It also varied per agent, ranging from 48.84 to 85.1% for desferioxamine, 87.2-92.2% for deferiprone and 90-100% for deferasirox. Majority of studies (N = 10/11, 90.91%) demonstrated significantly negative correlation between compliance and serum ferritin, while numerous studies revealed poor ICT compliance linked with increased risk of liver disease (N = 4/7, 57.14%) and cardiac disease (N = 6/8, 75%), endocrinologic morbidity (N = 4/5, 90%), and lower HRQoL (N = 4/6, 66.67%). Inadequate compliance to ICT therapy is common. Higher compliance is correlated with lower serum ferritin, lower risk of complications, and higher HRQoL. These findings should be interpreted with caution given the few numbers of evidence.


Subject(s)
Iron Chelating Agents , Thalassemia , Humans , Iron Chelating Agents/therapeutic use , Deferasirox , Deferiprone , Deferoxamine/therapeutic use , Quality of Life , Pyridones/adverse effects , Benzoates/adverse effects , Triazoles/adverse effects , Thalassemia/drug therapy , Chelation Therapy , Ferritins , Outcome Assessment, Health Care
4.
Auris Nasus Larynx ; 51(2): 271-275, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37903661

ABSTRACT

OBJECTIVE: The role of iron chelation in causing hearing loss (HL) is still unclear. The present study assessed the prevalence of HL among transfusion-dependent thalassemia (TDT) patients who underwent audiological follow-up over a 20-year period. METHODS: We retrospectively analyzed clinical records and audiological tests from January 1990 (T0) to December 2022 (T22) of a group of TDT patients who received iron chelation therapy with deferoxamine (DFO), deferiprone (DFP) or deferasirox (DFX), in monotherapy or as part of combination therapy. RESULTS: A total of 42 adult TDT patients (18 male, 24 female; age range: 41-55 years; mean age: 49.2 ± 3.7 years) were included in the study. At the T22 assessment, the overall prevalence of sensorineural HL was 23.8 % (10/42). When patients were stratified into two groups, with and without ototoxicity, no differences were observed for sex, age, BMI, creatinine level, pre-transfusional hemoglobin, start of transfusions, cardiac or hepatic T2 MRI; only ferritin serum values and duration of chelation were significantly higher (p = 0.02 and p = 0.01, respectively) in patients with hearing impairment in comparison to those with normal hearing. CONCLUSION: This study with long-term follow-up suggests that iron chelation therapy might induce ototoxicity; therefore, a long and accurate audiological follow-up should be performed in TDT patients.


Subject(s)
Iron Overload , Ototoxicity , beta-Thalassemia , Adult , Humans , Male , Female , Middle Aged , beta-Thalassemia/complications , beta-Thalassemia/drug therapy , beta-Thalassemia/epidemiology , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Iron Overload/drug therapy , Iron Overload/epidemiology , Iron Overload/etiology , Follow-Up Studies , Retrospective Studies , Ototoxicity/complications , Ototoxicity/drug therapy , Benzoates/therapeutic use , Triazoles/therapeutic use , Pyridones/therapeutic use , Iron Chelating Agents/therapeutic use , Iron/therapeutic use , Hearing
5.
Hemoglobin ; 47(6): 237-244, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38111324

ABSTRACT

BACKGROUND: Adherence to iron chelation therapy (ICT) remains an issue among thalassemia patients. This study aimed to determine the prevalence of non-adherence to ICT among children with beta thalassemia major in Malaysia and the factors associated with it. METHODS: This was a cross-sectional study conducted between November 2019 and November 2021 at seven tertiary hospitals in Malaysia. Participants registered with Malaysian Thalassemia Registry were recruited by convenience sampling. Adherence was measured via pill count and self-reported adherence. Knowledge about thalassemia and ICT was measured using a questionnaire from Modul Thalassemia by Ministry of Health of Malaysia. A decision tree was used to identify predictors of non-adherence. RESULTS: A total of 135 patients were recruited. The prevalence of non-adherence to ICT in those who took subcutaneous ± oral medications was 47.5% (95% CI: 31.5%, 63.9%) and the prevalence of non-adherence to ICT in those who took oral medications only was 21.1% (95% CI: 13.4%, 30.6%). The median knowledge score was 67.5% (IQR 15%). A decision tree has identified two factors associated with non-adherence. They were ICT's route of administration and knowledge score. Out of 100 patients who were on oral medications only, 79 were expected to adhere. Out of 100 patients who were on subcutaneous ± oral medications and scored less than 56.25% in knowledge questionnaire, 86 were expected to non-adhere. Based on the logistic regression, the odds of non-adherence in patients who took oral medications only was 71% lower than the odds of non-adherence in patients who took subcutaneous ± oral medications (OR = 0.29; 95% CI = 0.13, 0.65; p = .002). CONCLUSION: The prevalence of non-adherence to ICT among children with beta thalassemia major in Malaysia was 20/95 (21.1%) in those who took oral medications only and the prevalence of non-adherence was 19/40 (47.5%) in those who took subcutaneous ± oral medications. The factors associated with non-adherence were ICT's route of administration and knowledge score.


Subject(s)
Iron Overload , Thalassemia , beta-Thalassemia , Child , Humans , Chelation Therapy , beta-Thalassemia/drug therapy , beta-Thalassemia/epidemiology , Cross-Sectional Studies , Thalassemia/drug therapy , Iron , Iron Chelating Agents/therapeutic use , Iron Overload/drug therapy
6.
Medicine (Baltimore) ; 102(41): e35455, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37832083

ABSTRACT

This century has seen a revolution the management of beta-thalassemia major. Over a 12-year period to 2016, we aimed to analyze the benefits of such advances. In 209 patients, independent of the chelation regimen, ferritin, cardiac T2* and liver iron concentration changes were evaluated. We defined chelation success (ChS) as no iron load in the heart and acceptable levels in the liver. Over 3 early magnetic resonance imagings, the same parameters were assessed in 2 subgroups, the only 2 that had sufficient patients continuing on 1 regimen and for a significant period of time, 1 on deferrioxamine (low iron load patients n = 41, Group A) and 1 on deferoxamine-deferiprone (iron overloaded n = 60, Group B). Finally, 28 deaths and causes were compared to those of an earlier period. The 209 patients significantly optimized those indices, while the number of patients with chelation success, increased from 6% to 51% (P < .0001). In group A, ChS after about 8 years increased from 21 to 46% (P = .006), while in Group B, from 0% to 60% (P < .001) after about 7 years. Deaths over the 2 periods showed significant reduction. Combined clearance of cardiac and liver iron (ChS) is feasible and should become the new target for all patients. This requires, serial magnetic resonance imagings and often prolonged intensified chelation for patients.


Subject(s)
Iron Chelating Agents , beta-Thalassemia , Humans , Iron Chelating Agents/therapeutic use , beta-Thalassemia/drug therapy , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Chelation Therapy , Pyridones/therapeutic use , Iron/therapeutic use , Liver/diagnostic imaging
7.
Ann N Y Acad Sci ; 1529(1): 14-20, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37676814

ABSTRACT

Thalassemia management has undergone significant development with the advancement in iron chelation therapy, which has led to a prolonged life expectancy. This has been accompanied by the emergence of several new morbidities and chronic diseases, including cancer. Over the years, multiple cases of solid and hematologic malignancies in thalassemia patients have been reported in the literature, with no clear mechanism for the development of cancer in these patients despite a number of potential mechanisms. However, the results of many studies have been contradictory regarding the risk of development of malignancies in thalassemia. The present review aims to discuss the available data on cancer and thalassemia in the literature, with the latest updates regarding possible malignancy development mechanisms, risks, and the most commonly reported types.


Subject(s)
Hematologic Neoplasms , Iron Overload , Neoplasms , Thalassemia , Humans , Blood Transfusion/methods , Thalassemia/complications , Thalassemia/epidemiology , Thalassemia/therapy , Neoplasms/epidemiology , Hematologic Neoplasms/epidemiology , Iron Chelating Agents/therapeutic use , Iron Overload/complications
8.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37671691

ABSTRACT

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Subject(s)
Iron Chelating Agents , Neoplasms , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Immunologic Factors , Adjuvants, Immunologic , Neoplasms/drug therapy , Immunotherapy , Iron , Cell Line, Tumor , Tumor Microenvironment
9.
Bull Cancer ; 110(11): 1176-1182, 2023 Nov.
Article in French | MEDLINE | ID: mdl-37543453

ABSTRACT

Iron overload (IO) is probably as toxic in elderly patients with low-risk myelodysplastic syndromes (MDS) as in young thalassemic patients. This impact is more difficult to demonstrate because of associated comorbidities. Cardiovascular disease increases vulnerability to the toxic effects of IO. In recent years, registry studies have shown a survival benefit of Iron Chelation Therapy (ICT) in these patients. These findings are now corroborated by an improvement in event-free survival in a single randomized study: the Telesto study. The EFS curves separate after two years of follow-up. This indicates inertia in the occurrence of complications. The benefits of ICT are also very slowly being revealed. It is possible to offer ICT to patients with transfusion-dependent MDS with a life expectancy of at least two years. In Telesto, patients had a serum ferritin (F) level of at least 1000ng/mL, recommendations using this F threshold as a trigger for chelation seem to be reinforced. It remains an open question whether chelation should be started earlier for effective suppression of IO-related oxidative stress. ICTs could be used in transfusion-dependent MDS patients with life expectancy greater than two years. including possibly higher risk patients responding to hypomethylating agents.


Subject(s)
Iron Overload , Myelodysplastic Syndromes , Humans , Aged , Iron Chelating Agents/therapeutic use , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/drug therapy , Blood Transfusion , Iron Overload/drug therapy , Iron Overload/etiology , Progression-Free Survival
10.
Ann N Y Acad Sci ; 1529(1): 33-41, 2023 11.
Article in English | MEDLINE | ID: mdl-37594980

ABSTRACT

Combination chelation therapies are considered in transfusion-dependent thalassemia patients for whom monotherapy regimens have failed to achieve iron balance or intensification of iron chelation therapy is required for the rapid reduction of excess iron to avoid permanent organ damage. Combination chelation may provide a more flexible approach for individualizing chelation therapy, thereby improving tolerability, adherence, and quality of life. In principle, iron chelators can be combined with an infinite number of dosing regimens; these involve simultaneous or sequential exposure to the chelators on the same day or alternating the drugs on different days. Clinical studies have established the safety and efficacy of chelation combinations. However, real-life data with combination therapies indicate the significance of compliance for a meaningful reduction in iron overload compared to monotherapies.


Subject(s)
Chelation Therapy , Iron Overload , Humans , Deferasirox/therapeutic use , Deferoxamine/therapeutic use , Deferiprone/therapeutic use , Quality of Life , Benzoates/adverse effects , Triazoles , Pyridones , Iron Chelating Agents/therapeutic use , Iron Chelating Agents/adverse effects , Iron Overload/drug therapy , Iron Overload/chemically induced , Iron , Drug Therapy, Combination
11.
Blood ; 142(11): 949-960, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37478396

ABSTRACT

The intricate interplay of anemia and iron overload under the pathophysiological umbrella of ineffective erythropoiesis in non-transfusion-dependent ß-thalassemia (NTDT) results in a complex variety of clinical phenotypes that are challenging to diagnose and manage. In this article, we use a clinical framework rooted in pathophysiology to present 4 common scenarios of patients with NTDT. Starting from practical considerations in the diagnosis of NTDT, we delineate our strategy for the longitudinal care of patients who exhibit different constellations of symptoms and complications. We highlight the use of transfusion therapy and novel agents, such as luspatercept, in the patient with anemia-related complications. We also describe our approach to chelation therapy in the patient with iron overload. Although tackling every specific complication of NTDT is beyond the scope of this article, we touch on the management of the various morbidities and multisystem manifestations of the disease.


Subject(s)
Iron Overload , Thalassemia , beta-Thalassemia , Humans , beta-Thalassemia/therapy , beta-Thalassemia/drug therapy , Iron Chelating Agents/therapeutic use , Thalassemia/drug therapy , Iron Overload/diagnosis , Iron Overload/etiology , Iron Overload/therapy , Chelation Therapy/adverse effects
12.
Biosensors (Basel) ; 13(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37185525

ABSTRACT

Thalassemia is a monogenic autosomal recessive disorder caused by mutations, which lead to abnormal or reduced production of hemoglobin. Ineffective erythropoiesis, hemolysis, hepcidin suppression, and iron overload are common manifestations that vary according to genotypes and dictate, which diagnosis and therapeutic modalities, including transfusion therapy, iron chelation therapy, HbF induction, gene therapy, and editing, are performed. These conventional therapeutic methods have proven to be effective, yet have several disadvantages, specifically iron toxicity, associated with them; therefore, there are demands for advanced therapeutic methods. Nanotechnology-based applications, such as the use of nanoparticles and nanomedicines for theragnostic purposes have emerged that are simple, convenient, and cost-effective methods. The therapeutic potential of various nanoparticles has been explored by developing artificial hemoglobin, nano-based iron chelating agents, and nanocarriers for globin gene editing by CRISPR/Cas9. Au, Ag, carbon, graphene, silicon, porous nanoparticles, dendrimers, hydrogels, quantum dots, etc., have been used in electrochemical biosensors development for diagnosis of thalassemia, quantification of hemoglobin in these patients, and analysis of conventional iron chelating agents. This review summarizes the potential of nanotechnology in the development of various theragnostic approaches to determine thalassemia-causing gene mutations using various nano-based biosensors along with the employment of efficacious nano-based therapeutic procedures, in contrast to conventional therapies.


Subject(s)
Erythropoiesis , Thalassemia , Humans , Thalassemia/diagnosis , Thalassemia/therapy , Thalassemia/complications , Iron Chelating Agents/therapeutic use , Hemoglobins , Iron
13.
Sci Rep ; 13(1): 6960, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117329

ABSTRACT

Iron, supplemented as iron-loaded transferrin (holotransferrin), is an essential nutrient in mammalian cell cultures, particularly for erythroid cultures. The high cost of human transferrin represents a challenge for large scale production of red blood cells (RBCs) and for cell therapies in general. We evaluated the use of deferiprone, a cell membrane-permeable drug for iron chelation therapy, as an iron carrier for erythroid cultures. Iron-loaded deferiprone (Def3·Fe3+, at 52 µmol/L) could eliminate the need for holotransferrin supplementation during in vitro expansion and differentiation of erythroblast cultures to produce large numbers of enucleated RBC. Only the first stage, when hematopoietic stem cells committed to erythroblasts, required holotransferrin supplementation. RBCs cultured in presence of Def3·Fe3+ or holotransferrin (1000 µg/mL) were similar with respect to differentiation kinetics, expression of cell-surface markers CD235a and CD49d, hemoglobin content, and oxygen association/dissociation. Replacement of holotransferrin supplementation by Def3·Fe3+ was also successful in cultures of myeloid cell lines (MOLM13, NB4, EOL1, K562, HL60, ML2). Thus, iron-loaded deferiprone can partially replace holotransferrin as a supplement in chemically defined cell culture medium. This holds promise for a significant decrease in medium cost and improved economic perspectives of the large scale production of red blood cells for transfusion purposes.


Subject(s)
Erythrocytes , Iron , Animals , Humans , Iron/metabolism , Deferiprone/pharmacology , Erythrocytes/metabolism , Iron Chelating Agents/therapeutic use , Hemoglobins/metabolism , Cells, Cultured , Mammals/metabolism
14.
Hematol Oncol Clin North Am ; 37(2): 379-391, 2023 04.
Article in English | MEDLINE | ID: mdl-36907610

ABSTRACT

Conventional therapy for severe thalassemia includes regular red cell transfusions and iron chelation therapy to prevent and treat complications of iron overload. Iron chelation is very effective when appropriately used, but inadequate iron chelation therapy continues to contribute to preventable morbidity and mortality in transfusion-dependent thalassemia. Factors that contribute to suboptimal iron chelation include poor adherence, variable pharmacokinetics, chelator adverse effects, and difficulties with precise monitoring of response. The regular assessment of adherence, adverse effects, and iron burden with appropriate treatment adjustments is necessary to optimize patient outcomes.


Subject(s)
Iron Overload , Thalassemia , beta-Thalassemia , Humans , beta-Thalassemia/therapy , Iron Chelating Agents/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/therapeutic use , Iron Overload/etiology , Thalassemia/therapy , Iron/therapeutic use
15.
Hematol Oncol Clin North Am ; 37(2): 393-411, 2023 04.
Article in English | MEDLINE | ID: mdl-36907611

ABSTRACT

Because women with transfusion-dependent thalassemia are seeking pregnancy, ensuring the best outcomes for both mother and baby require concerted and collaborative efforts between the hematologist, obstetrician, cardiologist, hepatologist, and genetic counselor among others. Proactive counseling, early fertility evaluation, optimal management of iron overload and organ function, and application of advances in reproductive technology and prenatal screening are important in ensuring a healthy outcome. Many unanswered questions remain requiring further study, including fertility preservation, non-invasive prenatal diagnosis, chelation therapy during pregnancy, and indications and duration of anticoagulation.


Subject(s)
Iron Overload , Thalassemia , beta-Thalassemia , Pregnancy , Female , Humans , Thalassemia/therapy , Iron Overload/etiology , Chelation Therapy/adverse effects , Prenatal Diagnosis/adverse effects , Fertility , Iron Chelating Agents/therapeutic use , beta-Thalassemia/therapy
16.
Cells ; 12(5)2023 02 27.
Article in English | MEDLINE | ID: mdl-36899898

ABSTRACT

The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Hydroxyquinolines , Parkinson Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Hydroxyquinolines/pharmacology , Hydroxyquinolines/therapeutic use , Mice, Inbred C57BL , Iron Chelating Agents/therapeutic use , Mice, Transgenic , Parkinson Disease/pathology , Aging , Iron/metabolism
17.
Clin Exp Med ; 23(6): 2487-2502, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36764998

ABSTRACT

Rhabdomyosarcoma (RMS) is an aggressive rare neoplasm that derives from mesenchymal cells, which frequently develops resistance to the current therapies and the formation of metastases. Thus, new therapies are needed. The alteration of iron metabolism in cancer cells was effective in reducing the progression of many tumors but not yet investigated in RMS. Here we investigated the effect of iron modulation in RMS both in vitro and in vivo. We first characterized the most used RMS cell lines representing the most common subtypes, embryonal (ERMS, RD cells) and alveolar (ARMS, RH30 cells), for their iron metabolism, in basal condition and in response to its modulation. Then we investigated the effects of both iron overload and chelation strategies in vitro and in vivo. RMS cell lines expressed iron-related proteins, even if at lower levels compared to hepatic cell lines and they are correctly modulated in response to iron increase and deprivation. Interestingly, the treatment with different doses of ferric ammonium citrate (FAC, as iron source) and with deferiprone (DFP, as iron chelator), significantly affected the cell viability of RD and RH30. Moreover, iron supplementation (in the form of iron dextran) or iron chelation (in the form of DFP) were also effective in vivo in inhibiting the tumor mass growth both derived from RD and RH30 with iron chelation treatment the most effective one. All the data suggest that the iron modulation could be a promising approach to overcome the RMS tumor growth. The mechanism of action seems to involve the apoptotic cell death for both iron supplementation and chelation with the concomitant induction of ferroptosis in the case of iron supplementation.


Subject(s)
Rhabdomyosarcoma , Humans , Cell Line, Tumor , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Apoptosis , Iron , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use
18.
EMBO Mol Med ; 15(2): e17259, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36715217

ABSTRACT

Ocular and specifically retinal toxicities of systemic medications are prevalent and encompass many disease modalities. For many of these pharmaceuticals, established follow-up protocols are in place to ensure timely detection and cessation of therapy. However, while for some disorders, cessation of therapy is a viable option due to existing treatment alternatives, for some others cessation of treatment can be life threatening and/or shorten the patient's life expectancy. Such is the case for iron chelating agents used in transfusion-dependent patients of Thalassemia, of which deferoxamine (DFO) is the most widely used. In their recent article in EMBO Molecular Medicine, Kong et al (2023) addressed the issue of DFO-induced retinal toxicity used both in vivo and in vitro techniques. Their study suggests a potentially protective role for α-ketoglutarate (AKG) supplementation against DFO toxicity.


Subject(s)
Deferoxamine , Thalassemia , Humans , Deferoxamine/therapeutic use , Lifting , Iron Chelating Agents/therapeutic use , Thalassemia/drug therapy
19.
Eur J Haematol ; 110(5): 490-497, 2023 May.
Article in English | MEDLINE | ID: mdl-36708354

ABSTRACT

Iron overload is a pathological condition resulting from a congenital impairment of its regulation, increased intestinal iron absorption secondary to bone marrow erythroid hyperplasia, or a chronic transfusional regimen. In normal conditions, intracellular and systemic mechanisms contribute to maintaining iron balance. When this complex homeostatic mechanism fails, an iron overload could be present. Detecting an iron overload is not easy. The gold standard remains the liver biopsy, even if it is invasive and dangerous. Identifying iron using noninvasive techniques allowed a better understanding of the rate of iron overload in different organs, with a low risk for the patient. Estimating serum ferritin (mg/L) is the easiest and, consequently, the most employed diagnostic tool for assessing body iron stores, even if it could be a not specific method. The most common hematological causes of iron overload are myelodysplastic syndromes, sickle cell disease, and thalassemia. In all of these conditions, three drugs have been approved for the treatment of iron overload: deferiprone, deferoxamine, and deferasirox. These chelators have been demonstrated to help lower tissue iron levels and prevent iron overload complications, improving event-free survival (EFS). Nowadays, the decision to start chelation and which chelator to choose remains the joint decision of the clinician and patient.


Subject(s)
Chelation Therapy , Iron Overload , Humans , Chelation Therapy/adverse effects , Iron Chelating Agents/therapeutic use , Deferasirox/therapeutic use , Deferiprone/therapeutic use , Deferoxamine/therapeutic use , Pyridones/therapeutic use , Benzoates/therapeutic use , Triazoles , Iron Overload/diagnosis , Iron Overload/drug therapy , Iron Overload/etiology , Iron
20.
Transplant Cell Ther ; 29(1): 42.e1-42.e6, 2023 01.
Article in English | MEDLINE | ID: mdl-36241148

ABSTRACT

During conditioning chemotherapy prior to allogeneic haematopoietic stem cell transplantation (HSCT), non-transferrin-bound iron and its chelatable form, labile plasma iron (LPI), regularly appear in the blood of patients at high levels of transferrin saturation (TfS). As these free iron species potentially favor infection and mediate transplantation-associated toxicities, chelation therapy could be an approach to improve outcome after transplantation. However, data addressing iron chelation in the immediate peritransplantation period are sparse. In this study, we investigated the influence of iron chelation with deferasirox during conditioning chemotherapy on the appearance of LPI, the incidence of infection and toxicities, and the tolerability of this treatment in the peritransplantation period. We conducted this single-center prospective observational study in 25 adults with iron overload (serum ferritin >1000 µg/L) undergoing allogeneic HSCT after myeloablative busulfan-based conditioning chemotherapy. Patients received iron chelation with deferasirox (14 mg/kg) from the start of conditioning until day 3 post-transplantation. Iron parameters, including LPI, were obtained at the chelator's trough level daily until day 0 and then on days 4, 7, and 14. Data on infection (bacteremia or invasive fungal disease) and toxicity, as well as the tolerability of deferasirox, were collected until the end of the follow-up period on day 28. Data were analyzed descriptively. TfS levels exceeded 70% in median on 6 days (range, 4 to 10 days) and in 63.6% (range, 36.4% to 90.9%) of the samples per patient, although in 19 of 25 patients (76%), no elevated LPI values were detected during the intake of deferasirox despite high TfS levels. Only 6 patients (24%) showed mildly increased LPI values (≤0.5 units) during the intake of deferasirox, 3 of whom had presented with elevated LPI values before the start of conditioning. Deferasirox was well tolerated, and no aggravation of toxicities was observed. Infection occurred in 5 patients (20%), including 3 of the 6 patients with elevated LPI values despite chelation therapy. In the present study, we demonstrate that iron chelation with deferasirox safely suppresses the appearance of LPI and might decrease the incidence of infection, whereas the impact on transplantation-associated toxicities remains to be elucidated.


Subject(s)
Hematopoietic Stem Cell Transplantation , Iron , Adult , Humans , Deferasirox/therapeutic use , Ferritins , Iron Chelating Agents/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL