Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 598
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641078

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Subject(s)
Klebsiella pneumoniae , Oils, Volatile , Plant Leaves , Plectranthus , Proteomics , Klebsiella pneumoniae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Plectranthus/chemistry , Humans , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Zebrafish , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
2.
Front Cell Infect Microbiol ; 14: 1368450, 2024.
Article in English | MEDLINE | ID: mdl-38638833

ABSTRACT

Objective: To evaluate the antibacterial effect of Tanreqing (TRQ) against K. pneumoniae and its inhibition activity on bacterial biofilm formation in vitro and in vivo, and to explore the mechanism of the inhibitory effects of TRQ on K. pneumoniae biofilm formation. Methods: An in vitro biofilm model of K. pneumoniae was established, and the impact of TRQ on biofilm formation was evaluated using crystal violet staining and scanning electron microscopy (SEM). Furthermore, the clearance effect of TRQ against K. pneumoniae in the biofilm was assessed using the viable plate counting method; q-RT PCR was used to evaluate the inhibitory effect of different concentrations of TRQ on the expression of biofilm-related genes in Klebsiella pneumoniae; The activity of quorum sensing signal molecule AI-2 was detected by Vibrio harveyi bioluminescence assay; Meanwhile, a guinea pig lung infection model of Klebsiella pneumoniae was constructed, and after treated with drugs, pathological analysis of lung tissue and determination of bacterial load in lung tissue were performed. The treatment groups included TRQ group, imipenem(IPM) group, TRQ+IPM group, and sterile saline group as the control. Results: The formation of K. pneumoniae biofilm was significantly inhibited by TRQ in vitro experiments. Furthermore, when combined with IPM, the clearance of K. pneumoniae in the biofilm was notably increased compared to the TRQ group and IPM group alone. q-RT PCR analysis revealed that TRQ down-regulated the expression of genes related to biofilm formation in K. pneumoniae, specifically luxS, wbbm, wzm, and lsrK, and also inhibited the activity of AI-2 molecules in the bacterium. In vivo experiments demonstrated that TRQ effectively treated guinea pig lung infections, resulting in reduced lung inflammation. Additionally, when combined with IPM, there was a significant reduction in the bacterial load in lung tissue. Conclusion: TRQ as a potential therapeutic agent plays a great role in the treatment of K. pneumoniae infections, particularly in combination with conventional antibiotics. And TRQ can enhanced the clearance effect on the bacterium by inhibiting the K. pneumoniae biofilm formation, which provided experimental evidence in support of clinical treatment of TRQ against K. pneumoniae infections.


Subject(s)
Drugs, Chinese Herbal , Klebsiella Infections , Pneumonia , Animals , Guinea Pigs , Klebsiella pneumoniae/genetics , Quorum Sensing , Biofilms , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
3.
J Ethnopharmacol ; 330: 118067, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY: Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS: Three fractions from JFBDP inhibit the gene expression of IL-1ß, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION: JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.


Subject(s)
Drugs, Chinese Herbal , Klebsiella Infections , Myeloid Differentiation Factor 88 , Powders , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Myeloid Differentiation Factor 88/metabolism , Mice , Male , Klebsiella Infections/drug therapy , MAP Kinase Signaling System/drug effects , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Klebsiella pneumoniae/drug effects , Signal Transduction/drug effects , Mice, Inbred C57BL
4.
Vaccine ; 42(19S1): S125-S141, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38503661

ABSTRACT

Klebsiella pneumoniae causes community- and healthcare-associated infections in children and adults. Globally in 2019, an estimated 1.27 million (95% Uncertainty Interval [UI]: 0.91-1.71) and 4.95 million (95% UI: 3.62-6.57) deaths were attributed to and associated with bacterial antimicrobial resistance (AMR), respectively. K. pneumoniae was the second leading pathogen in deaths attributed to AMR resistant bacteria. Furthermore, the rise of antimicrobial resistance in both community- and hospital-acquired infections is a concern for neonates and infants who are at high risk for invasive bacterial disease. There is a limited antibiotic pipeline for new antibiotics to treat multidrug resistant infections, and vaccines targeted against K. pneumoniae are considered to be of priority by the World Health Organization. Vaccination of pregnant women against K. pneumoniae could reduce the risk of invasive K.pneumoniae disease in their young offspring. In addition, vulnerable children, adolescents and adult populations at risk of K. pneumoniae disease with underlying diseases such as immunosuppression from underlying hematologic malignancy, chemotherapy, patients undergoing abdominal and/or urinary surgical procedures, or prolonged intensive care management are also potential target groups for a K. pneumoniae vaccine. A 'Vaccine Value Profile' (VVP) for K.pneumoniae, which contemplates vaccination of pregnant women to protect their babies from birth through to at least three months of age and other high-risk populations, provides a high-level, holistic assessment of the available information to inform the potential public health, economic and societal value of a pipeline of K. pneumoniae vaccines and other preventatives and therapeutics. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public-private partnerships, and multi-lateral organizations, and in collaboration with stakeholders from the WHO. All contributors have extensive expertise on various elements of the K.pneumoniae VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.


Subject(s)
Bacterial Vaccines , Klebsiella Infections , Klebsiella pneumoniae , Adult , Female , Humans , Infant , Pregnancy , Anti-Bacterial Agents/therapeutic use , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/prevention & control , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/drug effects , Vaccination/methods
5.
Front Cell Infect Microbiol ; 14: 1324895, 2024.
Article in English | MEDLINE | ID: mdl-38465230

ABSTRACT

Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , Biofilms , Microbial Sensitivity Tests
6.
Phytomedicine ; 126: 155421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430819

ABSTRACT

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Tigecycline/metabolism , Tigecycline/pharmacology , Tigecycline/therapeutic use , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Minocycline/pharmacology , Minocycline/metabolism , Minocycline/therapeutic use , Tandem Mass Spectrometry , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Indole Alkaloids/pharmacology , Adenosine Triphosphate/metabolism , Microbial Sensitivity Tests
7.
BMC Infect Dis ; 24(1): 161, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317132

ABSTRACT

BACKGROUND: Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS: Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS: Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS: Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION: retrospectively registered.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Therapy, Combination , Klebsiella Infections , Klebsiella pneumoniae , Tigecycline , Colistin/therapeutic use , Humans , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/mortality , Klebsiella Infections/microbiology , Tigecycline/therapeutic use , Carbapenems/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Microbial Sensitivity Tests , Treatment Outcome
8.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396811

ABSTRACT

Klebsiella pneumoniae (Kpn) is an opportunistic pathogen that causes intrahospital complications such as pneumonia, liver abscesses, soft tissue infections, urinary infections, bacteraemia, and, in some cases, death. Since this bacterium has a higher frequency than other Gram-negative pathogens, it has become an important pathogen to the health sector. The adaptative genome of Kpn likely facilitates increased survival of the pathogen in diverse situations. Therefore, several studies have been focused on developing new molecules, synergistic formulations, and biomaterials that make it possible to combat and control infections with and dispersion of this pathogen. Note that the uncontrolled antibiotic administration that occurred during the pandemic led to the emergence of new multidrug-resistant strains, and scientists were challenged to overcome them. This review aims to compile the latest information on Kpn that generates intrahospital infections, specifically their pathogenicity-associated factors. Furthermore, it explains the natural-product-based treatments (extracts and essential oils) developed for Kpn infection and dispersion control.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Microbial , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
9.
Fitoterapia ; 173: 105811, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168570

ABSTRACT

Klebsiella pneumoniae is a type of Gram-negative bacteria that causes a variety of infections, including pneumonia, bloodstream infections, wound infections, and meningitis. The treatment of K. pneumoniae infection depends on the type of infection and the severity of the symptoms. Antibiotics are generally used to treat K. pneumoniae infections. However, some strains of K. pneumoniae have become resistant to antibiotics. This comprehensive review examines the potential of natural compounds as effective strategies against K. pneumonia infections. The alarming rise in antibiotic resistance underscores the urgent need for alternative therapies. This article represents current research on the effects of diverse natural compounds, highlighting their anti-microbial and antibiofilm properties against K. pneumonia. Notably, compounds such as andrographolide, artemisinin, baicalin, berberine, curcumin, epigallocatechin gallate, eugenol, mangiferin, piperine, quercetin, resveratrol, and thymol have been extensively investigated. These compounds exhibit multifaceted mechanisms, including disruption of bacterial biofilms, interference with virulence factors, and augmentation of antibiotic effectiveness. Mechanistic insights into their actions include membrane perturbation, oxidative stress induction, and altered gene expression. While promising, challenges such as limited bioavailability and varied efficacy across bacterial strains are addressed. This review further discusses the potential of natural compounds as better alternatives in combating K. pneumonia infection and emphasizes the need for continued research to harness their full therapeutic potential. As antibiotic resistance persists, these natural compounds offer a promising avenue in the fight against K. pneumonia and other multidrug-resistant pathogens.


Subject(s)
Klebsiella Infections , Pneumonia , Humans , Klebsiella pneumoniae , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Molecular Structure , Anti-Bacterial Agents/pharmacology , Pneumonia/drug therapy , Pneumonia/microbiology , Drug Resistance , Microbial Sensitivity Tests
10.
Int J Antimicrob Agents ; 63(1): 107017, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884228

ABSTRACT

OBJECTIVES: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS: All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION: Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.


Subject(s)
Colistin , Klebsiella Infections , Humans , Tigecycline/pharmacology , Colistin/pharmacology , Klebsiella pneumoniae , Minocycline/pharmacology , Lipid A , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Bacterial Proteins/genetics
11.
Chem Biol Drug Des ; 103(1): e14381, 2024 01.
Article in English | MEDLINE | ID: mdl-37875387

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections continue to impose high morbidity threats to hospitalized patients worldwide, limiting therapeutic options to last-resort antibiotics like colistin. However, the dynamic genomic landscape of colistin-resistant K. pneumoniae (COLR-Kp) invoked ardent exploration of underlying molecular signatures for therapeutic propositions/designs. We unveiled the structural impact of the widespread and emerging PmrB mutations involved in colistin resistance (COLR) in K. pneumoniae. In the present study, clinical isolates of K. pneumoniae expressed variable susceptibilities to colistin (>0.5 µg/mL for resistant and ≤0.25 µg/mL for susceptible) despite mutations such as T157P, G207D and T246A. The protein sequences extracted from in-house sequenced genomes were used to model mutant PmrB proteins and analyze the underlying structural alterations. The mutations were contrasted based on molecular dynamics simulation trajectories, free-energy landscapes and structural flexibility profiles. The altered backbone flexibilities can be an essential factor for mutant selection by COLR K. pneumoniae and can provide clues to deal with emerging mutants. Furthermore, PmrB having high druggability confidence (>0.99), was explored as a potential target for 1396 virtually screened FDA-approved drug candidates. Among the top-10 compounds (scores >70), amphotericin B was found to be potential candidate with high affinity (Binding energy <-8 kcal/mol) and stable interactions (RMSF <0.7 Å) against PmrB druggable pockets, despite the mutations, which encourages future adjunct therapeutic research against COLR-Kp.


Subject(s)
Colistin , Klebsiella Infections , Humans , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation , Mutant Proteins/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics
12.
Int J Antimicrob Agents ; 63(1): 107011, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37863340

ABSTRACT

OBJECTIVES: Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS: Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS: The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION: Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.


Subject(s)
Colistin , Klebsiella Infections , Animals , Colistin/pharmacology , Colistin/therapeutic use , Klebsiella pneumoniae , Virulence , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Larva , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
13.
Emerg Infect Dis ; 29(11): 2266-2274, 2023 11.
Article in English | MEDLINE | ID: mdl-37877547

ABSTRACT

In February 2022, a critically ill patient colonized with a carbapenem-resistant K. pneumoniae producing KPC-3 and VIM-1 carbapenemases was hospitalized for SARS-CoV-2 in the intensive care unit of Policlinico Umberto I hospital in Rome, Italy. During 95 days of hospitalization, ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol were administered consecutively to treat 3 respiratory tract infections sustained by different bacterial agents. Those therapies altered the resistome of K. pneumoniae sequence type 512 colonizing or infecting the patient during the hospitalization period. In vivo evolution of the K. pneumoniae sequence type 512 resistome occurred through plasmid loss, outer membrane porin alteration, and a nonsense mutation in the cirA siderophore gene, resulting in high levels of cefiderocol resistance. Cross-selection can occur between K. pneumoniae and treatments prescribed for other infective agents. K. pneumoniae can stably colonize a patient, and antimicrobial-selective pressure can promote progressive K. pneumoniae resistome evolution, indicating a substantial public health threat.


Subject(s)
Ceftazidime , Klebsiella Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Meropenem/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Italy/epidemiology , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Cefiderocol
14.
Microbiol Spectr ; 11(6): e0119923, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905823

ABSTRACT

IMPORTANCE: This study provides insights into the mechanisms of polymyxin resistance in K. pneumoniae clinical isolates and demonstrates potential strategies of polymyxin and vancomycin combinations for combating this resistance. We also identified possible mechanisms that might be associated with the treatment of these combinations against carbapenem- and polymyxin-resistant K. pneumoniae clinical isolates. The findings have significant implications for the development of alternative therapies and the effective management of infections caused by these pathogens.


Subject(s)
Klebsiella Infections , Polymyxins , Humans , Polymyxins/pharmacology , Polymyxins/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Vancomycin/pharmacology , Vancomycin/therapeutic use , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy
16.
Trends Immunol ; 44(10): 826-844, 2023 10.
Article in English | MEDLINE | ID: mdl-37704549

ABSTRACT

Klebsiella pneumoniae is among the most common antibiotic-resistant pathogens causing nosocomial infections. Additionally, it is a leading cause of neonatal sepsis and childhood mortality across the globe. Despite its clinical importance, we are only beginning to understand how the mammalian adaptive immune system responds to this pathogen. Further, many studies investigating potential K. pneumoniae vaccine candidates or alternative therapies have been launched in recent years. Here, we review the current state of knowledge on the adaptive immune response to K. pneumoniae infections and progress towards developing vaccines and other therapies to combat these infections.


Subject(s)
Klebsiella Infections , Vaccines , Animals , Child , Humans , Infant, Newborn , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/prevention & control , Klebsiella pneumoniae , Mammals
17.
PLoS One ; 18(8): e0289879, 2023.
Article in English | MEDLINE | ID: mdl-37561723

ABSTRACT

The spread of extended-spectrum beta-lactamases (ESBLs) in nosocomial and community-acquired enterobacteria is an important challenge for clinicians due to the limited therapeutic options for infections that are caused by these organisms. Here, we developed a panel of ESBL coding genes, evaluated the abundance and prevalence of ESBL encoding genes in patients undergoing H. pylori eradication therapy, and summarized the effects of eradication therapy on functional profiles of the gut microbiome. To assess the repertoire of known beta lactamase (BL) genes, they were divided into clusters according to their evolutionary relation. Primers were designed for amplification of cluster marker regions, and the efficiency of this amplification panel was assessed in 120 fecal samples acquired from 60 patients undergoing H. pylori eradication therapy. In addition, fecal samples from an additional 30 patients were used to validate the detection efficiency of the developed ESBL panel. The presence for majority of targeted clusters was confirmed by NGS of amplification products. Metagenomic sequencing revealed that the abundance of ESBL genes within the pool of microorganisms was very low. The global relative abundances of the ESBL-coding gene clusters did not differ significantly among treatment states. However, at the level of each cluster, classical ESBL producers such as Klebsiella sp. for blaOXY (p = 0.0076), Acinetobacter sp. for blaADC (p = 0.02297) and others, differed significantly with a tendency to decrease compared to the pre- and post-eradication states. Only 13 clusters were common across all three datasets, suggesting a patient-specific distribution profile of ESBL-coding genes. The number of AMR genes detected in the post-eradication state was higher than that in the pre-eradication state, which could be attributed, at least in part, to the therapy. This study demonstrated that the ESBL screening panel was effective in targeting ESBL-coding gene clusters from bacterial DNA and that minor differences exist in the abundance and prevalence of ESBL-coding gene levels before and after eradication therapy.


Subject(s)
Helicobacter pylori , Klebsiella Infections , Humans , Helicobacter pylori/genetics , Prevalence , Klebsiella , Klebsiella Infections/microbiology , Patients , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
18.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(8): 1222-1230, 2023 Aug 06.
Article in Chinese | MEDLINE | ID: mdl-37574316

ABSTRACT

Objective: The study investigated the clinical distribution, antimicrobial resistance and epidemiologic characteristics of hypervirulent Carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) in a hospital in Henan Province to provide a scientific basis for antibiotic use and nosocomial infection prevention and control. Methods: A retrospective analysis of the clinical data from the cases was carried out in this study. Clinical data of patients infected with the CRKP strain isolated from the clinical microbiology laboratory of Henan Provincial Hospital of Traditional Chinese Medicine from January 2020 to December 2022 were retrospectively analyzed. A string test, virulence gene screening, serum killing, and a G. mellonella infection model were used to screen hv-CRKP isolates. The clinical characteristics of hv-CRKP and the drug resistance rate of hv-CRKP to twenty-five antibiotics were analyzed using WHONET 5.6. Carbapenemase phenotypic characterization of the hv-CRKP was performed by colloidal gold immunochromatographic assay, and Carbapenemase genotyping, multi-locus sequence typing (MLST) and capsular serotyping of hv-CRKP isolates were performed by PCR and Sanger sequencing. Results: A total of non-duplicate 264 CRKP clinical isolates were detected in the hospital from 2020 to 2022, and 23 hv-CRKP isolates were detected, so the corresponding detection rate of hv-CRKP was 8.71% (23/264). The hv-CRKP isolates in this study were mainly from the intensive care unit (10/23) and neurosurgery department (8/23), and the main sources of hv-CRKP isolates were sputum (10/23) and bronchoalveolar lavage fluid (6/23). The hv-CRKP isolates in this study were highly resistant to ß-lactam antibiotics, fluoroquinolones and aminoglycosides, and were only susceptible to colistin, tigecycline and ceftazidime/avibactam. The detection rate of the blaKPC-2 among 23 hv-CRKP isolates was 91.30% (21/23) and none of the class B and class D carbapenemases were detected. Results of MLST and capsular serotypes showed that ST11 type hv-CRKP was the dominant strain in the hospital, accounting for 56.52% (13/23), and K64 (9/13) and KL47 (4/13) were the major capsular serotypes. Conclusion: The hv-CRKP isolates from the hospital are mainly from lower respiratory tract specimens from patients admitted to the intensive care department and the drug resistance is relatively severe. The predominant strains with certain polymorphisms are mainly composed of the KPC-2-producing ST11-K64 and ST11-KL47 hv-CRKP isolates in the hospital.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Multilocus Sequence Typing , Retrospective Studies , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hospitals , Carbapenem-Resistant Enterobacteriaceae/genetics , Microbial Sensitivity Tests , Carbapenems/pharmacology
19.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(8): 813-818, 2023 Aug 12.
Article in Chinese | MEDLINE | ID: mdl-37536993

ABSTRACT

In recent years, the detection rate of multidrug-resistant and pandrug-resistant Klebsiella pneumoniae has increased year on year, so polymyxin has received increasing attention as an antibiotic that is still sensitive to most of the multidrug-resistant strains. However, widespread use of polymyxin is likely to lead to the emergence of polymyxin-resistant Klebsiella pneumoniae. At the same time, the polymyxin hetero-resistance has made clinical prevention and treatment difficult. In addition to relying on the combination of polymyxins with other antibiotics, the search for new antibacterial drugs has also become a research hotspot. Research into early detection methods for polymyxin resistance can also help to optimize and improve the diagnosis and treatment strategies. This article reviewed the epidemic status, mechanism, detection methods and prevention measures of polymyxin-resistant Klebsiella pneumoniae.


Subject(s)
Klebsiella Infections , Polymyxins , Humans , Polymyxins/pharmacology , Polymyxins/therapeutic use , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Klebsiella pneumoniae , Drug Resistance, Multiple, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy
20.
Clin Microbiol Infect ; 29(10): 1336.e1-1336.e8, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37423426

ABSTRACT

OBJECTIVES: The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major clinical concern, and polymyxin B (PMB) is a 'last resort' antibiotic for its treatment. Understanding the effects of drug susceptibility transformation in CRKP-infected patients undergoing PMB treatment would be beneficial to optimize PMB treatment strategies. METHODS: We retrospectively collected data from patients infected with CRKP and treated with PMB from January 2018 to December 2020. CRKPs were collected before and after PMB therapy, and patients were classified into the 'transformation' group (TG) and 'non-transformation' group (NTG) by the shift of susceptibility to PMB. We compared clinical characteristics between these groups, and further analysed the phenotypic and genome variation of CRKP after PMB susceptibility transformation. RESULTS: A total of 160 patients (37 in the TG and 123 in the NTG) were included in this study. The duration of PMB treatment before PMB-resistant K. pneumoniae (PRKP) appearance in TG was even longer than the whole duration of PMB treatment in NTG (8 [8] vs. 7 [6] days; p 0.0496). Compared with isogenic PMB-susceptible K. pneumoniae (PSKP), most PRKP strains had missense mutations in mgrB (12 isolates), yciC (10 isolates) and pmrB (7 isolates). The competition index of 82.4% (28/34) of PRKP/PSKP pairs was <67.6% (23/34), and 73.5% (25/34) of PRKP strains showed a higher 7-day lethality in Galleria mellonella and a greater ability to resist complement-dependent killing than their corresponding PSKP, respectively. CONCLUSION: Low dose with longer PMB treatment durations may be associated with the emergence of polymyxin resistance. The evolution of PRKP is predominantly mediated by an accumulation of mutations, including those in mgrB, yciC, and pmrB. Lastly, PRKP exhibited reduced growth and increased virulence compared with parental PSKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Klebsiella pneumoniae , Retrospective Studies , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL