Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.760
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Sci Total Environ ; 927: 172338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608897

ABSTRACT

Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.


Subject(s)
Cyanobacteria , Eutrophication , Lakes , Temperature , Lakes/microbiology , Lakes/chemistry , China , Environmental Monitoring , Nitrogen/analysis , Phytoplankton , Climate Change , Seasons , Phosphorus/analysis , Nutrients/analysis , Global Warming
2.
Sci Total Environ ; 927: 172271, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583606

ABSTRACT

The decomposition rates and stoichiometric characteristics of many aquatic plants remain unclear, and our understanding of material flow and nutrient cycles within freshwater ecosystems is limited. In this study, an in-situ experiment involving 23 aquatic plants (16 native and 7 exotic species) was carried out via the litter bag method for 63 days, during which time the mass loss and nutrient content (carbon (C), nitrogen (N), and phosphorus (P)) of plants were measured. Floating-leaved plants exhibited the highest decomposition rate (0.038 ± 0.002 day-1), followed by submerged plants and free-floating plants (0.029 ± 0.002 day-1), and emergent plants had the lowest decomposition rate (0.019 ± 0.001 day-1). Mass loss by aquatic plants correlated with stoichiometric characteristics; the decomposition rate increased with an increasing P content and with a decreasing C content, C:N ratio, and C:P ratio. Notably, the decomposition rate of submerged exotic plants (0.044 ± 0.002 day-1) significantly exceeded that of native plants (0.026 ± 0.004 day-1), while the decomposition rate of emergent exotic plants was 55 ± 4 % higher than that of native plants. The decomposition rates of floating-leaved and free-floating plants did not significantly differ between the native and exotic species. During decomposition, emergent plants displayed an increase in C content and a decrease in N content, contrary to patterns observed in other life forms. The P content decreased for submerged (128 ± 7 %), emergent (90 ± 5 %), floating-leaved (104 ± 6 %), and free-floating plants (32 ± 6 %). Exotic plants released more C and P but accumulated more N than did native plants. In conclusion, the decomposition of aquatic plants is closely linked to litter quality and influences nutrient cycling in freshwater ecosystems. Given these findings, the invasion of the littoral zone by submerged and emergent exotic plants deserves further attention.


Subject(s)
Introduced Species , Lakes , Nitrogen , Phosphorus , Plants , Lakes/chemistry , Phosphorus/analysis , Nitrogen/analysis , Carbon/analysis , Ecosystem , Plant Leaves/chemistry , China
3.
Sci Total Environ ; 924: 171730, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38492603

ABSTRACT

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Subject(s)
Ecosystem , Lakes , Calcium , Soil , Eutrophication , Harmful Algal Bloom , Water , Chlorophyll , Chlorophyll A , Iron , Iron, Dietary , Phosphorus , Nitrogen/analysis
4.
Chemosphere ; 353: 141655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460851

ABSTRACT

This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.


Subject(s)
Cyanobacteria , Microbiota , Water Quality , Lakes/microbiology , Phosphorus/pharmacology , Phosphorus/analysis , Eutrophication
5.
J Environ Manage ; 355: 120480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430885

ABSTRACT

Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.


Subject(s)
Cyanobacteria , Ecosystem , Plants , Harmful Algal Bloom , Lakes , Plant Extracts
6.
Mar Environ Res ; 196: 106439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479292

ABSTRACT

In semi-enclosed coastal brackish lakes, changes in dissolved oxygen in the bottom layer due to salinity stratification can affect the flux of phosphorus (P) at the sediment-water interface, resulting in short- and long-term water quality fluctuations in the water column. In this study, the physicochemical properties of the water layers and sediments at five sites in Saemangeum Lake were analyzed in spring and autumn for four years, and phosphorus release experiments from sediments were conducted for 20 days under oxic and anoxic conditions during the same period. Sediment total phosphorus (T-P) decreased in autumn compared to spring due to mineralization of organic bound phosphorus, which was the most dominant P fraction. This may be related to the increase in the ratio of PO4-P to T-P in bottom waters in autumn, when hypoxia was frequently observed. The difference in P fluxes between oxic and anoxic conditions indicated that during autumn, as compared to spring, the release of phosphorus could have a more immediate impact on the water column during the formation of hypoxia/anoxia. The main factors influencing changes in P fluxes from sediments were identified through redundancy analysis. Additionally, based on the results of multiple regression analysis, sediment TOC, sediment non-apatite phosphorus, porewater pH, and porewater PO4-P were determined to be the most significant factors affecting P fluxes from sediments, depending on the season or redox conditions. Recently, the increased influx of seawater into Saemangeum Lake has been shown to contribute to water quality improvements in the water column due to a strong dilution effect. However, the sediment environment has shifted towards a more reduced state, leading to increased P release under anoxic conditions. Therefore, for future water quality management within the lake, it is necessary to consistently address the recurring hypoxia and continuously monitor phosphorus dynamics.


Subject(s)
Lakes , Water Pollutants, Chemical , Humans , Lakes/chemistry , Phosphorus/analysis , Oxygen , Environmental Monitoring/methods , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Hypoxia , China
7.
Harmful Algae ; 133: 102600, 2024 03.
Article in English | MEDLINE | ID: mdl-38485438

ABSTRACT

Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Cyanobacteria/genetics , Phytoplankton , Biomass , Phosphorus
8.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468006

ABSTRACT

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Subject(s)
Lakes , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Ecosystem , Phosphorus/analysis , Freezing , Sodium Hydroxide , Environmental Monitoring , Geologic Sediments , Eutrophication , China
9.
Sci Total Environ ; 926: 171934, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38527536

ABSTRACT

Climate change can significantly alter phytoplankton growth and proliferation, which would counteract restoration efforts to control algal blooms. However, the knowledge is limited about the quantitative evaluation of the causal effect of algal biomass resurgence in large shallow lakes where there is no significant improvement after long term lake restoration. Here, a bucket process-based phytoplankton dynamic model is developed to quantify the contributions of climate change and nutrients concentration changes to phytoplankton biomass resurgence after 2014 in hypereutrophic Lake Taihu, China. Compared to 2008-2014, the mean water temperature (WT) and the mean phosphate are higher, the mean photosynthetically active radiation (PAR), the mean total suspended solids (TSS), and the mean dissolved inorganic nitrogen (DIN) are lower, during 2015-2020. Their contribution to algal biomass resurgence during 2015-2020 is WT (+58.7 %), PAR (-2.6 %), TSS (+23.2 %), DIN (-22.1 %) and phosphate (+42.7 %), respectively. Climate change (WT, PAR, and TSS), which contributed +64.9 % to the phytoplankton biomass resurgence, underscores the urgent need to continuously take more effective measures to reduce nutrient emissions to offset the effects of climate change in Lake Taihu and in other eutrophic lakes.


Subject(s)
Climate Change , Lakes , Biomass , Environmental Monitoring , Phytoplankton , Eutrophication , China , Phosphates , Nitrogen , Phosphorus/analysis
10.
Chemosphere ; 354: 141596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484986

ABSTRACT

This paper presents the results of the research on the overall distribution of selenium (Se) in various aquatic compartments (water, sediment, plankton and macrophytes) at six selected sites of the Croatian part of the Drava and Danube rivers, the connected floodplain lake and the melioration channel system carried out in two sampling periods (flooding in June and the drought period in September). In addition, the physicochemical water properties, plankton composition and biomass were analysed. Our study revealed low mean Se contents in sediments and water, indicating Se deficiency in the studied freshwater systems. The physicochemical environment, including Se distribution, was primarily influenced by hydrology rather than site-specific biogeochemical and morphological characteristics. The flooding period was characterised by higher Se content in water and higher transparency, nitrate and total nitrogen concentrations than drought conditions. At the river sites, sediment Se content was the highest during the flood period, while at all other sites, higher concentrations were found during the drought, reaching the maximum in the lake. Although Se concentrations were below the threshold for aquatic ecotoxicity, they increased in the following order: water (0.021-0.187 µg Se L-1) < sediments (0.005-0.352 mg Se kg-1) < macrophytes (0.010-0.413 mg Se kg-1) < plankton (0.044-0.518 mg Se kg-1) indicating its possible biomagnification at the bottom of the food chain. Species known for high Se accumulation potential dominated the biomass of the main plankton groups and the composition of the macrophyte community, which may provide a more sensitive and accurate steady-state compartment monitor for Se assessment in freshwater biotopes.


Subject(s)
Selenium , Selenium/analysis , Plankton , Food Chain , Lakes , Water/analysis , Ecosystem
11.
Water Res ; 254: 121420, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492478

ABSTRACT

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Subject(s)
Lakes , Phosphorus , Chlorophyll A , Phosphates , Phytoplankton
12.
Sci Total Environ ; 917: 170502, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38301791

ABSTRACT

The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.


Subject(s)
Hydrocharitaceae , Metals, Heavy , Phosphorus/chemistry , Dissolved Organic Matter , Bentonite/chemistry , Lanthanum/chemistry , Renal Dialysis , Manganese/analysis , Lakes/chemistry , Geologic Sediments/chemistry
13.
Funct Integr Genomics ; 24(1): 26, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329581

ABSTRACT

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua's morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC-MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua's low P adaptation.


Subject(s)
Artemisia annua , Artemisinins , Artemisia annua/genetics , Fertilizers , Gene Expression Profiling , Lakes , Phosphorus
14.
J Environ Manage ; 353: 120291, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38325283

ABSTRACT

Dredging is widely used to control internal sediment nitrogen (N) pollution during eutrophic lake restoration. However, the effectiveness of dredging cannot be maintained for long periods during seasonal temperature variations. This study used modified zeolite (MZ) as a thin-layer capping material to enhance dredging efficiency during a year-long field sediment core incubation period. Our results showed that dredging alone more effectively reduced pore water N, N flux, and sediment N content than MZ capping but showed more dramatic changes during the warm seasons. The N flux in dredged sediment in summer was 1.8 and 2.5 times that in spring and autumn, respectively, indicating a drastic N regeneration process in the short term. In contrast, the combination method reduced the extra 10% pore water N, 22% N flux, and 8% sediment organic N content compared with dredging alone and maintained high stability during seasonal changes. The results indicated that the addition of MZ to the surface of dredged sediment not only enhanced the control effect of dredging by its adsorption capacity but may also smooth the N regeneration process via successive accumulation (in the channel of the material) and activation of bacteria for months, which was evidenced by the variation in microbial diversity in the MZ treatment. As a result, the combination of dredging with modified zeolite simultaneously enhanced the efficiency and stability of the single dredging method in controlling sediment N content and its release, exhibiting great prospects for long-term application in eutrophic lakes with severe pollution from internal N loading.


Subject(s)
Water Pollutants, Chemical , Zeolites , Lakes , Nitrogen/analysis , Geologic Sediments , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Water , China
15.
Water Environ Res ; 96(3): e11002, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38403998

ABSTRACT

Eutrophication, the over-enrichment with nutrients, for example, nitrogen and phosphorus, of ponds, reservoirs and lakes, is an urgent water quality issue. The most notorious symptom of eutrophication is a massive proliferation of cyanobacteria, which cause aquatic organism death, impair ecosystem and harm human health. The method considered to be most effective to counteract eutrophication is to reduce external nutrient inputs. However, merely controlling external nutrient load is insufficient to mitigate eutrophication. Consequently, a rapid diminishing of cyanobacterial blooms is relied on in-lake intervention, which may encompass a great variety of different approaches. Coagulation/flocculation is the most used and important water purification unit. Since cyanobacterial cells generally carry negative charges, coagulants are added to water to neutralize the negative charges on the surface of cyanobacteria, causing them to destabilize and precipitate. Most of cyanobacteria and their metabolites can be removed simultaneously. However, when cyanobacterial density is high, sticky secretions distribute outside cells because of the small size of cyanobacteria. The sticky secretions are easily to form complex colloids with coagulants, making it difficult for cyanobacteria to destabilize and resulting in unsatisfactory treatment effects of coagulation on cyanobacteria. Therefore, various coagulants and coagulation methods were developed. In this paper, the focus is on the coagulation of cyanobacteria as a promising tool to manage eutrophication. Basic principles, applications, pros and cons of chemical, physical and biological coagulation are reviewed. In addition, the application of coagulation in water treatment is discussed. It is the aim of this review article to provide a significant reference for large-scale governance of cyanobacterial blooms. PRACTITIONER POINTS: Flocculation was a promising tool for controlling cyanobacteria blooms. Basic principles of four kinds of flocculation methods were elucidated. Flocculant was important in the flocculation process.


Subject(s)
Cyanobacteria , Ecosystem , Humans , Cyanobacteria/metabolism , Water Quality , Lakes/chemistry , Ponds , Eutrophication , Phosphorus/metabolism
16.
J Environ Manage ; 354: 120245, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368799

ABSTRACT

Cyanobacterial bloom is a pressing issue affecting water supply security and ecosystem health. Phosphorus (P) released from cyanobacterial bloom during recession is one of the most important components involved in the lake P cycle. However, little is known about the consequences and mechanisms of the P cycle in overlying water and sediment due to the anthropogenic treatments of cyanobacterial blooms. In this study, treatment methods using hydrogen peroxide (H2O2), polyaluminum chloride (PAC), and the feces of silver carp were investigated for their influence on the P cycle using microcosm experiments. Results showed that H2O2 treatment significantly increased the internal cycle of sediment-related P, while PAC treatment showed minor effects. H2O2 and PAC treatment suppressed the release of P from sediment before day 10 but promoted the release of P on day 20, while silver carp treatment suppressed the release of P during the whole experiment. The reductive dissolution of iron oxide-hydroxide was the major factor affects the desorption of P. Path analyses further suggested that overlying water properties such as dissolved oxygen (DO) and oxidation-reduction potential (ORP) play critical roles in the treatment-induced sediment P release. Our results quantify the endogenous P diffusion fluxes across the sediment-water interface attributed to cyanobacterial treatments and provide useful guidance for the selection of controlling methods, with silver carp being the most recommended of the three methods studied.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Phosphorus/analysis , Ecosystem , Hydrogen Peroxide , Eutrophication , Geologic Sediments , Water , China
17.
J Environ Manage ; 354: 120411, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382438

ABSTRACT

Anthropogenic eutrophication remains a critical global issue, significantly impacting surface water quality. Numerous regions have implemented beneficial management practices to combat agricultural nonpoint pollution, often evaluating efficacy at the field scale, but not downstream. In this study, we conducted an extensive, 11-year (2010-2020), all-season, weekly monitoring program in a small, shallow, hypereutrophic lake and main tributary located in a cold climate, northern temperate zone, within a predominantly agricultural-forested mesoscale watershed. The monitoring took place before and after the implementation of field-scale agricultural nutrient mitigation measures in the catchment, allowing assessment of changes over time in the downstream tributary and lake. We analyzed long-term trends and temporal change points for nitrogen and phosphorus concentrations, aquatic trophic status, and nutrient stoichiometric ratios. The results revealed significant reductions in nitrogen and phosphorus concentrations, improved lake trophic status from hypereutrophic to eutrophic, and an increase in total nitrogen : total phosphorus ratios following the implementation of field-scale agricultural nutrient mitigation measures. Notably, both the lake and its main tributary exhibited significant temporal change points for these parameters. Our findings offer evidence of a relatively rapid, positive effect of the implementation of field-scale agricultural nutrient mitigation measures contributing to subsequent improvements in downstream water quality.


Subject(s)
Lakes , Water Quality , Environmental Monitoring , Nutrients , Phosphorus/analysis , Nitrogen/analysis , Eutrophication , China
18.
Environ Sci Pollut Res Int ; 31(16): 23568-23578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421543

ABSTRACT

Shallow urban lakes are naturally vulnerable to ecosystem degradation. Rapid urbanization in recent decades has led to a variety of aquatic problems such as eutrophication, algal blooms, and biodiversity loss, increasing the risk to lake-wide ecological sustainability. Instead of a simple binary assessment of ecological risk, holistic evaluation frameworks that consider multiple stressors and receptors can provide a more comprehensive assessment of overall ecological risk. In this study, we analyzed a combined dataset of government statistics, remote sensing images, and 1 year of field measurements to develop an index system for urban lake ecological risk assessment based on the pressure-state-response (PSR) framework. We used the developed ecological safety index (ESI) system to evaluate the ecological risk for three urban lakes in Jiangsu Province, China: Lake Yangcheng-LYC, Lake Changdang-LCD, and Lake Tashan-LTS. LYC and LTS were classified as "mostly safe" and "generally recognized as safe," respectively, while LCD was assessed as having "potential ecological risk." Our data suggest that socioeconomic pressure and aquatic health are the two main factors affecting the ecological risk in both LYC and LCD. The ecological risk of LTS could be improved more effectively if regional management plans are well implemented. Our study highlights the pressure of external wastewater loading, low forest-grassland coverage, and lake shoreline damage on the three selected urban lakes. The findings of this study can inform watershed management for lake ecosystem restoration and environmental sustainability.


Subject(s)
Ecosystem , Environmental Monitoring , Environmental Monitoring/methods , Lakes , Biodiversity , China , Risk Assessment , Eutrophication
19.
Environ Sci Pollut Res Int ; 31(16): 23579-23590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421544

ABSTRACT

In recent years, the eutrophication of lakes has accelerated in cold arid regions; the release of nutrients from sediments is an important contributor. The sequential extraction method, high-resolution peeper (HR-Peeper), and diffusive gradients in thin films (DGT) techniques were used to study the occurrence characteristics, release risk, and release mechanism of phosphorus (P) at the sediment-water interface (SWI) of Ulanor Wetland in the Hulun Lake Basin, Inner Mongolia, China. The mean total P concentration in overlying water was lower in August than that in May. Dissolved organic P (DOP) or particulate P (PP) was the main form of P in the overlying water. PP dominates in May and DOP in August. Refractory P was the main form of P in sediments. The concentrations of soluble reactive P and DGT-active P in the pore water of the sediment column were higher than those in the overlying water, and the concentrations were higher in August than those in May. Release of P in the wetland sediments occurred during the non-frozen seasons, with a higher risk in August than in May. The good linear correlation between dissolved P, Fe, and Mn in the DGT profiles verified their co-release due to the anaerobic reduction of Fe/Mn oxides. Moreover, alkaline sediments are also conducive to the release of sediment P. This study can provide data and theoretical support for eutrophication control in Ulanor Wetland and other similar water bodies in cold and arid regions.


Subject(s)
Water Pollutants, Chemical , Water , Water Pollutants, Chemical/analysis , Lakes , Phosphorus/analysis , Seasons , Geologic Sediments , Environmental Monitoring/methods , China
20.
Water Res ; 251: 121099, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184914

ABSTRACT

The escalation of global eutrophication has significantly increased due to the impact of climate change, particularly the increased frequency of extreme rainfall events. Predicting and managing eutrophication requires understanding the consequences of precipitation events on algal dynamics. Here, we assessed the influence of precipitation events throughout the year on nutrient and phytoplankton dynamics in a drinking water reservoir from January 2020 to January 2022. Four distinct precipitation patterns, namely early spring flood rain (THX), Plum rain (MY), Typhoon rain (TF), and Dry season (DS), were identified based on rainfall intensity, duration time, and cumulative rainfall. The study findings indicate that rainfall is the primary driver of algal dynamics by altering nutrient levels and TN:TP ratios during wet seasons, while water temperature becomes more critical during the Dry season. Combining precipitation characteristics with the lag periods between algal proliferation and rainfall occurrence is essential for accurately assessing the impact of rainfall on algal blooms. The highest algae proliferation occurred approximately 20 and 30 days after the peak rainfall during the MY and DS periods, respectively. This was influenced by the intensity and cumulative precipitation. The reservoir exhibited two distinct TN/TP ratio stages, with average values of 52 and 19, respectively. These stages were determined by various forms of nitrogen and phosphorus in rainfall-driven inflows and were associated with shifts from Bacillariophyta-dominated to Cyanophyta-dominated blooms during the MY and DS seasons. Our findings underscore the interconnected effects of nutrients, temperature, and hydrological conditions driven by diverse rainfall patterns in shaping algal dynamics. This study provides valuable insights into forecasting algal bloom risks in the context of climate change and developing sustainable strategies for lake or reservoir restoration.


Subject(s)
Cyanobacteria , Drinking Water , Phytoplankton , Drinking Water/analysis , Eutrophication , Lakes/analysis , Phosphorus/analysis , Nutrients/analysis , China , Environmental Monitoring , Seasons , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL