Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403312

ABSTRACT

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Subject(s)
Isatis , Ligases , Ligases/genetics , Isatis/genetics , Promoter Regions, Genetic , Plants/metabolism , Flavonoids , Coenzyme A Ligases/genetics , Coenzyme A Ligases/chemistry , Coenzyme A Ligases/metabolism
2.
Plant Sci ; 330: 111667, 2023 May.
Article in English | MEDLINE | ID: mdl-36858208

ABSTRACT

Male and female gametophyte development processes are essential steps in the life cycles of all land plants. Here, we characterized a gene, FviBAG6-A, screened from the Fragaria viridis (2 n = 2x=14) pollen cDNA library and physically interacted with S-RNase. Ubiquitinated of Sa-RNase might be determined by the interaction of FviBAG6-A in the ubiquitin-proteasome system during fertilization. We found that overexpression of FviBAG6-A in Arabidopsis caused shorter silique length, and decreased silique number. Moreover, overexpression of FviBAG6-A in Fragaria vesca (2 n = 2x=14) led to a greatly reduced seed number, with nearly 80% of the seeds aborted. Analyses of paraffin sections and reactive oxygen species (ROS) content revealed that the majority of severe pollen defects were likely due to the early degradation of the tapetum and middle layer as a result of ROS accumulation and abnormal development of the uninucleate megaspore mother. Moreover, the FviBAG6-A interact with the E3 ligase SIZ1 and contribute to the SUMOylation of FviBAG6-A , which may be induced by the high level of ROS content, further promoting gametophyte abortion in strawberry transgenic lines. This study characterized the FviBAG6-A and reveals its novel function in gametophyte development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fragaria , Arabidopsis Proteins/metabolism , Fragaria/genetics , Fragaria/metabolism , Germ Cells, Plant/metabolism , Diploidy , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Pollen/genetics , Pollen/metabolism , Ribonucleases/metabolism , Ligases/genetics , Nuclear Proteins/metabolism , Molecular Chaperones/genetics
3.
Elife ; 102021 09 07.
Article in English | MEDLINE | ID: mdl-34490847

ABSTRACT

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3',5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.


Subject(s)
Acyl Coenzyme A/metabolism , Adenosine Monophosphate/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Ligases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Ligases/chemistry , Ligases/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship
4.
Plant Signal Behav ; 16(5): 1899487, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33715572

ABSTRACT

The zinc finger transcription factor STOP1 plays a crucial role in aluminum (Al) resistance and low phosphate (Pi) response. Al stress and low Pi availability do not affect STOP1 mRNA expression but are able to induce STOP1 protein accumulation by post-transcriptional regulatory mechanisms. We recently reported that STOP1 can be mono-SUMOylated at K40, K212, or K395 sites, and deSUMOylated by the SUMO protease ESD4. SUMOylation of STOP1 is important for the regulation of STOP1 protein function and Al resistance. In the present study, we further characterized the role of the SUMO E3 ligase SIZ1 in STOP1 SUMOylation, Al resistance and low Pi response. We found that mutation of SIZ1 reduced but not eliminated STOP1 SUMOylation, suggesting that SIZ1-dependent and -independent pathways are involved in the regulation of STOP1 SUMOylation. The STOP1 protein levels were decreased in siz1 mutants. Nevertheless, the expression of STOP1-target gene AtALMT1 was increased instead of reduced in siz1 mutants. The mutants showed enhanced Al resistance and low Pi response. Our results suggest that SIZ1 regulates Al resistance and low Pi response likely through the modulation of AtALMT1 expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ligases/metabolism , Sumoylation , Transcription Factors/metabolism , Aluminum/toxicity , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Ligases/genetics , Mutation/genetics , Phosphorus/pharmacology , Protein Binding/drug effects , Protein Stability/drug effects , Sumoylation/drug effects
5.
ACS Chem Biol ; 15(7): 1883-1891, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32392032

ABSTRACT

Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.


Subject(s)
Bacterial Proteins/metabolism , Ligases/metabolism , Pectobacterium/pathogenicity , Salicylic Acid/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Ligases/genetics , Molecular Docking Simulation , Mutation , Pectobacterium/enzymology , Protein Binding , Quorum Sensing/drug effects , Solanum tuberosum/microbiology , Virulence/drug effects
6.
Plant Cell ; 31(10): 2370-2385, 2019 10.
Article in English | MEDLINE | ID: mdl-31439805

ABSTRACT

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.


Subject(s)
Brassica napus/metabolism , Crops, Agricultural/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassica napus/enzymology , Brassica napus/genetics , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant/genetics , Homeodomain Proteins/metabolism , Ligases/genetics , Ligases/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Mutation , Phenotype , Plant Mucilage/biosynthesis , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rapeseed Oil/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/growth & development , Transcription Factors/genetics , Transcriptome/genetics , Ubiquitin-Protein Ligases/genetics
7.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2472-2479, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31359713

ABSTRACT

Iridoid synthase( IS),the key enzyme in the natural biosynthesis of vegetal iridoids,catalyzes the irreversible cyclization of 10-oxogeranial to epi-iridodial. In this study,we screened the Rehmannia glutinosa transcriptome data by BLASTn with Catharanthus roseus CrIS cDNA,and found four c DNA fragments with length of 1 527,1 743,1 425,1 718 bp,named RgIS1,RgIS2,RgIS3 and RgIS4,respectively. Bioinformatics analysis revealed that the four iridoid synthase genes encoding proteins with 389-392 amino acid residues,protein molecular weights were between 44. 30-44. 74 k Da,and theoretical isoelectric points were between 5. 30 and 5. 87. Subcellular localization predictions showed that the four iridoid synthase were distributed in the cytoplasm. Structure analysis revealed that R. glutinosa iridoid synthases contain six conserved short-chain dehydrogenase/reductase( SDR) motifs,and their 3 D models were composed typical dinucleotide-binding " Rossmann" folds covered by helical C-terminal extensions. Using the amino acid sequences of four R. glutinosa iridoid synthases,phylogenetic analysis was performed,the result indicated that RgIS3,CrIS and Olea europaea OeIS were grouped together,the other R. glutinosa iridoid synthases and fifteen proteins in other plants had close relationship. Real-time fluorescent quantitative PCR revealed that RgIS1 and RgIS3 highly expressed in unfold leaves,however,RgIS2 and RgIS4 highly expressed in stems and tuberous roots,respectively. RgIS3 showed higher expression levels in non-radial striations( nRS) of the two cultivars,and RgIS1 and RgIS2 had higher expression levels in nRS of QH,while RgIS4 had less expression levels in nRS of QH1. RgIS1,RgIS2 and RgIS3 were up-regulated by Me JA treatment,although the time and degree of response differed. Our findings are helpful to reveal molecular function of R. glutinosa iridoid synthases and provide a clue for studing the molecular mechanism of iridoid biosynthesis.


Subject(s)
Iridoids/metabolism , Ligases/genetics , Rehmannia/enzymology , Rehmannia/genetics , Cloning, Molecular , Genes, Plant , Phylogeny
8.
Curr Microbiol ; 76(2): 178-186, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30498942

ABSTRACT

Bioactive natural compounds play pivotal roles in drug discovery and the emergence of multi-drug resistance pathogens demands the development of better/new drugs. Paenibacillus amylolyticus KMCLE06 endophytic bacterium isolated from the medicinal plant Coix lachryma-jobi were analyzed for the potential bioactive secondary metabolite compounds and its gene responsible within polyketide synthases (PKS) clusters. Ethyl acetate extraction of P. amylolyticus KMCLE06 showed significant antibacterial activity which was further processed to partial purification and characterization for bioactive compound. The foremost bioactive component in extraction was found to be dipicolinic acid (DPA). The antibacterial activity showed remarkable activity compared to the commercial standard DPA against both gram-positive and gram-negative pathogens. The MIC and MBC concentrations for partially purified extracted DPA ranged from 62.5 to 125 µg/ml and MBC from 208 to 250 µg/ml, respectively. Sequence analysis of gene amplified using degenerative primer, amplified 543 bp DNA region, revealing conserved putative open reading frame for dipicolinic acid synthetase (DpsA) key gene to produce DPA in most endospore forming bacteria. A search in the structural database for DpsA revealed significant homologous match with enoyl reductase one of the PKS type 1 module protein. This emphasizes endophytic P. amylolyticus KMCLE06 bacteria has presence of spoVF operon producing DPA via dipicolinic acid synthetase and lacks the polyketide synthase type 1 module cluster gene in its genome. And the bioactive compound DPA extracted acts as a stable remarkable antibacterial agent which can be potent compound for multi-resistance pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Ligases/genetics , Paenibacillus/chemistry , Paenibacillus/enzymology , Picolinic Acids/pharmacology , Anti-Bacterial Agents/isolation & purification , Coix/microbiology , Drug Discovery , Endophytes , Genome, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Multigene Family , Operon , Paenibacillus/genetics , Picolinic Acids/isolation & purification , Plants, Medicinal/microbiology
9.
Molecules ; 23(6)2018 06 06.
Article in English | MEDLINE | ID: mdl-29882808

ABSTRACT

Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of ß-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.


Subject(s)
Ligases/metabolism , Polygonum/enzymology , Sesquiterpenes/metabolism , Amino Acid Sequence , Cloning, Molecular , Genes, Plant , Ligases/chemistry , Ligases/genetics , Malaysia , Open Reading Frames , Phylogeny , Polygonum/genetics , Sequence Homology, Amino Acid
10.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Article in English | MEDLINE | ID: mdl-29518220

ABSTRACT

The quorum quenching (QQ) activity of endophytic bacteria associated with medicinal plants was explored. Extracts of the Gram-negative Enterobacter sp. CS66 possessed potent N-acylhomoserine lactone (AHL) hydrolytic activity in vitro. Using degenerate primers, we PCR-amplified an open reading frame (denoted aiiE) from CS66 that was 96% identical to the well-characterised AHL-lactonase AiiA from Bacillus thuringiensis, but only 30% was identical to AHL-lactonases from other Gram-negative species. This confirms that close AiiA homologs can be found in both Gram-positive and Gram-negative bacteria. Purified AiiE exhibited potent AHL-lactonase activity against a broad range of AHLs. Furthermore, aiiE was able to reduce the production of secreted plant cell wall-degrading hydrolytic enzymes when expressed in trans in the economically important plant pathogen, Pectobacterium atrosepticum. Our results indicate the presence of a novel AHL-lactonase in Enterobacter sp. CS66 with significant potential as a biocontrol agent.


Subject(s)
Acyl-Butyrolactones/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Endophytes/enzymology , Enterobacter/enzymology , Ligases/isolation & purification , Ligases/metabolism , Magnoliopsida/microbiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Endophytes/genetics , Endophytes/isolation & purification , Endophytes/physiology , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/physiology , Kinetics , Ligases/chemistry , Ligases/genetics , Quorum Sensing , Sequence Alignment
11.
Sci Rep ; 8(1): 1155, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348452

ABSTRACT

The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metalloendopeptidases/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Drug Combinations , Drug Synergism , Ligases/antagonists & inhibitors , Ligases/genetics , Ligases/metabolism , Metalloendopeptidases/biosynthesis , Metalloendopeptidases/genetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyrimidinones/pharmacology , Quorum Sensing/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Triazoles/pharmacology
12.
Cell Death Dis ; 8(11): e3167, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29120412

ABSTRACT

MicroRNAs (miRNAs) have been suggested to repress transcription via binding the 3'-untranslated regions of mRNAs. However, the involvement and details of miRNA-mediated epigenetic regulation, particularly in targeting genomic DNA and mediating epigenetic regulation, remain largely uninvestigated. In the present study, transcription factor CCAAT/enhancer binding protein delta (CEBPD) was responsive to the anticancer drug bortezomib, a clinical and highly selective drug for leukemia treatment, and contributed to bortezomib-induced cell death. Interestingly, following the identification of CEBPD-induced miRNAs, we found that miR-744, miR-3154 and miR-3162 could target CpG islands in the 5'-flanking region of the CEBPD gene. We previously demonstrated that the Yin Yang 1 (YY1)/polycomb group (PcG) protein/DNA methyltransferase (DNMT) complex is important for CCAAT/enhancer binding protein delta (CEBPD) gene inactivation; we further found that Argonaute 2 (Ago2) interacts with YY1 and binds to the CEBPD promoter. The miRNA/Ago2/YY1/PcG group protein/DNMT complex linked the inactivation of CEBPD and genes adjacent to its 5'-flanking region, including protein kinase DNA-activated catalytic polypeptide (PRKDC), minichromosome maintenance-deficient 4 (MCM4) and ubiquitin-conjugating enzyme E2 variant 2 (UBE2V2), upon bortezomib treatment. Moreover, we revealed that miRNA binding is necessary for YY1/PcG group protein/DNMT complex-mediated epigenetic gene silencing and is associated with bortezomib-induced methylation on genomic DNA. The present study successfully characterized the interactions of the miRNA/Ago2/YY1/PcG group protein/DNMT complex and provided new insights for miRNA-mediated epigenetic regulation in bortezomib-induced leukemic cell arrest and cell death.


Subject(s)
Apoptosis/drug effects , Bortezomib/pharmacology , Leukemia/physiopathology , MicroRNAs/metabolism , 3' Untranslated Regions , Antineoplastic Agents/pharmacology , Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , CCAAT-Enhancer-Binding Protein-delta/genetics , CCAAT-Enhancer-Binding Protein-delta/metabolism , Cell Line, Tumor , CpG Islands , DNA Methylation/drug effects , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Gene Silencing , Humans , Leukemia/metabolism , Ligases/genetics , Ligases/metabolism , MicroRNAs/genetics , Minichromosome Maintenance Complex Component 4/genetics , Minichromosome Maintenance Complex Component 4/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic/drug effects , Ubiquitin-Conjugating Enzymes , YY1 Transcription Factor/chemistry , YY1 Transcription Factor/metabolism
13.
Article in English | MEDLINE | ID: mdl-28893793

ABSTRACT

Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Cell Wall/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/drug effects , Serine Proteases/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Ethambutol/pharmacology , Galactans/biosynthesis , Gene Expression Profiling , Humans , Ion Pumps/deficiency , Ion Pumps/genetics , Isoniazid/pharmacology , Ligases/genetics , Ligases/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Meropenem , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycolic Acids/metabolism , Peptidoglycan/biosynthesis , Rifampin/pharmacology , Serine Proteases/metabolism , Thienamycins/pharmacology , Vancomycin/pharmacology
14.
Proc Natl Acad Sci U S A ; 114(34): 9092-9097, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28784791

ABSTRACT

In several Proteobacteria, LuxI-type enzymes catalyze the biosynthesis of acyl-homoserine lactones (AHL) signals using S-adenosyl-l-methionine and either cellular acyl carrier protein (ACP)-coupled fatty acids or CoA-aryl/acyl moieties as progenitors. Little is known about the molecular mechanism of signal biosynthesis, the basis for substrate specificity, or the rationale for donor specificity for any LuxI member. Here, we present several cocrystal structures of BjaI, a CoA-dependent LuxI homolog that represent views of enzyme complexes that exist along the reaction coordinate of signal synthesis. Complementary biophysical, structure-function, and kinetic analysis define the features that facilitate the unusual acyl conjugation with S-adenosylmethionine (SAM). We also identify the determinant that establishes specificity for the acyl donor and identify residues that are critical for acyl/aryl specificity. These results highlight how a prevalent scaffold has evolved to catalyze quorum signal synthesis and provide a framework for the design of small-molecule antagonists of quorum signaling.


Subject(s)
Bacterial Proteins/metabolism , Ligases/metabolism , Quorum Sensing , Signal Transduction , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Kinetics , Ligases/chemistry , Ligases/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Proteobacteria/genetics , Proteobacteria/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Substrate Specificity
15.
Appl Microbiol Biotechnol ; 101(16): 6375-6383, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28601894

ABSTRACT

Lichenysin is categorized into the family of lipopeptide biosurfactants and has a variety of applications in the petroleum industry, bioremediation, pharmaceuticals, and the food industry. Currently, large-scale production is limited due to the low yield. This study found that lichenysin production was repressed by supplementation of extracellular amino acids. The global transcriptional factor CodY was hypothesized to prevent lichenysin biosynthesis under an amino acid-rich condition in Bacillus licheniformis. Thus, the codY null strain was constructed, and lichenysin production was increased by 31.0% to 2356 mg/L with the addition of precursor amino acids, and the lichenysin production efficiency was improved by 42.8% to 98.2 mg/L• h. Correspondingly, the transcription levels of the lichenysin synthetase gene lchAA, and its corresponding regulator genes comA, degQ, and degU, were upregulated. Also, the codY deletion enhanced biosynthesis of lichenysin precursor amino acids (Gln, Ile, Leu, and Val) and reduced the formation of byproducts, acetate, acetoin, and 2,3-butanediol. This study firstly reported that lichenysin biosynthesis was negatively regulated by CodY and lichenysin production could be further improved with the precursor amino acid amendment in the codY null strain.


Subject(s)
Amino Acids/pharmacology , Bacillus licheniformis/drug effects , Bacillus licheniformis/metabolism , Lipoproteins/biosynthesis , Peptides, Cyclic/biosynthesis , Transcription Factors/deficiency , Bacillus licheniformis/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Ligases/genetics , Trans-Activators/genetics , Transcription Factors/genetics
16.
Sci Rep ; 7: 43320, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256553

ABSTRACT

CRISPR/Cas9 is a powerful genome editing tool that has been extensively used in model plants and crops, such as Arabidopsis thaliana, rice, wheat, and soybean. Here, we report the use of CRISPR/Cas9 to precisely knock out the committed diterpene synthase gene (SmCPS1) involved in tanshinone biosynthesis in Salvia miltiorrhiza, a traditional Chinese medicinal herb with significant pharmacological activities, such as vasorelaxation, protection against ischemia-reperfusion injury, and antiarrhythmic effects. Three homozygous and eight chimeric mutants were obtained from 26 independent transgenic hairy root lines by Agrobacterium rhizogenes-mediated transformation. The metabolomic analysis based on LC-qTOF-MS and Q-TRAP-LC-MS/MS revealed that tanshinones, especially cryptotanshinone, tanshinone IIA and tanshinone I, are completely missing in homozygous mutants, without influencing other phenolic acid metabolites. By contrast, tanshinones are decreased but still detectable in chimeric mutants, which is similar to a previously-reported an RNAi study of SmCPS1. These results demonstrate that Agrobacterium rhizogenes- mediated transformation using CRISPR/Cas9 is a simple and efficient genome editing tool in S. miltiorrhiza, thus paving the way for large-scale genome editing in S. miltiorrhiza, which is important for pathway elucidation of secondary metabolites, quality improvement, and yield increases for this valuable traditional Chinese medicinal herb.


Subject(s)
CRISPR-Cas Systems , Genome, Plant , Ligases/genetics , Plant Proteins/genetics , Plant Roots/genetics , Salvia miltiorrhiza/genetics , Abietanes , Agrobacterium/genetics , Agrobacterium/metabolism , Base Sequence , Diterpenes/metabolism , Gene Editing/methods , Gene Expression Regulation, Plant , Gene Knockout Techniques , Hydroxybenzoates/metabolism , Ligases/deficiency , Mutagenesis , Phenanthrenes , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Medicinal , Salvia miltiorrhiza/metabolism , Sequence Alignment
17.
PLoS One ; 11(6): e0157799, 2016.
Article in English | MEDLINE | ID: mdl-27310257

ABSTRACT

Microorganisms produce siderophores to facilitate iron uptake and even though this trait has been extensively studied, there is growing evidence suggesting that siderophores may have other physiological roles aside from iron acquisition. In support of this notion, we previously linked the archetypal siderophore enterobactin with oxidative stress alleviation. To further characterize this association, we studied the sensitivity of Escherichia coli strains lacking different components of the enterobactin system to the classical oxidative stressors hydrogen peroxide and paraquat. We observed that strains impaired in enterobactin production, uptake and hydrolysis were more susceptible to the oxidative damage caused by both compounds than the wild-type strain. In addition, meanwhile iron supplementation had little impact on the sensitivity, the reducing agent ascorbic acid alleviated the oxidative stress and therefore significantly decreased the sensitivity to the stressors. This indicated that the enterobactin-mediated protection is independent of its ability to scavenge iron. Furthermore, enterobactin supplementation conferred resistance to the entE mutant but did not have any protective effect on the fepG and fes mutants. Thus, we inferred that only after enterobactin is hydrolysed by Fes in the cell cytoplasm and iron is released, the free hydroxyl groups are available for radical stabilization. This hypothesis was validated testing the ability of enterobactin to scavenge radicals in vitro. Given the strong connection between enterobactin and oxidative stress, we studied the transcription of the entE gene and the concomitant production of the siderophore in response to such kind of stress. Interestingly, we observed that meanwhile iron represses the expression and production of the siderophore, hydrogen peroxide and paraquat favour these events even if iron is present. Our results support the involvement of enterobactin as part of the oxidative stress response and highlight the existence of a novel regulation mechanism for enterobactin biosynthesis.


Subject(s)
Enterobactin/biosynthesis , Escherichia coli/genetics , Gene Expression Regulation , Siderophores/biosynthesis , Stress, Physiological/genetics , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Chlorides/pharmacology , Enterobactin/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ferric Compounds/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Hydrolysis , Iron/metabolism , Ligases/genetics , Ligases/metabolism , Mutation , Oxidants/antagonists & inhibitors , Oxidants/pharmacology , Oxidation-Reduction , Oxidative Stress , Paraquat/antagonists & inhibitors , Paraquat/pharmacology , Siderophores/genetics , Transcription, Genetic
18.
Plant Biotechnol J ; 14(1): 85-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25899320

ABSTRACT

Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert ß-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. ß-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.


Subject(s)
Cyclopentanes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Ligases/genetics , Oxylipins/pharmacology , Phenylalanine/metabolism , Taxus/cytology , Taxus/enzymology , Amino Acid Sequence , Amplified Fragment Length Polymorphism Analysis , Bridged-Ring Compounds/chemistry , Chromatography, High Pressure Liquid , Computer Simulation , Cytosol/enzymology , DNA, Complementary/genetics , Genes, Plant , Genetic Association Studies , Ligases/chemistry , Ligases/metabolism , Models, Molecular , Paclitaxel/biosynthesis , Paclitaxel/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Tandem Mass Spectrometry , Taxoids/chemistry , Taxus/drug effects , Taxus/genetics
19.
Nat Chem Biol ; 11(9): 728-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26147354

ABSTRACT

The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.


Subject(s)
Aldehyde Reductase/metabolism , Carbohydrate Epimerases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Morphine/biosynthesis , Papaver/metabolism , Plant Proteins/metabolism , Aldehyde Reductase/genetics , Aldo-Keto Reductases , Alkaloids/biosynthesis , Alkaloids/chemistry , Base Sequence , Benzylisoquinolines/chemistry , Benzylisoquinolines/metabolism , Bromoviridae/genetics , Bromoviridae/metabolism , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/genetics , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Exons , Gene Fusion , Introns , Ligases/genetics , Ligases/metabolism , Molecular Sequence Data , Morphinans/chemistry , Morphinans/metabolism , Morphine/chemistry , Open Reading Frames , Opium/chemistry , Opium/metabolism , Oxidation-Reduction , Papaver/genetics , Plant Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stereoisomerism
20.
Mol Microbiol ; 96(4): 708-27, 2015 May.
Article in English | MEDLINE | ID: mdl-25656587

ABSTRACT

Cell-cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low-iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe(3+) or Fe(2+) form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens.


Subject(s)
Ferric Compounds/metabolism , Lauric Acids/metabolism , Microbial Interactions , Oryza/microbiology , Signal Transduction , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Citrates/biosynthesis , Ferric Compounds/pharmacology , Gene Expression Regulation, Bacterial , Ligases/genetics , Ligases/metabolism , Mutation , Plant Leaves/microbiology , Pyrrolidinones , Virulence/genetics , Xanthomonas/genetics , Xanthomonas/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL