Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Plant Physiol Biochem ; 208: 108523, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38492487

ABSTRACT

The development of pollen is critical to male reproduction in flowering plants. Acyl-CoA synthetase (ACOS) genes play conserved functions in regulating pollen development in various plants. Our previous work found that knockout of the SlACOS1 gene in tomato might decrease fruit setting. The current study further revealed that SlACOS1 was important to pollen development and male fertility. The SlACOS1 gene was preferentially expressed in the stamen of the flower with the highest expression at the tetrad stage of anther development. Mutation of the SlACOS1 gene by the CRISPR/Cas9-editing system reduced pollen number and viability as well as fruit setting. The tapetum layer exhibited premature degradation and the pollen showed abnormal development appearing irregular, shriveled, or anucleate in Slacos1 mutants at the tetrad stage. The fatty acid metabolism in anthers was significantly impacted by mutation of the SlACOS1 gene. Furthermore, targeted fatty acids profiling using GC-MS found that contents of most fatty acids except C18:1 and C18:2 were reduced. Yeast complementation assay demonstrated that the substrate preferences of SlACOS1 were C16:0 and C18:0 fatty acids. Male fertility of Slacos1 mutant could be slightly restored by applying exogenous palmitic acid, a type of C16:0 fatty acid. Taken together, SlACOS1 played important roles on pollen development and male fertility by regulating the fatty acid metabolism and the development of tapetum and tetrad. Our findings will facilitate unraveling the mechanism of pollen development and male fertility in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen , Flowers/metabolism , Fertility/genetics , Fatty Acids , Ligases/metabolism , Gene Expression Regulation, Plant
2.
Metab Eng ; 81: 238-248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38160746

ABSTRACT

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Subject(s)
Corynebacterium glutamicum , Fermentation , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Glutamic Acid , Polyglutamic Acid/genetics , Ligases/metabolism , Glucose/metabolism
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675157

ABSTRACT

4-coumarate: CoA ligase (4CL) is not only involved in the biosynthetic processes of flavonoids and lignin in plants but is also closely related to plant tolerance to abiotic stress. UV irradiation can activate the expression of 4CL genes in plants, and the expression of 4CL genes changed significantly in response to different phytohormone treatments. Although the 4CL gene has been cloned in potatoes, there have been fewer related studies of the 4CL gene family on the potato genome-wide scale. In this study, a total of 10 potato 4CL genes were identified in the potato whole genome. Through multiple sequence alignment, phylogenetic analysis as well as gene structure analysis indicated that the potato 4CL gene family could be divided into two subgroups. Combined with promoter cis-acting element analysis, transcriptome data, and RT-qPCR results indicated that potato 4CL gene family was involved in potato response to white light, UV irradiation, ABA treatment, MeJA treatment, and PEG simulated drought stress. Abiotic stresses such as UV, ABA, MeJA, and PEG could promote the up-regulated expression of St4CL6 and St4CL8 but inhibits the expression of St4CL5. The above results will increase our understanding of the evolution and expression regulation of the potato 4CL gene family and provide reference value for further research on the molecular biological mechanism of 4CL participating in response to diverse environmental signals in potatoes.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Ligases/metabolism , Phylogeny , Plants/metabolism , Promoter Regions, Genetic , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
4.
J Am Nutr Assoc ; 42(5): 495-515, 2023 07.
Article in English | MEDLINE | ID: mdl-35771985

ABSTRACT

Hepatotoxicity caused by the overdose of various medications is a leading cause of drug-induced liver injury. Overdose of drugs causes hepatocellular necrosis. Nutraceuticals are reported to prevent drug-induced liver failure. The present article aims to review the protection provided by various medicinal plants against hepatotoxic drugs. Ayurveda is considered a conventional restorative arrangement in India. It is consistently used for ages and is still used today to cure drug-induced hepatotoxicity by focusing on antioxidant stress response pathways such as the nuclear factor erythroid-2 (Nrf-2) antioxidant response element signaling pathway. Nrf-2 is a key transcription factor that entangles Kelch-like ECH-associating protein 1, a protein found in the cell cytoplasm. Some antioxidant enzymes, such as gamma glycine cysteine ligase (γ-GCL) and heme oxygenase-1 (HO-1), are expressed in Nrf-2 targeted genes. Their expression, in turn, decreases the stimulation of hepatic macrophages and induces the messenger RNA (mRNA) articulation of proinflammatory factors including tumor necrosis factor α. This review will cover various medicinal plants from a mechanistic view and how they stimulate and interact with Nrf-2, the master regulator of the antioxidant response to counterbalance oxidative stress. Interestingly, therapeutic plants have become popular in the medical sector due to safer yet effective supplementation for the prevention and treatment of new human diseases. The contemporary study is expected to collect information on a variety of therapeutic traditional herbs that have been studied in the context of drug-induced liver toxicity, as nutraceuticals are the most effective treatments for oxidative stress-induced hepatotoxicity. They are less genotoxic, have a lower cost, and are readily available. Together, nutraceuticals exert protective effects against drug-induced hepatotoxicity through the inhibition of oxidative stress, inflammation, and apoptosis. Its mechanism(s) are considered to be associated with the γ-GCL/HO-1 and Nrf-2 signaling pathways.KEY TEACHING POINTSThe liver is the most significant vital organ that carries out metabolic activities of the body such as the synthesis of glycogen, the formation of triglycerides and cholesterol, as well as the formation of bile.Acute liver failure is caused by the consumption of certain drugs; drug-induced liver injury is the major condition.The chemopreventive activity of nutraceuticals may be related to oxidative stress reduction and attenuation of biosynthetic processes involved in hepatic injury via amelioration of the nuclear factor erythroid-2 (Nrf-2) signaling pathway.Nrf-2 is a key transcription factor that is found in the cell cytoplasm resulting in the expression of various genes such as gamma glycine cysteine ligase and heme oxygenase-1.Nutraceutical-rich phytochemicals possess high antioxidant activity, which helps in the prevention of hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Humans , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism , Cysteine/pharmacology , Signal Transduction , Dietary Supplements , Chemical and Drug Induced Liver Injury/etiology , Ligases/metabolism , Transcription Factors/pharmacology
5.
J Ethnopharmacol ; 301: 115806, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36216198

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qushi Huayu Decoction (QHD) is a traditional Chinese medicine formula consisting of five herbs, which has been used for non-alcoholic fatty liver disease (NAFLD) treatment in clinic for decades in China and validated in several NAFLD animal models. The hepatic de novo lipogenesis (DNL) is enhanced greatly to contribute to steatosis in NAFLD. The spliced form of X-box binding protein 1 (XBP1s) initiates DNL independently of sterol regulatory element-binding protein (SREBP) and carbohydrate-responsive element-binding protein (ChREBP). AIM OF THE STUDY: To disclose the mechanism of inhibition on hepatic DNL by QHD and the responsible compounds. METHODS: The effects of QHD on hepatic DNL were evaluated in mice induced by high-fructose diet (HFru). The effects of the serum-absorbed compounds of QHD on XBP1s were evaluated in HepG2 cells induced by tunicamycin. Hepatic histology, triglyceride (TG) and nonesterified fatty acids were observed. Hepatic apolipoprotein B100 and very low-density lipoprotein were measured to reflect lipid out-transport. The mRNA expression of XBP1s and its target genes were detected by real-time polymerase chain reaction. The protein expression of TG synthetases and DNL enzymes, and inositol requirement enzyme 1 alpha (IRE1α), phosphorylated IRE1α and XBP1s were detected in liver tissue and HepG2 cells by western-blot. The binding activity of SREBP1, protein expression of ChREBP and XBP1s were detected in the nuclear extracts of liver tissue. RESULTS: Dynamical observing suggested feeding with HFru for 2 weeks was sufficient to induce hepatic lipogenesis and XBP1s. QHD ameliorated liver steatosis without enhancing out-transport of lipids, accompanied with more inhibitory effects on DNL enzymes than TG synthetases. QHD inhibits the nuclear XBP1s without affecting ChREBP and SREBP1. In QHD, chlorogenic acid, geniposide and polydatin inhibit lipogenesis initiated by XPB1s. CONCLUSION: QHD probably decreases hepatic DNL by inhibiting XBP1s independent of SREBP1 and ChREBP. Chlorogenic acid, geniposide and polydatin are the potential responsible compounds.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Animals , Mice , Chlorogenic Acid/pharmacology , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Endoribonucleases/therapeutic use , Fructose , Ligases/metabolism , Ligases/pharmacology , Ligases/therapeutic use , Liver , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Protein Serine-Threonine Kinases , Triglycerides/metabolism
6.
Eur J Pharmacol ; 940: 175457, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36529278

ABSTRACT

Accumulating evidence suggests that de novo lipogenesis is a typical characteristic facilitating nonalcoholic fatty liver disease (NAFLD) progression. Gallic acid (GA) is a naturally occurring phenolic acid with metabolic disease-related clinical significance and preclinical benefits. This study aimed to evaluate the anti-steatotic potentials of GA in a fructose-induced NAFLD mouse model featuring a hepatic lipogenic phenotype. The results revealed that GA alleviated hepatic steatosis, oxidative stress, and inflammatory response in fructose-fed mice. Mechanistically, GA treatment restored AMP-activated protein kinase α (AMPKα) phosphorylation, resulting in downregulations of pro-lipogenic factors, including sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FASN), and acetyl-CoA carboxylase (ACC), in hepatocytes of mice and in vitro. Furthermore, computational docking analysis indicated that GA could directly interact with AMPKα/ß subunits to stabilize its activation. These results suggest that GA ameliorates fructose-induced hepatosteatosis by restraining hepatic lipogenesis via AMPK-dependent suppression of the SREBP-1/ACC/FASN cascade. Altogether, this study demonstrates that GA supplement may be a promising therapeutic strategy in NAFLD, especially in the subset with enhanced hepatic lipogenesis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/genetics , Acetyl-CoA Carboxylase/metabolism , AMP-Activated Protein Kinases/metabolism , Fatty Acids/metabolism , Ligases/metabolism , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Sterol Regulatory Element Binding Protein 1/metabolism , Fructose/adverse effects , Liver/metabolism , Fatty Acid Synthase, Type I/metabolism
7.
BMC Biol ; 20(1): 228, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209095

ABSTRACT

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Subject(s)
Hydrogen Sulfide , Nucleic Acids , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Animals , Caenorhabditis elegans/metabolism , Carbon/metabolism , Dithiothreitol/metabolism , Folic Acid/metabolism , Homocysteine/metabolism , Hydrogen Sulfide/metabolism , Ligases/metabolism , Lipids , Mercaptoethanol/metabolism , Methionine/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Oxygen/metabolism , Reducing Agents/metabolism , S-Adenosylmethionine/metabolism , Sulfhydryl Compounds/metabolism , Vitamin B 12/metabolism , Vitamin B 12/pharmacology , Vitamins/metabolism
8.
Ecotoxicol Environ Saf ; 245: 114118, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36174321

ABSTRACT

Mori fructus aqueous extracts (MFAEs) have been used as a traditional Chinese medicine for thousands of years with the function of strengthening the liver and tonifying the kidney. However, its inner mechanism to alleviative renal injury is unclear. To investigate the attenuation of MFAEs on nephrotoxicity and uncover its potential molecular mechanism, we established a nephrotoxicity model induced by carbon tetrachloride (CCl4). The mice were randomly divided into control group, CCl4 model group (10% CCl4), CCl4 + low and high MFAEs groups (10% CCl4 + 100 mg/kg and 200 mg/kg MFAEs). We found that MFAEs decreased the kidney index of mice, restored the pathological changes of renal structure induced by CCl4, reduced cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (Kim-1) blood urea nitrogen and creatinine contents in serum, promoted the nuclear transportation of Nrf2 (nuclear factor erythroid derived 2 like 2), elevated the expression of HO-1 (heme oxygenase 1), GPX4 (glutathione peroxidase 4), SLC7A11 (solute carrier family 7 member 11), ZO-1 (zonula occludens-1) and Occludin, suppressed the expression of Keap1 (kelch-like ECH-associated protein 1), HMGB1 (High Mobility Group Protein 1), ACSL4 (acyl-CoA synthetase long chain family member 4) and TXNIP (thioredoxin interacting protein), upregulated the flora of Akkermansia, Anaerotruncus, Clostridium_sensu_stricto, Ihubacter, Alcaligenes, Dysosmobacter, and downregulated the flora of Clostridium_XlVa, Helicobacter, Paramuribaculum. Overlapped with Disbiome database, Clostridium_XlVa, Akkermansia and Anaerotruncus may be the potential genera treated with renal injury. It indicated that MFAEs could ameliorate kidney injury caused by CCl4 via Nrf2 signaling.


Subject(s)
Gastrointestinal Microbiome , HMGB1 Protein , Animals , Carbon Tetrachloride/metabolism , Carbon Tetrachloride/toxicity , Coenzyme A/metabolism , Creatinine , Cystatin C/metabolism , HMGB1 Protein/metabolism , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , Ligases/metabolism , Lipocalin-2/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Occludin/metabolism , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase , Thioredoxins/metabolism
9.
Int J Mol Sci ; 24(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36613645

ABSTRACT

Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, studies on the identification, analysis and transcriptional regulation of CsRSs (Camellia sinensis RS genes) are still lacking. In this study, nine CsRSs were identified from the tea plant (Camellia sinensis) genome database. The CsRSs were classified into five groups in the phylogenetic tree. Expression level analysis showed that the CsRSs varied in different parts of the tea plant. Transcriptome data showed that CsRSs could respond to persistent drought and cold acclimation. Except for CsRS5 and CsRS9, the expression pattern of all CsRSs increased at 12 h and decreased at 30 h during the withering process of white tea, consistent with the change trend of the Raf content. Furthermore, combining yeast one-hybrid assays with expression analysis, we found that CsDBB could potentially regulate the expression of CsRS8. Our results provide a new perspective for further research into the characterization of CsRS genes and the formation of the white tea flavour.


Subject(s)
Camellia sinensis , Camellia sinensis/metabolism , Raffinose/metabolism , Gene Expression Profiling/methods , Ligases/metabolism , Phylogeny , Gene Expression Regulation, Plant , Tea/genetics , Tea/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Elife ; 102021 09 07.
Article in English | MEDLINE | ID: mdl-34490847

ABSTRACT

Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4'-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3',5'-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.


Subject(s)
Acyl Coenzyme A/metabolism , Adenosine Monophosphate/metabolism , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Ligases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Ligases/chemistry , Ligases/genetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship
11.
Molecules ; 26(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065782

ABSTRACT

Taxol is one of the most effective anticancer drugs in the world that is widely used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes involved in the taxol pathway have been well characterized, including a novel taxane-10ß-hydroxylase (T10ßOH) and a newly putative ß-phenylalanyl-CoA ligase (PCL). Moreover, the source and formation of the taxane core and the details of the downstream synthetic pathway have been basically depicted, while the modification of the core taxane skeleton has not been fully reported, mainly concerning the developments from diol intermediates to 2-debenzoyltaxane. The acylation reaction mediated by specialized Taxus BAHD family acyltransferases (ACTs) is recognized as one of the most important steps in the modification of core taxane skeleton that contribute to the increase of taxol yield. Recently, the influence of acylation on the functional and structural diversity of taxanes has also been continuously revealed. This review summarizes the latest research advances of the taxol biosynthetic pathway and systematically discusses the acylation reactions supported by Taxus ACTs. The underlying mechanism could improve the understanding of taxol biosynthesis, and provide a theoretical basis for the mass production of taxol.


Subject(s)
Acyltransferases/metabolism , Antineoplastic Agents/metabolism , Paclitaxel/biosynthesis , Plant Extracts/biosynthesis , Taxus/chemistry , Taxus/enzymology , Acylation , Acyltransferases/genetics , Amino Acid Sequence , Biosynthetic Pathways , Bridged-Ring Compounds/metabolism , Ligases/metabolism , Mixed Function Oxygenases/metabolism , Taxoids/metabolism , Taxus/classification , Taxus/genetics , Transcriptome
12.
Plant Signal Behav ; 16(5): 1899487, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33715572

ABSTRACT

The zinc finger transcription factor STOP1 plays a crucial role in aluminum (Al) resistance and low phosphate (Pi) response. Al stress and low Pi availability do not affect STOP1 mRNA expression but are able to induce STOP1 protein accumulation by post-transcriptional regulatory mechanisms. We recently reported that STOP1 can be mono-SUMOylated at K40, K212, or K395 sites, and deSUMOylated by the SUMO protease ESD4. SUMOylation of STOP1 is important for the regulation of STOP1 protein function and Al resistance. In the present study, we further characterized the role of the SUMO E3 ligase SIZ1 in STOP1 SUMOylation, Al resistance and low Pi response. We found that mutation of SIZ1 reduced but not eliminated STOP1 SUMOylation, suggesting that SIZ1-dependent and -independent pathways are involved in the regulation of STOP1 SUMOylation. The STOP1 protein levels were decreased in siz1 mutants. Nevertheless, the expression of STOP1-target gene AtALMT1 was increased instead of reduced in siz1 mutants. The mutants showed enhanced Al resistance and low Pi response. Our results suggest that SIZ1 regulates Al resistance and low Pi response likely through the modulation of AtALMT1 expression.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ligases/metabolism , Sumoylation , Transcription Factors/metabolism , Aluminum/toxicity , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Ligases/genetics , Mutation/genetics , Phosphorus/pharmacology , Protein Binding/drug effects , Protein Stability/drug effects , Sumoylation/drug effects
13.
ACS Chem Biol ; 15(7): 1883-1891, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32392032

ABSTRACT

Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.


Subject(s)
Bacterial Proteins/metabolism , Ligases/metabolism , Pectobacterium/pathogenicity , Salicylic Acid/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Ligases/genetics , Molecular Docking Simulation , Mutation , Pectobacterium/enzymology , Protein Binding , Quorum Sensing/drug effects , Solanum tuberosum/microbiology , Virulence/drug effects
14.
Planta ; 251(4): 88, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32222837

ABSTRACT

MAIN CONCLUSION: Ubiquitin ligase VpRH2 is a negative regulator in the grape ABA pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter is inhibited by ABA treatment. In higher plants, ubiquitin ligases play key roles in various cellular processes. As in our previous study (Wang et al. in J Exp Bot 68:1669-1687, 2017), grape RING-H2-type ubiquitin ligase gene VpRH2 and its promoter was induced by powdery mildew and showed resistance to the disease. Diverse small-molecule hormones, like salicylic acid (SA), methyl jasmonate (MeJA) or abscisic acid (ABA), play pivotal roles in plant resistance. Here we found that VpRH2 expression could be induced by SA and MeJA treatment, but inhibited by ABA treatment. The promoter of VpRH2 revealed a similar variation trend under exogenous hormone treatments as the gene expression by GUS activity assay. By a series of deletion fragments, the promoter fragment of VpRH2-P656 to VpRH2-P513 was necessary in response to MeJA treatment, and the inhibition of ABA treatment to the VpRH2 promoter was independent of the ABRE motif. Over-expression of VpRH2 in Arabidopsis thaliana plants displayed ABA-insensitive phenotypes at the germination stage compared to wild type plants. In VpRH2 over-expressing Vitis vinifera cv. Thompson Seedless plants after ABA treatments, the expression of the ABA pathway related genes ABL1 and PYR1 showed a suppresive trend. Moreover, VpGRP2A (an VpRH2-interacting protein) also showed a suppresive trend in response to ABA treatment in VpRH2-overexpressing plants. Our results demonstrate that VpRH2 is a negative regulator in the grape ABA signal pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter was also inhibited by ABA treatment.


Subject(s)
Abscisic Acid/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Ubiquitin/metabolism , Vitis/enzymology , Abscisic Acid/pharmacology , Acetates , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Germination , Membrane Transport Proteins/metabolism , Oxylipins , Plant Diseases , Plant Proteins/genetics , Plants, Genetically Modified , Salicylic Acid/metabolism , Vitis/genetics
15.
Mol Plant Pathol ; 21(1): 66-82, 2020 01.
Article in English | MEDLINE | ID: mdl-31756029

ABSTRACT

Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.


Subject(s)
Gene Expression Regulation, Plant , Helminth Proteins/metabolism , Solanum tuberosum/parasitology , Tylenchoidea/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Animals , Arabidopsis/parasitology , Arabidopsis Proteins/metabolism , B30.2-SPRY Domain , Ligases/metabolism , Nuclear Proteins/metabolism , Ubiquitination
16.
Sci Rep ; 9(1): 15651, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666570

ABSTRACT

Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play a crucial role in growth and development, as well as metabolic processes. However, knowledge of the function of LBD proteins in Camellia sinensis is limited, and no systematic investigations of the LBD family have been reported. In this study, we identified 54 LBD genes in Camellia sinensis. The expression patterns of CsLBDs in different tissues and their transcription responses to exogenous hormones and abiotic stress were determined by RNA-seq, which showed that CsLBDs may have diverse functions. Analysis of the structural gene promoters revealed that the promoters of CsC4H, CsDFR and CsUGT84A, the structural genes involved in flavonoid biosynthesis, contained LBD recognition binding sites. The integrative analysis of CsLBD expression levels and metabolite accumulation also suggested that CsLBDs are involved in the regulation of flavonoid synthesis. Among them, CsLOB_3, CsLBD36_2 and CsLBD41_2, localized in the nucleus, were selected for functional characterization. Yeast two-hybrid assays revealed that CsLBD36_2 and CsLBD41_2 have self-activation activities, and CsLOB_3 and CsLBD36_2 can directly bind to the cis-element and significantly increase the activity of the CsC4H, CsDFR and CsUGT84A promoter. Our results present a comprehensive characterization of the 54 CsLBDs in Camellia sinensis and provide new insight into the important role that CsLBDs play in abiotic and flavonoid biosynthesis.


Subject(s)
Camellia sinensis/metabolism , Flavonoids/biosynthesis , Ligases/metabolism , Stress, Physiological , Transcription Factors/chemistry , Transcription Factors/metabolism , Camellia sinensis/cytology , Camellia sinensis/genetics , Camellia sinensis/physiology , Gene Expression Regulation, Plant , Intracellular Space/metabolism , Molecular Sequence Annotation , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Transport , Sequence Alignment , Transcription Factors/genetics , Transcriptional Activation
17.
Plant Cell ; 31(10): 2370-2385, 2019 10.
Article in English | MEDLINE | ID: mdl-31439805

ABSTRACT

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.


Subject(s)
Brassica napus/metabolism , Crops, Agricultural/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassica napus/enzymology , Brassica napus/genetics , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant/genetics , Homeodomain Proteins/metabolism , Ligases/genetics , Ligases/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Mutation , Phenotype , Plant Mucilage/biosynthesis , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rapeseed Oil/metabolism , Seeds/chemistry , Seeds/genetics , Seeds/growth & development , Transcription Factors/genetics , Transcriptome/genetics , Ubiquitin-Protein Ligases/genetics
18.
Molecules ; 23(6)2018 06 06.
Article in English | MEDLINE | ID: mdl-29882808

ABSTRACT

Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of ß-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.


Subject(s)
Ligases/metabolism , Polygonum/enzymology , Sesquiterpenes/metabolism , Amino Acid Sequence , Cloning, Molecular , Genes, Plant , Ligases/chemistry , Ligases/genetics , Malaysia , Open Reading Frames , Phylogeny , Polygonum/genetics , Sequence Homology, Amino Acid
19.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Article in English | MEDLINE | ID: mdl-29518220

ABSTRACT

The quorum quenching (QQ) activity of endophytic bacteria associated with medicinal plants was explored. Extracts of the Gram-negative Enterobacter sp. CS66 possessed potent N-acylhomoserine lactone (AHL) hydrolytic activity in vitro. Using degenerate primers, we PCR-amplified an open reading frame (denoted aiiE) from CS66 that was 96% identical to the well-characterised AHL-lactonase AiiA from Bacillus thuringiensis, but only 30% was identical to AHL-lactonases from other Gram-negative species. This confirms that close AiiA homologs can be found in both Gram-positive and Gram-negative bacteria. Purified AiiE exhibited potent AHL-lactonase activity against a broad range of AHLs. Furthermore, aiiE was able to reduce the production of secreted plant cell wall-degrading hydrolytic enzymes when expressed in trans in the economically important plant pathogen, Pectobacterium atrosepticum. Our results indicate the presence of a novel AHL-lactonase in Enterobacter sp. CS66 with significant potential as a biocontrol agent.


Subject(s)
Acyl-Butyrolactones/metabolism , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Endophytes/enzymology , Enterobacter/enzymology , Ligases/isolation & purification , Ligases/metabolism , Magnoliopsida/microbiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Endophytes/genetics , Endophytes/isolation & purification , Endophytes/physiology , Enterobacter/genetics , Enterobacter/isolation & purification , Enterobacter/physiology , Kinetics , Ligases/chemistry , Ligases/genetics , Quorum Sensing , Sequence Alignment
20.
Sci Rep ; 8(1): 1155, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348452

ABSTRACT

The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Biofilms/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metalloendopeptidases/pharmacology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Drug Combinations , Drug Synergism , Ligases/antagonists & inhibitors , Ligases/genetics , Ligases/metabolism , Metalloendopeptidases/biosynthesis , Metalloendopeptidases/genetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyrimidinones/pharmacology , Quorum Sensing/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL