Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.556
Filter
Add more filters

Complementary Medicines
Publication year range
1.
BMC Complement Med Ther ; 24(1): 89, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360611

ABSTRACT

BACKGROUND: Evening primrose oil (EPO), extracted from the seeds of Oenothera biennis, has gained attention for its therapeutic effects in various inflammatory conditions. METHOD: We performed a systematic search in multiple databases and defined the inclusion criteria based on the following PICOs: P: Patients with a form of inflammatory condition, I: EPO, C: Placebo or other therapeutic interventions, O: changes in inflammatory markers or patients' symptoms; S: randomized controlled trials. The quality of the RCTs was evaluated using Cochrane's RoB tool. RESULTS: Several conditions were investigated in the literature. In rheumatoid arthritis, mixed results were observed, with some studies reporting significant improvements in symptoms while others found no significant impact. EPO showed some results in diabetes mellitus, atopic eczema, menopausal hot flashes, and mastalgia. However, it did not demonstrate effectiveness in chronic hand dermatitis, tardive dyskinesia, psoriatic arthritis, cystic fibrosis, hepatitis B, premenstrual syndrome, contact lens-associated dry eyes, acne vulgaris, breast cyst, pre-eclampsia, psoriasis, or primary Sjogren's syndrome. Some results were reported from multiple sclerosis after EPO consumption. Studies in healthy volunteers indicated no significant effect of EPO on epidermal atrophy, nevertheless, positive effects on the skin regarding hydration and barrier function were achieved. CONCLUSION: Some evidence regarding the potential benefits of EPO in inflammatory disorders were reported however caution is due to the limitations of the current survey. Overall, contemporary literature is highly heterogeneous and fails to provide strong recommendations regarding the efficacy of EPO on inflammatory disorders. Further high-quality studies are necessitated to draw more definite conclusions and establish O. biennis oil effectiveness as an assuring treatment option in alleviating inflammatory conditions.


Subject(s)
Oenothera biennis , Plant Oils , Humans , Plant Oils/pharmacology , Plant Oils/therapeutic use , gamma-Linolenic Acid/therapeutic use , gamma-Linolenic Acid/pharmacology , Inflammation/drug therapy , Randomized Controlled Trials as Topic , Linoleic Acids/pharmacology , Linoleic Acids/therapeutic use
2.
Toxicol Mech Methods ; 34(5): 469-483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38166523

ABSTRACT

The modulatory role of primrose oil (PO) supplementation enriched with γ-linolenic acid and D/L-alpha tocopherol acetate against a carbon tetrachloride (CCl4)-induced liver damage model was assessed in this study. Twenty male Albino rats were divided into four groups. The control group received corn oil orally. The PO group received 10 mg/kg P O orally. The CCl4 group received 2 mL/kg CCl4 orally and PO/CCl4 group; received PO and 2 mL/kg CCl4 orally. The relative liver weight was recorded. Serum liver enzymes, hepatic malondialdehyde (MDA), hepatic reduced glutathione (GSH) and the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) were assessed. The binding affinities of γ-linolenic acid and D/L-alpha tocopherol constituents with IL-1ß, IL-6 and TNF-α were investigated using molecular docking simulations. Histopathological and electron microscopic examinations of the liver were performed. The results indicated that CCl4 elevated serum liver enzyme and hepatic MDA levels, whereas GSH levels were diminished. The upregulation of IL-1ß, IL-6, and TNF-α gene expressions were induced by CCl4 treatment. The PO/CCl4-treated group showed amelioration of hepatic injury biomarkers and oxidative stress. Restoration of histopathological and ultrastructural alterations while downregulations the gene expressions of TNF-α, IL1-ß and IL-6 were observed. In conclusion, evening primrose oil enriched with γ-linolenic acid and D/L-alpha tocopherol acetate elicited a potential amelioration of CCl4-induced hepatic toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Oenothera biennis , Plant Oils , gamma-Linolenic Acid , Animals , Male , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Plant Oils/pharmacology , Plant Oils/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/ultrastructure , gamma-Linolenic Acid/pharmacology , Oenothera biennis/chemistry , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Oxidative Stress/drug effects , Molecular Docking Simulation , Carbon Tetrachloride/toxicity , Interleukin-6/metabolism , Rats , Linoleic Acids/pharmacology , Antioxidants/pharmacology , Rats, Wistar , Signal Transduction/drug effects , Disease Models, Animal
3.
J Ethnopharmacol ; 323: 117670, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38160867

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shen Bai formula (SBF) is a proven effective traditional Chinese medicine for treating viral myocarditis (VMC) sequelae in clinic, and myocardial injury is the pathological basis of VMC sequelae. However, the pharmacological action and mechanism of SBF have not been systematically elucidated. AIM OF THE STUDY: In present research, the doxorubicin-induced myocardial injury rat model was used to evaluate the efficacy of SBF, and energy metabolism and metabolomics approaches were applied to elucidate the effects of SBF on myocardial injury. MATERIALS AND METHODS: Through energy metabolism measurement system and UPLC-Q-TOF-MS/MS oriented blood metabolomics, directly reflected the therapeutic effect of SBF at a macro level, and identified biomarkers of myocardial injury in microcosmic, revealing its metabolomic mechanism. RESULTS: Results showed that SBF significantly improved the electrocardiogram (ECG), heart rate (HR), extent of myocardial tissue lesion, and ratio of heart and spleen. In addition, the serum levels of AST, CK, LDH, α-HBDH, cTnI, BNP, and MDA decreased, whereas SOD and ATP activity and content increased. Moreover, SBF increased locomotor activity and basic daily metabolism in rats with myocardial injury, restoring their usual level of energy metabolism. A total of 45 potential metabolomic biomarkers were identified. Among them, 44 biomarkers were significantly recalled by SBF, including representative biomarkers arachidonic acid (AA), 12-HETE, prostaglandin J2 (PGJ2), 15-deoxy-Δ-12,14-PGJ2, 15-keto-PGE2, 15(S)-HPETE, 15(S)-HETE, 8,11,14-eicosatrienoic acid and 9(S)-HODE, which involved AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism. CONCLUSION: We successfully replicated a myocardial injury rat model with the intraperitoneal injection of doxorubicin, and elucidated the mechanism of SBF in treating myocardial injury. This key mechanism may be achieved by targeting action on COX, Alox, CYP, and 15-PGDH to increase or decrease the level of myocardial injury biomarker, and then emphatically interven in AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism, and participate in regulating purine metabolism, sphingolipid metabolism, primary bile acid biosynthesis, and steroid hormone synthesis.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Metabolomics/methods , Arachidonic Acid , Energy Metabolism , Biomarkers , Doxorubicin , Linoleic Acids , Chromatography, High Pressure Liquid
4.
Wei Sheng Yan Jiu ; 52(6): 907-911, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38115654

ABSTRACT

OBJECTIVE: Comparative analysis of two method for determining fat and analysis of fatty acid content in tea samples. METHODS: The content of freefatand total fat in tea was determined by Soxhlet extraction method and acid hydrolysis method, and the content of fatty acids were determined by gas chromatography. The composition and content of fatty acids in 21 tea samples from 5 regions were analyzed. RESULTS: The freefat content of tea determined by Soxhlet extraction method was significantly lower than that determined by acid hydrolysis method. The totalfat content in tea determined by acid hydrolysis method was consistent with the total amount of fatty acids determined by gas chromatography, and their content conformed to the logical relationshipsimultaneously. The totalfat content in tea ranged from 0.6 to 4.1 g/100 g, which in green tea, white tea, yellow tea, and black tea were 2.2, 1.8, 1.6 and 0.6 g/100 g, respectively. The content of free fat in tea was less than 58%, with 42%-80% of the fat existing in a bound form. The fatty acids in tea were mainly unsaturated fatty acids, accounting for 67.52%-99.03% of the total fatty acids. There were differences in the composition of fatty acids in different types of tea, with the proportion of unsaturated fatty acids in yellow tea accounting for 98.84% of the total fatty acids, which was significantly higher than that of green tea, white tea, and black tea. The fatty acids with high content in green tea(except Tang chi xiaolan tea, Bawangjian green tea and Liuxi yuye tea)were α-linoleic acid, linoleic acid, and palmitic acid. CONCLUSION: Theacid hydrolysis method is more suitable for the determination of fat in tea samples. The composition and content of fat and fatty acids in tea vary depending onfactors such as the type of tea and the degree of fermentation.


Subject(s)
Fatty Acids, Unsaturated , Fatty Acids , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Tea/chemistry , Linoleic Acids
5.
Sci Rep ; 13(1): 18627, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903888

ABSTRACT

This study was conducted to investigate the effects of supplementation of different fat sources in calf starters on growth performance, health, blood fatty acid profiles, and inflammatory markers during the cold season in dairy calves. A total of 48 Holstein calves (24 males and 24 females) were randomly assigned to 1 of 4 starter diets throughout the experiment (d 3 to 65): (1) no supplemented fat (CON), (2) 3% calcium-salts of soybean oil (Ca-SBO), (3) 3% calcium-salts of fish oil (Ca-FO), and (4) 3% mixture of Ca-SBO and Ca-FO (1.5% each, DM basis; MIX). Calves were given free access to starter feed and water and were raised individually in pens from 3 to 65 d of age. Calves fed Ca-SBO consumed a greater proportion of n-6 FA, while calves fed Ca-FO consumed a greater level of n-3 FA compared to the other dietary treatments. Fat supplementation increased the intake of linoleic acid, the major n-6 FA, with the greater intake observed in the Ca-SBO group compared to the other dietary treatments. Calves fed the Ca-FO and MIX diets consumed more long-chain n-3 FA than the other diets. In addition, calves fed Ca-SBO and Ca-FO diets consumed more starter feed and total dry matter than calves fed MIX and CON throughout the experiment (d 3 to 65). Calves fed Ca-FO had higher average daily gain throughout the trial (d 3 to 65) than the other treatment groups. Of all treatment groups, calves fed Ca-FO achieved the highest final body weight and showed the greatest feed efficiency. Random forest analysis revealed that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid were the serum levels of FA most affected by the diets. The principal component analysis of blood FA profile, blood parameters, and inflammatory markers showed distinct differences between dietary treatments. Calves fed Ca-SBO had higher plasma concentrations of linoleic acid, while calves fed Ca-FO had higher plasma concentrations of long-chain n-3 polyunsaturated fatty acids (PUFA), such as EPA, docosapentaenoic acid (DPA), and DHA than the other treatment groups. Plasma inflammatory markers were lower in calves fed Ca-FO and higher in calves fed CON than in the other treatment groups. The Ca-FO group had lower levels of inflammatory markers, including serum amyloid A, tumor necrosis factor-alpha, Interferon-γ, haptoglobin, and interleukin-6 compared to the other experimental treatments. Also, the blood malondialdehyde levels, an indicator of oxidative stress, were lower in calves fed Ca-FO compared with calves fed the other treatment diets. In conclusion, the performance of preweaned dairy calves can be improved by adding fat to their starter feed under cold conditions. Overall, the type of fat in milk may affect growth and inflammation of dairy calves before weaning under cold conditions, with n-3 FA (Ca-FO) promoting growth and reducing inflammation more effectively than n-6 FA (Ca-SBO).


Subject(s)
Calcium , Fatty Acids , Animals , Cattle , Female , Male , Animal Feed/analysis , Body Weight , Diet/veterinary , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids/pharmacology , Inflammation , Linoleic Acids , Salts , Seasons , Soybean Oil/analysis , Weaning
6.
Food Funct ; 14(18): 8049-8070, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37614101

ABSTRACT

Oil crops have become increasingly farmed worldwide because of their numerous functions in foods and health. In particular, oil derived from the seeds of evening primrose (Oenothera biennis) (EPO) comprises essential fatty acids of the omega-6 (ω-6) series. It is well recognized to promote immune cells with a healthy balance and management of female ailments. The nutrients of interest in this oil are linoleic acid (LA, 70-74%) and γ-linolenic acid (GLA, 8-10%), which are polyunsaturated fatty acids (PUFA) that account for EPO's popularity as a dietary supplement. Various other chemicals in EPO function together to supply the body with PUFA, elevate normal ω-6 essential fatty acid levels, and support general health and well-being. The inclusive EPO biochemical analysis further succeeded in identifying several other components, i.e., triterpenes, phenolic acids, tocopherols, and phytosterols of potential health benefits. This comprehensive review capitalizes on EPO, the superior product of O. biennis, highlighting the interrelationship between various methods of cultivation, extraction, holistic chemical composition, sensory characters, and medicinal value. Besides the literature review, this study restates the numerous health advantages of primrose oil and possible drug-EPO interactions since a wide spectrum of drugs are administered concomitantly with EPO. Modern techniques to evaluate EPO chemical composition are addressed with emphasis on the missing gaps and future perspectives to ensure best oil quality and nutraceutical benefits.


Subject(s)
Oenothera biennis , gamma-Linolenic Acid , Linoleic Acids , Linoleic Acid , Fatty Acids, Omega-6 , Crops, Agricultural
7.
J Insect Physiol ; 149: 104552, 2023 09.
Article in English | MEDLINE | ID: mdl-37549842

ABSTRACT

Pollen serves as a crucial source of protein and lipids for numerous insects. Despite the importance of pollen lipids for nutrient regulation in bees, the digestibility and absorption of different fatty acids (FAs) by bees remain poorly understood. We used 13C labeled fatty acids (FAs) to investigate the absorption and allocation of three common dietary FAs in pollen by bumble bees. Palmitic acid, the most common saturated FA in pollen, was poorly absorbed, even when supplied as tripalmitate, emulsified, or mixed in vegetable oil. In contrast, the essential linoleic acid was absorbed and allocated at the highest rate among the three FAs tested. Oleic acid, a non-essential monounsaturated FA, was absorbed and oxidized at lower rates than linoleic acid. Notably, a feeding rate experiment revealed that different fatty acids did not affect the consumption rate of pollen. This results suggests that the specific FA's absorption efficiency and allocation differ in bumble bees, impacting their utilization. These findings demonstrate the importance of considering the digestibility and absorption of different FAs. Furthermore, the study highlights the influence of pollen lipid composition on the nutritional content for pollinators and raises questions about the utilization of polyunsaturated FAs in insect metabolism.


Subject(s)
Fatty Acids , Pollen , Bees , Animals , Fatty Acids/metabolism , Linoleic Acids
8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445890

ABSTRACT

Neurodegenerative diseases are characterized by neuroinflammation, neuronal depletion and oxidative stress. They coincide with subtle chronic or flaring inflammation, sometimes escalating with infiltrations of the immune system cells in the inflamed parts causing mild to severe or even lethal damage. Thus, neurodegenerative diseases show all features of autoimmune diseases. Prevalence of neurodegenerative diseases has dramatically increased in recent decades and unfortunately, the therapeutic efficacy and safety profile of available drugs is moderate. The beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) polyunsaturated fatty acids (omega-3 PUFAs) are nowadays highlighted by a plethora of studies. They play a role in suppression of inflammation, gene expression, cellular membrane fluidity/permeability, immune functionality and intracellular/exocellular signaling. The role of omega-6 polyunsaturated fatty acids, such as linoleic acid (LA), gamma linolenic acid (GLA), and arachidonic acid (AA), on neuroprotection is controversial, as some of these agents, specifically AA, are proinflammatory, whilst current data suggest that they may have neuroprotective properties as well. This review provides an overview of the existing recent clinical studies with respect to the role of omega-3 and omega-6 PUFAs as therapeutic agents in chronic, inflammatory, autoimmune neurodegenerative diseases as well as the dosages and the period used for testing.


Subject(s)
Fatty Acids, Omega-3 , Neurodegenerative Diseases , Humans , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/therapeutic use , Docosahexaenoic Acids/metabolism , Neurodegenerative Diseases/drug therapy , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Unsaturated/metabolism , Arachidonic Acid/metabolism , Linoleic Acids , Inflammation/drug therapy
9.
J Ovarian Res ; 16(1): 107, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268990

ABSTRACT

BACKGROUND: Poor ovarian responders (POR) are women undergoing in-vitro fertilization who respond poorly to ovarian stimulation, resulting in the retrieval of lower number of oocytes, and subsequently lower pregnancy rates. The follicular fluid (FF) provides a crucial microenvironment for the proper development of follicles and oocytes through tightly controlled metabolism and cell signaling. Androgens such as dehydroepiandrosterone (DHEA) have been proposed to alter the POR follicular microenvironment, but the impact DHEA imposes on the FF metabolome and cytokine profiles is unknown. Therefore, the objective of this study is to profile and identify metabolomic changes in the FF with DHEA supplementation in POR patients. METHODS: FF samples collected from 52 POR patients who underwent IVF with DHEA supplementation (DHEA +) and without (DHEA-; controls) were analyzed using untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics and a large-scale multiplex suspension immunoassay covering 65 cytokines, chemokines and growth factors. Multivariate statistical modelling by partial least squares-discriminant regression (PLSR) analysis was performed for revealing metabolome-scale differences. Further, differential metabolite analysis between the two groups was performed by PLSR ß-coefficient regression analysis and Student's t-test. RESULTS: Untargeted metabolomics identified 118 FF metabolites of diverse chemistries and concentrations which spanned three orders of magnitude. They include metabolic products highly associated with ovarian function - amino acids for regulating pH and osmolarity, lipids such fatty acids and cholesterols for oocyte maturation, and glucocorticoids for ovarian steroidogenesis. Four metabolites, namely, glycerophosphocholine, linoleic acid, progesterone, and valine were significantly lower in DHEA + relative to DHEA- (p < 0.05-0.005). The area under the curves of progesterone glycerophosphocholine, linoleic acid and valine are 0.711, 0.730, 0.785 and 0.818 (p < 0.05-0.01). In DHEA + patients, progesterone positively correlated with IGF-1 (Pearson r: 0.6757, p < 0.01); glycerophosphocholine negatively correlated with AMH (Pearson r: -0.5815; p < 0.05); linoleic acid correlated with estradiol and IGF-1 (Pearson r: 0.7016 and 0.8203, respectively; p < 0.01 for both). In DHEA- patients, valine negatively correlated with serum-free testosterone (Pearson r: -0.8774; p < 0.0001). Using the large-scale immunoassay of 45 cytokines, we observed significantly lower MCP1, IFNγ, LIF and VEGF-D levels in DHEA + relative to DHEA. CONCLUSIONS: In POR patients, DHEA supplementation altered the FF metabolome and cytokine profile. The identified four FF metabolites that significantly changed with DHEA may provide information for titrating and monitoring individual DHEA supplementation.


Subject(s)
Follicular Fluid , Progesterone , Pregnancy , Female , Male , Humans , Follicular Fluid/metabolism , Progesterone/metabolism , Insulin-Like Growth Factor I/analysis , Insulin-Like Growth Factor I/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Fertilization in Vitro/methods , Metabolome , Dehydroepiandrosterone , Dietary Supplements/analysis , Cytokines/metabolism , Valine/analysis , Valine/metabolism , Linoleic Acids , Ovulation Induction/methods
10.
Oxid Med Cell Longev ; 2023: 4202861, 2023.
Article in English | MEDLINE | ID: mdl-36647431

ABSTRACT

Herb-induced liver injury (HILI) is gradually increasing, and Psoraleae Fructus (PF) has been reported to induce hepatotoxicity. However, its underlying toxicity mechanism has been only poorly revealed. In this paper, we attempted to explore the liver injury and mechanism caused by Psoraleae Fructus ethanol extract (PFE). First, we administered PFE to mice for 4 weeks and evaluated their serum liver function indices. H&E staining was performed to observe the pathological changes of the livers. Oil red O staining was used to visualize hepatic lipids. Serum-untargeted metabolomics and liver proteomics were used to explore the mechanism of PF hepatotoxicity, and transmission electron microscopy was determined to assess mitochondria and western blot to determine potential target proteins expression. The results showed that PFE caused abnormal liver biochemical indicators and liver tissue injury in mice, and there was substantial fat accumulation in liver tissue in this group. Furthermore, metabolomic analysis showed that PFE changed bile acid synthesis, lipid metabolism, etc., and eight metabolites, including linoleic acid, which could be used as potential biomarkers of PFE hepatotoxicity. Proteomic analysis revealed that differential proteins were clustered in the mitochondrial transmembrane transport, the long-chain fatty acid metabolic process and purine ribonucleotide metabolic process. Multiomics analysis showed that eight pathways were enriched in both metabolomics and proteomics, such as bile secretion, unsaturated fatty acid biosynthesis, and linoleic acid metabolism. The downregulation of SLC27A5, CPT1A, NDUFB5, and COX6A1 and upregulation of cytochrome C and ABCC3 expressions also confirmed the impaired fatty acid oxidative catabolism. Altogether, this study revealed that PFE induced hepatotoxicity by damaging mitochondria, reducing fatty acid ß-oxidation levels, and inhibiting fatty acids ingested by bile acids.


Subject(s)
Chemical and Drug Induced Liver Injury , Plant Extracts , Psoralea , Animals , Mice , Chemical and Drug Induced Liver Injury/pathology , Ethanol , Fatty Acids/metabolism , Linoleic Acids/metabolism , Lipid Metabolism , Liver/metabolism , Metabolomics/methods , Proteomics , Plant Extracts/toxicity , Psoralea/chemistry , Fruit/chemistry
11.
J Diabetes Investig ; 14(2): 297-308, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36412559

ABSTRACT

AIMS/INTRODUCTION: Fatty acid desaturase (FADS) genetic polymorphisms are strongly correlated with the risk of dyslipidemia and cardiovascular disease. In this study, we examined the impact of FADS1 and FADS2 genetic variants on plasma lipid status, and assessed interactions between FADS genetic polymorphisms and plasma n-3/n-6 fatty acids regarding lipid status within a population of 816 Taiwanese patients with type 2 diabetes. MATERIALS AND METHODS: Selected tag single-nucleotide polymorphisms (FADS1 rs174546 [T/C]; FADS2 rs174602 [A/G] and rs2072114 [A/G]) were genotyped (n = 816). RESULTS: The distribution of genotypes were compared with reports publicly available in the Genome Aggregation Database for East Asian populations (https://gnomad.broadinstitute.org). In the subgroup of patients not taking lipid-lowering medications (n = 192), we observed that the G allele of FADS2 rs174602 was statistically significantly correlated with lower low-density lipoprotein cholesterol (LDL-C) concentrations (P = 0.001), whereas the G allele of rs2072114 was marginally associated with LDL-C concentrations (P = 0.091). Using a general linear model adjusted for confounding factors, statistically significant interactions (P = 0.016) between single-nucleotide polymorphisms in rs2072114 and a low alpha-linolenic acid (18:3n-3)/linoleic acid (18:2n-6) ratio; the G allele correlated with lower LDL-C levels among individuals with a low alpha-linolenic acid/linoleic acid ratio. Interaction between rs174602 single-nucleotide polymorphisms and low alpha-linolenic acid/linoleic acid values on LDL-C was only marginally significant (P = 0.063). CONCLUSIONS: Our results show the role of n-3/n-6 dietary polyunsaturated fatty acids in modifying the effects of genetic susceptibility on lipoprotein concentrations in patients with type 2 diabetes. Our findings highlight the potential of interventions with dietary polyunsaturated fatty acids regarding developing individualized prevention strategies for type 2 diabetes presenting with co-occurring dyslipidemia and cardiovascular diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Acids, Omega-3 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Fatty Acid Desaturases/genetics , alpha-Linolenic Acid , Cholesterol, LDL , Fatty Acids, Unsaturated , Linoleic Acids , Polymorphism, Single Nucleotide
12.
Chem Biodivers ; 20(2): e202200456, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36564341

ABSTRACT

The current report describes the chemical investigation and biological activity of extracts produced by three fungal strains Fusarium oxysporum, Penicillium simplicissimum, and Fusarium proliferatum isolated from the roots of Piper nigrum L. growing in Vietnam. These fungi were namely determined by morphological and DNA analyses. GC/MS identification revealed that the EtOAc extracts of these fungi were associated with the presence of saturated and unsaturated fatty acids. These EtOAc extracts showed cytotoxicity towards cancer cell lines HepG2, inhibited various microbacterial organisms, especially fungus Aspergillus niger and yeast Candida albicans (the MIC values of 50-100 µg/mL). In α-glucosidase inhibitory assay, they induced the IC50 values of 1.00-2.53 µg/mL were better than positive control acarbose (169.80 µg/mL). The EtOAc extract of F. oxysporum also showed strong anti-inflammatory activity against NO production and PGE-2 level. Four major compounds linoleic acid (37.346 %), oleic acid (27.520 %), palmitic acid (25.547 %), and stearic acid (7.030 %) from the EtOAc extract of F. oxysporum were selective in molecular docking study, by which linoleic and oleic acids showed higher binding affinity towards α-glucosidase than palmitic and stearic acids. In subsequent docking assay with inducible nitric oxide synthase (iNOS), palmitic acid, oleic acid and linoleic acid could be moderate inhibitors.


Subject(s)
Piper nigrum , Oleic Acid , alpha-Glucosidases , Molecular Docking Simulation , Fungi , Plant Extracts/pharmacology , Palmitic Acid , Linoleic Acids
13.
Molecules ; 27(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296660

ABSTRACT

In the current study, the phytochemical constituents of volatile organic compounds (VOCs) obtained from Sida rhombifolia L. were identified by GC-FID and GC-MS analysis. A total of 73 volatile organic compounds were identified. The major components of S. rhombifolia VOCs were identified as palmitic acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone (6.30%), oleic acid (5.48%), 2-pentyl-furan (5.23%), and linoleic acid (3.21%). The VOCs are rich in fatty acids (32.50%), olefine aldehyde (9.59%), ketone (9.41%), enol (9.02%), aldehyde (8.63%), and ketene (6.41%). The antioxidant capacity of S. rhombifolia VOCs was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing/antioxidant power (FRAP) methods with butylated hydroxytoluene (BHT) and Trolox as standard. The VOCs showed dose-dependent antioxidant activity with IC50 (50% inhibitory concentration) values of 5.48 ± 0.024 and 1.47 ± 0.012 mg/mL for DPPH and ABTS assays, respectively. FRAP antioxidant capacity was 83.10 ± 1.66 mM/g. The results show that the VOCs distilled from S. rhombifolia have a moderate antioxidant property that can be utilized as a natural botanical supplement or an antioxidant.


Subject(s)
Antioxidants , Volatile Organic Compounds , Antioxidants/pharmacology , Antioxidants/chemistry , Butylated Hydroxytoluene/chemistry , Volatile Organic Compounds/pharmacology , Sulfonic Acids/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytol , Aldehydes , Ketones , Furans , Fatty Acids , Linoleic Acids , Palmitic Acids , Oleic Acids
14.
Sci Rep ; 12(1): 17832, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284115

ABSTRACT

Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.


Subject(s)
Eicosanoids , Linoleic Acid , Male , Female , Rats , Animals , Fatty Acids, Unsaturated , Fatty Acids , Diet , Triglycerides , Oleic Acid , Arachidonic Acid , Pain , Dietary Fats , Linoleic Acids
15.
Biomater Adv ; 136: 212786, 2022 May.
Article in English | MEDLINE | ID: mdl-35929319

ABSTRACT

With the increasing number of skin problems such as atopic dermatitis and the number of affected people, scientists are looking for alternative treatments to standard ointment or cream applications. Electrospun membranes are known for their high porosity and surface to volume area, which leads to a great loading capacity and their applications as skin patches. Polymer fibers are widely used for biomedical applications such as drug delivery systems or regenerative medicine. Importantly, fibrous meshes are used as oil reservoirs due to their excellent absorption properties. In our study, nano- and microfibers of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) were electrospun. The biocompatibility of PVB fibers was confirmed with the keratinocytes culture studies, including cells' proliferation and replication tests. To verify the usability and stretchability of electrospun membranes, they were tested in two forms as-spun and elongated after uniaxially stretched. We examine oil transport through the patches for as-spun fibers and compare it with the numerical simulation of oil flow in the 3D reconstruction of nano- and microfiber networks. Evening primrose oil spreading and water vapor transmission rate (WVTR) tests were performed too. Finally, for skin hydration tests, manufactured materials loaded with evening primrose oil were applied to the forearm of volunteers for 6 h, showing increased skin moisture after using patches. This study clearly demonstrates that pore size and shape, together with fiber diameter, influence oil transport in the electrospun patches allowing to understand the key driving process of electrospun PVB patches for skin hydration applications. The oil release improves skin moisture and can be designed regarding the needs, by manufacturing different fibers' sizes and arrangements. The fibrous based patches loaded with oils are easy to handle and could remain on the altered skin for a long time and deliver the oil, therefore they are an ideal material for overnight bandages for skin treatment.


Subject(s)
Linoleic Acids , gamma-Linolenic Acid , Administration, Cutaneous , Humans , Oenothera biennis , Plant Oils
16.
Molecules ; 27(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36014508

ABSTRACT

Lipid components in green coffee were clarified to provide essential data support for green coffee processing. The types, components, and relative contents of lipids in green coffee were first analyzed by ultra-performance liquid chromatography-time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS). The results showed that the main fatty acids in green coffee were linoleic acid (43.39%), palmitic acid (36.57%), oleic acid (8.22%), and stearic acid (7.37%). Proportionally, the ratio of saturated fatty acids/unsaturated fatty acids/polyunsaturated fatty acids was close to 5.5:1:5.2. A total of 214 lipids were identified, including 15 sterols, 39 sphingosines, 12 free fatty acids, 127 glycerides, and 21 phospholipids. The main components of sterols, sphingosines, free fatty acids, glycerides, and phospholipids were acylhexosyl sitosterol, ceramide esterified omega-hydroxy fatty acid sphingosine, linoleic acid, and triglyceride, respectively. UPLC-TOF-MS/MS furnished high-quality and accurate information on TOF MS and TOF MS/MS spectra, providing a reliable analytical technology platform for analyzing lipid components in green coffee.


Subject(s)
Coffee , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Fatty Acids/analysis , Fatty Acids, Nonesterified , Fatty Acids, Unsaturated , Glycerides , Linoleic Acids , Phospholipids , Sterols , Tandem Mass Spectrometry/methods
17.
J Food Sci ; 87(9): 3872-3887, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35982647

ABSTRACT

This study aimed to determine the association between the seed coat color of two chia seed genotypes for their composition, protein content, amino acid, and fatty acid profiles. The optimal pH for protein isolation for both genotypes (BCPI and WCPI) was 10, based on protein purity and solubility. Fatty acid profiling indicated, overall, 18 different fatty acids higher in BCPI10 with linolenic acid domination (∼66%) followed by linoleic acid (∼19%) and oleic acid (∼6%), contributing PUFAs (∼86%). Optimized protein isolates, black (BCPI10) and white (WCPI10) chia, had shown purity, L*-value, solubility, and yields of 90.65%, 75.86%, 77.75%, 11.30%, and 90.00%, 77.83%, 76.07%, 10.69%, respectively. BCPI10 depicted higher EAA (33.19 g/100 g N) and EEA indices (57.676%) compared to WCPI10 (32.14 g/100 g N) and 56.360%, respectively. Amino acid profiling indicated higher, PER, TAA, TEAA, TNEAA, TAAA, TBA, acidic AA values for BCPI10, and higher leucine/isoleucine ratio for WCPI10 having leucine and sulfur amino acids as limiting amino acids. BCPI10 had higher sulfur-containing amino acid contents, as the main contributor to the albumin a water-soluble fraction, leading to its higher in vitro digestibility (71.97%) than WCPI10 (67.70%). Both isolates exhibited good WHC and OHC of 3.18, 2.39 and 3.00, 2.20, respectively. Both protein isolates had similar ∆Td (°C) values with some variation in FTIR spectrum from 1000 cm-1 to 1651 cm-1 having more peak intensity for BCPI10. SDS-PAGE indicated bands at 150 kDa, representing globulin and mild bands at 25-33 kDa for glutelin and albumin. A significant (p < 0.05) variation reported in this study for protein and lipid profiles of both genotype attributes to genetic differences between the seeds. PRACTICAL APPLICATION: Based on the nutritional profile, both chia seed isolates (black and white) are suitable for consumption with an edge for black seed when supplemented with their limiting amino acids. The high values of the functional properties and structural characteristics combined with high nutritional values make the chia protein isolate an excellent source of raw material for various food formulations. Fatty acid profile of the oils from the genotypes showed the presence of high amounts of unsaturated fatty acids, especially the PUFAs with more number of fatty acids in black chia seed. The excellent lipid profile of chia seed oil indicates the benefit of using chia seed oil as a source of essential fatty acids in the human diet for optimal health.


Subject(s)
Amino Acids, Sulfur , Salvia , Albumins , Amino Acids, Sulfur/analysis , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Genotype , Glutens/analysis , Humans , Isoleucine/analysis , Leucine/analysis , Linoleic Acids/analysis , Oils/analysis , Oleic Acids/analysis , Salvia/chemistry , Salvia/genetics , Salvia hispanica , Seeds/chemistry , Sulfur/analysis , Water/analysis , alpha-Linolenic Acid/analysis
18.
J Food Sci ; 87(9): 3888-3899, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35984101

ABSTRACT

Five different processing methods (cold pressing, hot pressing, solvent extraction, ultrasound-assisted solvent extraction, and supercritical fluid extraction) were evaluated to extract oils from Lycium barbarum (L. barbarum) seeds based on the lipid composition, minor bioactive components, and oxidative stability of oils. A large proportion of unsaturated fatty acids was detected in the L. barbarum seed oil, especially linoleic acid (65.24-66.26%). Minor bioactive components were abundant in L. barbarum seed oils, including tocopherols (292.65-488.49 mg/kg), phytosterols (9606.31-166,684.77 mg/kg), polyphenols (35.65-113.87 mg/kg), and carotenoid (4.17-46.16 mg/100 g). Specifically, the phytosterol content was higher than that of other common oils. Comparing the different processing techniques, ultrasound-assisted solvent extraction provided the highest extraction yield and recovery. The quantities of tocopherols, phenols, and phytosterols in hot-pressed oil were higher than those in oils extracted from other methods, and thus it had the best oxidative stability. L. barbarum seed oils extracted by different techniques showed various characteristics and could be distinguished through principal component analysis and hierarchical cluster analysis. PRACTICAL APPLICATION: L. barbarum seed oil is a potentially underutilized oil resource with abundant essential fatty acid and phytosterol, which owns great value to apply in the nutritional, cosmetic, and medicinal fields. Hot pressing is an efficient method to produce L. barbarum seed oil for health care with high nutritional value and good quality, which can also be easily implemented on an industrial scale.


Subject(s)
Lycium , Phytosterols , Antioxidants/analysis , Carotenoids/analysis , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Linoleic Acids/analysis , Oxidative Stress , Phenols/analysis , Phytosterols/analysis , Plant Oils/chemistry , Polyphenols/analysis , Seeds/chemistry , Solvents , Tocopherols/analysis
19.
Nutrients ; 14(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35889936

ABSTRACT

Background: Retinoids, which include isotretinoin, reduce sebum levels, the degree of epidermal wetness (CORN) and cause an increase in transepidermal water loss (TEWL). Weight gain has also been observed in isotretinoin-treated patients. An agent that can reduce the severity of isotretinoin side effects is evening primrose oil (Oenothera paradoxa). The purpose of this study was to evaluate the effect of evening primrose oil supplementation in patients with acne vulgaris treated with isotretinoin on skin hydration status (CORN), transepidermal water loss (TEWL), skin oiliness (sebum) and changes in body weight and BMI. Methods: Patients diagnosed with acne were assigned to the isotretinoin-treated group (n = 25) or the isotretinoin and evening primrose oil-treated group (n = 25). The intervention lasted 9 months. CORN (with a corneometer), TEWL (with a tewameter) and sebum (with a sebumeter) were assessed twice, as well as body weight and BMI (Tanita MC-780). Results: The isotretinoin-treated group showed statistically significant reductions in CORN (p = 0.015), TEWL (p = 0.004) and sebum (p < 0.001) after the intervention. In the group treated with isotretinoin and evening primrose oil, TEWL and sebum levels also decreased significantly (p < 0.05), while CORN levels increased from 42.0 ± 9.70 to 50.9 ± 10.4 (p = 0.017). A significant decrease in body weight (p < 0.001) and BMI (p < 0.001) was observed in both groups after 9 months of intervention. Conclusions: During isotretinoin treatment, supplementation with evening primrose oil increased skin hydration. However, there were no differences between groups in transepidermal water loss, skin oiliness, weight loss and BMI.


Subject(s)
Acne Vulgaris , Isotretinoin , Acne Vulgaris/drug therapy , Body Weight , Dietary Supplements , Humans , Isotretinoin/adverse effects , Linoleic Acids , Oenothera biennis , Plant Oils , Skin , Water/pharmacology , gamma-Linolenic Acid
20.
Genes Genomics ; 44(10): 1159-1170, 2022 10.
Article in English | MEDLINE | ID: mdl-35900697

ABSTRACT

BACKGROUND: In order to maximize the use of valuable native Perilla germplasm in South Korea, knowledge of the Perilla seed oil content and genetic variation among native Perilla germplasm resources is very important for the conservation and development of new Perilla seed oil varieties using the native Perilla germplasm accessions preserved from the Rural Development Administration Genebank (RDA-Genebank) collection from South Korea. OBJECTIVES: In this study, we studied population structure and association mapping to identify Perilla SSR markers (PSMs) associated with the five fatty acid contents and two seed characteristics of the native Korean Perilla germplasm accessions of cultivated var. frutescens of the RDA-Genebank collected in South Korea. METHODS: For an association mapping analysis to find PSMs associated with the five fatty acid contents and two seed characteristics of the Perilla germplasm accessions of cultivated var. frutescens, we evaluated the content of five fatty acids of 280 native Korean Perilla germplasm accessions and used 29 Perilla SSR primer sets to measure the genetic diversity and relationships, population structure, and association mapping of the native Korean Perilla germplasm accessions of the RDA-Genebank collected in South Korea. RESULTS: Five fatty acids of 280 native Korean Perilla accessions were identified as follows: palmitic acid (PA) (5.30-8.66%), stearic acid (SA) (1.60-4.19%), oleic acid (OA) (9.60-22.5%), linoleic acid (LA) (8.38-25.4%), and linolenic acid (LNA) (52.7-76.4%). In a correlation analysis among the five fatty acids and two seed characteristics of the 280 Perilla accessions, the combinations of PA and SA (0.794**) and SA and OA (0.724**) showed a particularly high positive correlation coefficients compare to other combinations. By using an association analysis of the 29 PSMs and the five fatty acids in the 280 Perilla accessions, we found 17 PSMs (KNUPF1, KNUPF2, KNUPF4, KNUPF10, KNUPF16, KNUPF25, KNUPF26, KNUPF28, KNUPF37, KNUPF55, KNUPF62, KNUPF71, KNUPF74, KNUPF77, KNUPF85, KNUPF89, and KNUPF118) associated with the content of the five fatty acid components and two seed characteristics. CONCLUSIONS: These PSMs are considered to be useful molecular markers related to five fatty acid components and two seed characteristics for selecting accessions from the germplasm accessions of the Perilla crop and their related weedy types through association mapping analysis and marker-assisted selection (MAS) breeding programs.


Subject(s)
Perilla frutescens , Perilla , Fatty Acids/genetics , Genetic Variation , Linoleic Acids , Oleic Acids , Palmitic Acids , Perilla/genetics , Perilla frutescens/genetics , Plant Oils , Seeds/genetics , Stearic Acids
SELECTION OF CITATIONS
SEARCH DETAIL