Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Ultrason Sonochem ; 105: 106873, 2024 May.
Article in English | MEDLINE | ID: mdl-38608436

ABSTRACT

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Subject(s)
Emulsions , Glycolipids , Glycoproteins , Lecithins , Lipid Droplets , Lecithins/chemistry , Glycolipids/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Humans , Glycine max/chemistry , Milk, Human/chemistry , Chemical Phenomena , Particle Size , Ultrasonic Waves , Sonication
2.
J Agric Food Chem ; 72(2): 1405-1417, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181196

ABSTRACT

Donkey milk fat globule membrane (MFGM) proteins are a class of membrane-bound secreted proteins with broad-spectrum biofunctional activities; however, their site-specific O-glycosylation landscapes have not been systematically mapped. In this study, an in-depth MFGM O-glycoproteome profile of donkey milk during lactation was constructed based on an intact glycopeptide-centered, label-free glycoproteomics pipeline, with 2137 site-specific O-glycans from 1121 MFGM glycoproteins and 619 site-specific O-glycans from 217 MFGM glycoproteins identified in donkey colostrum and donkey mature milk, respectively. As lactation progressed, the number of site-specific O-glycans from three glycoproteins significantly increased, whereas that of 11 site-specific O-glycans from five glycoproteins significantly decreased. Furthermore, donkey MFGM O-glycoproteins with core-1 and core-2 core structures and Lewis and sialylated branch structures may be involved in regulating apoptosis. The findings of this study reveal the differences in the composition of donkey MFGM O-glycoproteins and their site-specific O-glycosylation modification dynamic change rules during lactation, providing a molecular basis for understanding the complexity and biological functions of donkey MFGM protein O-glycosylation.


Subject(s)
Colostrum , Proteome , Animals , Female , Pregnancy , Colostrum/chemistry , Equidae/metabolism , Glycolipids/chemistry , Glycoproteins/chemistry , Glycosylation , Lipid Droplets/chemistry , Membrane Proteins/metabolism , Milk Proteins/chemistry , Polysaccharides/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
3.
Food Res Int ; 175: 113736, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129046

ABSTRACT

Oleosomes are lipid composites providing energy storage in oilseeds. They possess a unique structure, comprised of a triglyceride core stabilized by a phospholipid-protein membrane, and they have shown potential to be used as ingredients in several food applications. Intact oleosomes are extracted by an aqueous process which includes soaking, milling, and gravitational separation. However, the details of the complexes formed between oleosomes, proteins and pectin polysaccharides during this extraction are not known. It was hypothesized that pectins play an important role during the oleosome separation, and different proteins will be complexed on the surface of the oleosomes, depending on the pH of extraction. Rapeseed extracts were treated with and without pectinase (Pectinex Ultra SP-L) and extracted at pH 5.7 or 8.5, as this will affect electrostatic complexation. Acidic conditions led to co-extraction of storage proteins, structured as dense oleosome emulsions, stabilized by a network of proteins and polysaccharides. Pectinase intensified this effect, highlighting pectic polysaccharides' role in bridging interactions among proteins and oleosomes under acidic conditions. The presence of this dense interstitial layer around the oleosomes protected them from coalescence during extraction. Conversely, under alkaline conditions, the extraction process yielded more purified oleosomes characterized by a larger particle size, most likely due to coalescence. Nevertheless, pectinase addition at pH 8.5 mitigated coalescence tendencies. These results contribute to a better understanding of the details of the colloidal complexes formed during extraction and can be used to modulate the composition of the extracted fractions, with significant consequences not only for yields and purity but also for the functional properties of the ingredients produced.


Subject(s)
Brassica napus , Brassica rapa , Lipid Droplets/chemistry , Pectins/analysis , Polygalacturonase , Brassica rapa/chemistry
4.
Food Res Int ; 173(Pt 1): 113197, 2023 11.
Article in English | MEDLINE | ID: mdl-37803532

ABSTRACT

Natural oil-in-water emulsions containing plant oil bodies (OBs), also called oleosomes, rich in health-promoting omega-3 polyunsaturated fatty acids (ω3 PUFA) are of increasing interest for food applications. In this study, we focused on walnut kernel OBs (WK-OBs) and explored their microstructure, composition and physical stability in ionic environments as well as the impact of homogenization. A green process involving aqueous extraction by grinding of WK allowed the co-extraction of OBs and proteins, and centrifugation was used to recover the WK-OBs. Confocal laser scanning microscopy images showed the spherical shape of WK-OBs with an oil core envelopped by a layer of phospholipids (0.16 % of lipids) and embedded proteins. Their mean diameter was 5.1 ± 0.3 µm. The WK-OBs contained 70.1 % PUFA with 57.8 % ω6 linoleic acid and 12.3 % ω3 α-linolenic acid representing 68 % and 11.6 % of the total fatty acids in the sn-2 position of the triacylglycerols (TAG), respectively. Trilinolein was the main TAG (23.1 %). The WK-OBs also contained sterols (1223 ± 33 mg/kg lipids; 86 % ß-sitosterol), carotenoids (0.62 ± 0.01 mg/kg lipids; 49.2 % ß-carotene), and tocopherols (322.7 ± 7.7 mg/kg lipids; 89 % γ-tocopherol), confirming their interest as health-promoting ingredients. The decrease in the size of WK-OBs under high-pressure homogenization avoided phase separation upon storage. The anionic WK-OB surface at neutral pH was affected by stressful ionic environments (pH, NaCl, CaCl2), that induced aggregation of WK-OBs and decreased the physical stability of the emulsions. Emulsions containing WK-OBs are promising to diversify the market of the ω3-rich plant-based food products and beverages.


Subject(s)
Fatty Acids, Omega-3 , Juglans , Juglans/chemistry , Lipid Droplets/chemistry , Emulsions/chemistry , Sodium Chloride/analysis , Plant Oils/chemistry , Fatty Acids, Omega-3/chemistry , Ions , Water/analysis , Hydrogen-Ion Concentration
5.
Food Chem ; 426: 136447, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37301041

ABSTRACT

Milk fat globule membrane (MFGM) proteins are nutritional components with various biological functions. This study aimed to analyze and compare MFGM proteins in porcine colostrum (PC) and porcine mature milk (PM), via label-free quantitative proteomics. In total, 3917 and 3966 MFGM proteins were identified in PC and PM milk, respectively. A total of 3807 common MFGM proteins were found in both groups, including 303 significant differentially expressed MFGM proteins. Gene Ontology (GO) analysis revealed that the differentially expressed MFGM proteins were mainly related to the cellular process, cell, and binding. The dominant pathway of the differentially expressed MFGM proteins was related to the phagosome according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. These results reveal crucial insights into the functional diversity of MFGM proteins in porcine milk during lactation and provide theoretical guidance for the development of MFGM proteins in the future.


Subject(s)
Colostrum , Membrane Proteins , Female , Pregnancy , Animals , Swine/genetics , Colostrum/metabolism , Membrane Proteins/analysis , Proteomics/methods , Milk Proteins/analysis , Glycolipids , Lipid Droplets/chemistry
6.
Food Chem ; 402: 134198, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36116277

ABSTRACT

Oil body (OB) is the lipid-storage organelle in oilseed, and its stability is crucial for oilseed processing. Herein, effects of roasting and boiling on the structure, stability, and in vitro lipid digestion of Camellia OB were studied. The interfacial structure and physical stability of the extracted OB were investigated by electrophoresis, confocal-Raman spectroscopy, zeta-potential, and surface hydrophobicity, etc. Boiling caused protein loss on the OB surfaces, forming a stable phospholipid interface, which resulted in coalescence of the droplets (d > 100 µm) and negative ζ-potential (-3 âˆ¼ -8 mV) values at a pH of 2.0. However, roasting partially denatured the proteins in the seeds, which were adsorbed on the OB surfaces. The random coil structure of interfacial protein increased to ∼20 % after thermal treatment. Besides, heating decreased the surface hydrophobicity of OB and improved lipid digestion. After boiling 60 min, the extent of lipolysis increased from 41.7 % (raw) to 57.4 %.


Subject(s)
Camellia , Lipid Droplets , Lipid Droplets/chemistry , Camellia/metabolism , Plant Oils/chemistry , Digestion , Phospholipids/analysis , Emulsions/chemistry
7.
Mol Nutr Food Res ; 66(22): e2200177, 2022 11.
Article in English | MEDLINE | ID: mdl-36068654

ABSTRACT

SCOPE: Milk fat globule membrane (MFGM) is an essential component of milk. Bovine MFGM (bMFGM) has been shown to support cognitive development and increase relative concentrations of serum phospholipids. This study investigates bioavailability of bMFGM components after oral administration in two preclinical models to explore whether dietary bMFGM induces parallel changes to plasma and brain lipidomes. METHODS AND RESULTS: Transgenic APOE*3.Leiden mice (n = 18 per group) and Sprague-Dawley rats (n = 12 per group) are fed bMFGM-enriched (MFGM+) or Control diet, followed by phospholipid profile-determination in plasma, hippocampus, and prefrontal cortex tissue by targeted mass spectrometry. Multivariate analysis of lipidomic profiles demonstrates a separation between MFGM+ and Control plasma across rodents. In plasma, sphingomyelins contributed the most to the separation of lipid patterns among both models, where three sphingomyelins (d18:1/14:0, d18:1/23:0, d18:1/23:1[9Z]) are consistently higher in the circulation of MFGM+ groups. A similar trend is observed in rat prefrontal cortex, although no significant separation of the brain lipidome is demonstrated. CONCLUSION: bMFGM-enriched diet alters plasma phospholipid composition in rodents, predominantly increasing sphingomyelin levels in the systemic circulation with similar, but non-significant, trends in central brain regions. These changes may contribute to the beneficial effects of bMFGM on neurodevelopment during early life.


Subject(s)
Dietary Supplements , Glycolipids , Glycoproteins , Lipid Droplets , Lipidomics , Animals , Mice , Rats , Brain , Lipid Droplets/chemistry , Phospholipids/pharmacology , Rats, Sprague-Dawley , Sphingomyelins/pharmacology , Glycoproteins/administration & dosage , Glycolipids/administration & dosage
8.
Molecules ; 27(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36080445

ABSTRACT

Artificial oil bodies covered by a recombinant surface protein, caleosin fused with histatin 3 (a major human salivary peptide), were employed to explore the relative astringency of eight tea catechins. The results showed that gallate-type catechins were more astringent than non-gallate-type catechins, with an astringency order of epicatechin gallate > epigallocatechin gallate > gallocatechin gallate > catechin gallate > epigallocatechin > epicatechin > gallocatechin > catechin. As expected, the extension of brewing time led to an increase in catechin content in the tea infusion, thus elevating tea astringency. Detailed analysis showed that the enhanced proportion of gallate-type catechins was significantly higher than that of non-gallate-type catechins, indicating that tea astringency was elevated exponentially, rather than proportionally, when brewing time was extended. Rough surfaces were observed on artificial oil bodies when they were complexed with epigallocatechin gallate (a catechin), while a smooth surface was observed on those complexed with rutin (a flavonol glycoside) under an atomic force microscope and a scanning electron microscope. The results indicate that catechins and flavonol glycosides induce the sensation of rough (puckering) and smooth (velvety) astringency in tea, respectively.


Subject(s)
Catechin , Astringents/analysis , Catechin/analogs & derivatives , Catechin/chemistry , Flavonols/analysis , Glycosides/analysis , Humans , Lipid Droplets/chemistry , Sensation , Tea/chemistry
9.
Int. j. high dilution res ; 21(2): 24-25, May 6, 2022.
Article in English | LILACS, HomeoIndex | ID: biblio-1396707

ABSTRACT

The droplet evaporation method (DEM) is based on the evaporation-induced pattern formation in droplets and is applied mainly for medical diagnosis[1].Here, we present aseries of experiments performed by our team showing DEMs potential also forhomeopathy basic research, in particular, for the investigation of(i) low potencies, (ii) low potency complexes (physical model), and (iii) the action of high potencies (plant-based model).Methods:(i) DEM differentiated significantly between Luffa, Baptisia, Echinacea, and Spongiauntil 4x[2]. Furthermore, the patterns varied in function of the numberof succussion strokes (0, 10, or 100) applied during potentization[3]. The performance of chaotic succussions vs. laminar flow vs. slight mixing during the potentization of Viscum album quercus3x influenced the DEM patterns; the chaotic succussions reduced, whereas laminar flow enhanced the patterns complexity vs. the unsuccussed control.(ii) The addition of Mercurius bijodatus9x to Luffa4x changed significantly the DEM patterns, even if the material quantity present in the 9x potency lied far beyond that of ultrapure water.(iii) Leakages obtained by placing healthy or arsenic-damaged wheat-seeds into Arsenicum album45x orheat-damaged intoZincum metallicum30c vs. water created significantly different DEM structures [4, 5]. Results:The damaged seeds put into the potency created structures characterized by a higher complexity than those obtained from damaged seeds put into control water. Furthermore, the potency action seemed to increase with rising numbers ofsuccussion strokes applied during potentization,ascould be shown by means of DEM patterns and germination rate using the same wheat-seed model[6].In all our studies, the pattern evaluation was computerized (texture and fractal analysis performed by means of ImageJ) or based on deep-learning algorithms and the robustness of the experimental system was checked by means of systematic control experiments.Conclusion:DEM together with other similarmethods has also been reviewed by our team for what concerns theapplication in homeopathy basic research[7].


Subject(s)
Triticum , Low Potencies , Basic Homeopathic Research , Lipid Droplets/chemistry
10.
Food Funct ; 13(6): 3271-3282, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35237775

ABSTRACT

Reports concerning the characteristics of soybean oil bodies (SOBs) isolated from high protein genotypes and high oil genotypes of soybeans available in the literature are insufficient and limiting. In this study, fatty acid compositions, total phenol and tocopherol contents, antioxidant capacity, and physicochemical stability of SOB emulsions recovered from three high-protein and three high-oil genotype soybeans were comparatively investigated. Principal component analysis showed that all six SOB samples could be easily discriminated based on the cultivar characteristics. Overall, the SOBs derived from the high-protein soybeans exhibited higher polyunsaturated fatty acid (PUFA) contents, while the SOBs derived from the high-oil soybeans had higher extraction yields and tocopherol contents; the tocopherol content was also positively correlated with the antioxidant capacity of the lipophilic fraction, but the difference in the total phenolic content between the two genotypes was not significant. The SOBs derived from the high-protein soybeans were more easily oxidized during storage, with 1.38- and 4-fold higher accumulation rates of lipid hydroperoxides (LPO) and thiobarbituric acid reactive substances (TBARS), respectively, in the high-protein-derived SOBs than in the high-oil-derived SOBs. In addition, the SOBs from the high-protein soybeans exhibited pronounced coalescence during storage, which was corroborated by focused confocal microscopy. These results confirmed that SOBs obtained from high-oil soybean genotypes are more suitable to manufacture OB-based products due to their superior physicochemical stability.


Subject(s)
Glycine max/chemistry , Lipid Droplets/chemistry , Soybean Oil/chemistry , Soybean Proteins/analysis , Antioxidants/analysis , Emulsions/chemistry , Fatty Acids , Fatty Acids, Omega-3/analysis , Lipid Peroxides/analysis , Microscopy, Confocal , Oxidation-Reduction , Particle Size , Phenols/analysis , Principal Component Analysis , Seeds/chemistry , Thiobarbituric Acid Reactive Substances/analysis , Tocopherols/analysis
11.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361783

ABSTRACT

Amber-the fossilized resin of trees-is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases.


Subject(s)
Adipocytes/drug effects , Amber/pharmacology , Complex Mixtures/pharmacology , Gene Expression Regulation/drug effects , Hypolipidemic Agents/pharmacology , Lipolysis/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Amber/chemistry , Animals , Cell Differentiation , Complex Mixtures/chemistry , Ethanol/chemistry , Glucose/metabolism , Glycerol/metabolism , Hypolipidemic Agents/chemistry , Leptin/genetics , Leptin/metabolism , Lipid Droplets/chemistry , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Mice , Perilipin-1/genetics , Perilipin-1/metabolism , Phosphorylation/drug effects , Sterol Esterase/genetics , Sterol Esterase/metabolism , Triglycerides/metabolism
12.
Food Chem ; 360: 129880, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-33989883

ABSTRACT

Oil bodies (OB), the form of triacylglycerol storage in seeds, are interesting natural assemblies for nutritional applications. In walnuts, OB contain an important amount of polyunsaturated fatty acids that could be interesting food ingredients but may be prone to oxidation. The oxidative and interfacial behavior of walnut OB, either minimally-processed or after processing, were compared with processed complex walnut juice. The good oxidative stability of minimally-processed OB over 10 days (PV ≤ 8.4 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) and of processed walnut complex matrixes over 20 days (PV ≤ 4.8 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) was evidenced. In comparison, processing of OB promoted their oxidation. The interfacial studies led to the proposition of a new model of adsorption for minimally-processed OB that will be useful to design functional emulsion or foam in which OB act as emulsifiers.


Subject(s)
Juglans/chemistry , Lipid Droplets/chemistry , Plant Oils/chemistry , Adsorption , Emulsions , Nuts/chemistry , Oxidation-Reduction , Water/chemistry
13.
Mol Nutr Food Res ; 65(15): e2001208, 2021 08.
Article in English | MEDLINE | ID: mdl-34008920

ABSTRACT

SCOPE: Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS: MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION: The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.


Subject(s)
Bone Development/drug effects , Glycolipids/pharmacology , Glycoproteins/pharmacology , Insulin Resistance , Obesity/diet therapy , Animals , Bone Development/physiology , Diet, High-Fat/adverse effects , Dietary Supplements , Female , Glycolipids/chemistry , Glycoproteins/chemistry , Gonadotropin-Releasing Hormone/genetics , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Lactation , Lipid Droplets/chemistry , Lipids/chemistry , Lipids/pharmacology , Male , Maternal Nutritional Physiological Phenomena , Milk/chemistry , Obesity/physiopathology , Pregnancy , Rats, Sprague-Dawley
14.
Nutrients ; 13(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810073

ABSTRACT

Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.


Subject(s)
Child Development , Infant Nutritional Physiological Phenomena , Milk Proteins/chemistry , Milk Proteins/immunology , Milk, Human/chemistry , Milk, Human/immunology , Female , Glycolipids/chemistry , Glycolipids/immunology , Glycolipids/metabolism , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , Infant , Infant, Newborn , Lipid Droplets/chemistry , Lipid Droplets/immunology , Lipid Droplets/metabolism , Milk Proteins/metabolism , Milk, Human/metabolism
15.
Molecules ; 26(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800445

ABSTRACT

In this study, the general processability of cannabidiol (CBD) in colloidal lipid carriers was investigated. Due to its many pharmacological effects, the pharmaceutical use of this poorly water-soluble drug is currently under intensive research and colloidal lipid emulsions are a well-established formulation option for such lipophilic substances. To obtain a better understanding of the formulability of CBD in lipid emulsions, different aspects of CBD loading and its interaction with the emulsion droplets were investigated. Very high drug loads (>40% related to lipid content) could be achieved in emulsions of medium chain triglycerides, rapeseed oil, soybean oil and trimyristin. The maximum CBD load depended on the type of lipid matrix. CBD loading increased the particle size and the density of the lipid matrix. The loading capacity of a trimyristin emulsion for CBD was superior to that of a suspension of solid lipid nanoparticles based on trimyristin (69% vs. 30% related to the lipid matrix). In addition to its localization within the lipid core of the emulsion droplets, cannabidiol was associated with the droplet interface to a remarkable extent. According to a stress test, CBD destabilized the emulsions, with phospholipid-stabilized emulsions being more stable than poloxamer-stabilized ones. Furthermore, it was possible to produce emulsions with pure CBD as the dispersed phase, since CBD demonstrated such a pronounced supercooling tendency that it did not recrystallize, even if cooled to -60 °C.


Subject(s)
Cannabidiol/chemistry , Drug Delivery Systems/methods , Lipid Droplets/chemistry , Cannabidiol/isolation & purification , Drug Carriers/chemistry , Emulsifying Agents/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Particle Size , Phospholipids/chemistry , Rapeseed Oil/chemistry , Soybean Oil/chemistry , Water
16.
J Dairy Res ; 88(1): 105-116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33722311

ABSTRACT

This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.


Subject(s)
Dairying , Glycolipids/chemistry , Glycoproteins/chemistry , Infant Nutritional Physiological Phenomena , Lipid Droplets/chemistry , Animals , Cattle , Fatty Acids/analysis , Food Technology , Glycolipids/analysis , Humans , Infant , Infant Formula/chemistry , Lipids/analysis , Milk Proteins/analysis , Milk, Human/chemistry , Phospholipids/analysis
17.
J Oleo Sci ; 70(2): 165-173, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33455999

ABSTRACT

The lipid products that consist of structured lipids rich in palmitic acid (16:0) at the sn-2 position of triacylglycerol (TAG) and rich in low-unsaturated fatty acids (FAs) (LUFAs), such as oleic acid; 18:1 and linoleic acid; 18:2 at the sn-1(3) positions, are useful intermediates for manufacturing human milk fat substitute (HMFS), which contains functional lipid components. In this study, the HMFS intermediate (HMFS-IM) was enzymatically prepared from palm oil without using other oil sources. First, the amount of 16:0 at the sn-2 position of TAG substrate was enhanced from 18.9% to more 34.5% via a random esterification reaction using a non-stereospecific lipase, Novozym® 435, to produce a random-palm substrate. Consequently, 2-monoacylglycerol (2-MAG) rich in 16:0 at the sn-2 position over 88%, together with the FA ethyl ester substrates rich in LUFAs, such as 18:1-Et and 18:2-Et above 93.5% was prepared through ethanolysis reaction using the same lipase from the random-palm substrate and by purification with urea complexation, respectively. As the preferred modified method, a continuous use of the same lipase to these reactions were achieved while reducing the usage of enzyme to half. Finally, an HMFS-IM rich in 16:0 at the sn-2 position more than 60% and LUFA at sn-1(3) positions was prepared using these palm oil-based products, including random-palm, palm-Et, and 2-MAG, via the interesterification reaction using a 1,3-stereospecific lipase, Lipozyme® RM-IM. Thus, HMFS-IM was successfully prepared by palm oil materials with a 65 wt% usage ratio. The concept described in this study will be useful for HMFS manufacturing from a single natural oil substrate, which is not initially rich in 16:0 at the sn-2 position.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Glycolipids/chemistry , Glycoproteins/chemistry , Lipid Droplets/chemistry , Milk Substitutes/chemical synthesis , Milk, Human/chemistry , Palm Oil/chemistry , Palmitic Acid/chemistry , Enzymes, Immobilized , Esterification , Fungal Proteins , Linoleic Acid/chemistry , Lipase/chemistry , Oleic Acid/chemistry , Triglycerides/chemistry
18.
Int J Biol Macromol ; 172: 429-438, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33454333

ABSTRACT

In the present study, the effect of transglutaminase (TGase) concentration on the physical and oxidative stabilities of filled hydrogel particles created by biopolymer phase separation was investigated. The results showed that filled hydrogels had relatively smaller particle sizes, higher absolute zeta-potentials, higher interfacial layer thicknesses and lightness values with the increasing of TGase concentration (P < 0.05), as evidenced by the apparent viscosity and viscoelasticity behavior. However, the relatively higher TGase concentration promoted the protein aggregation, which weakens the protection of the surface protein layer, having the negatively impacted the physical stability of filled hydrogels. Microstructural images which obtained via cryo-scanning electron microscopy also verified the above results. In particular, it is noted that filled hydrogels displayed the lowest degrees of lipid and protein oxidation during 10 days of storage (P < 0.05) at TGase concentration of 10 U/g. Prevention against oxidation was attributed mainly to TGase crosslinking of protein molecules on the surface of droplets, which likely provided a denser interface around lipid droplets. Our results indicated that TGase was a favourable agent to crosslink protein on the surface of lipid and improve the physical and oxidative stability of filled hydrogel particles.


Subject(s)
Hydrogels/chemistry , Lipid Droplets/chemistry , Pectins/chemistry , Transglutaminases/chemistry , Whey Proteins/chemistry , Drug Carriers , Drug Stability , Elasticity , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction , Particle Size , Rheology , Solutions , Viscosity
19.
Cutan Ocul Toxicol ; 40(1): 45-53, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33438439

ABSTRACT

Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.


Subject(s)
Drug Carriers/toxicity , Epidermal Growth Factor/toxicity , Plant Proteins/toxicity , Recombinant Fusion Proteins/toxicity , Skin/drug effects , Administration, Cutaneous , Animals , Bioreactors/adverse effects , Carthamus tinctorius/genetics , Dermatitis, Contact/diagnosis , Dermatitis, Contact/etiology , Dermatitis, Contact/pathology , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Emulsions , Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/genetics , Erythema/chemically induced , Erythema/diagnosis , Guinea Pigs , Humans , Lipid Droplets/chemistry , Male , Microgels , Plant Proteins/administration & dosage , Plant Proteins/genetics , Plants, Genetically Modified , Rats , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Skin/immunology , Skin/injuries , Skin/pathology , Toxicity Tests, Acute/methods , Toxicity Tests, Subacute/methods , Toxicity Tests, Subchronic/methods , Wound Healing/drug effects
20.
Nutrients ; 12(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167391

ABSTRACT

BACKGROUND: Almond kernels contain phytochemicals with positive health effects in relation to heart disease, diabetes and obesity. Several studies have previously highlighted that almond cell wall encapsulation during digestion and particle size are factors associated with these benefits. In the present study, we have characterized almond oleosomes, natural oil droplets abundant in plants, and we have investigated their integrity during simulated gastrointestinal digestion. METHODS: Oleosomes were visualized on the almond seed surface by imaging mass spectrometry analysis, and then characterized in terms of droplet size distribution by dynamic light scattering and protein profile by liquid chromatography high-resolution tandem mass spectrometry analysis. RESULTS: The almond oleosomes' distribution remained monomodal after in vitro mastication, whereas gastric and duodenal digestion led to a bimodal distribution, albeit characterized mainly by a prevalent population with a droplet size decrease related to a rearrangement of the protein profile. Oleosins, structural proteins found in plant oil bodies, persisted unchanged during simulated mastication, with the appearance of new prunin isoforms after gastric and duodenal digestion. CONCLUSIONS: The rearrangement of the protein profile could limit lipid bioaccessibility. The data improve our understanding of the behavior of almond lipids during gastrointestinal digestion, and may have implications for energy intake and satiety imparted by almonds.


Subject(s)
Digestion , Lipid Droplets/chemistry , Prunus dulcis/chemistry , Duodenum/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Hydrodynamics , Mastication , Particle Size , Plant Proteins/analysis , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL