Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Food Chem ; 447: 138941, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461726

ABSTRACT

Herbal teas and beverages have gained global attention because they are rich in natural bioactive compounds, which are known to have diverse biological effects, including antioxidant and anticarcinogenic properties. However, the lipidomic profiles of herbal teas remain unclear. In this study, we applied an untargeted lipidomics approach using high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry to comprehensively profile, compare, and identify unknown lipids in four herbal teas: dokudami, kumazasa, sugina, and yomogi. A total of 341 molecular species from five major classes of lipids were identified. Multivariate principal component analysis revealed distinct lipid compositions for each of the herbs. The fatty acid α-linolenic acid (FA 18:3) was found to be abundant in kumazasa, whereas arachidonic acid (FA 20:4) was the most abundant in sugina. Interestingly, novel lipids were discovered for the first time in plants; specifically, short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) with 4-hydroxy phenyl nonanoic acid as the structural core. This study provides insight into the lipidomic diversity and potential bioactive lipid components of herbal teas, offering a foundation for further research into their health-promoting properties and biological significance.


Subject(s)
Teas, Herbal , Teas, Herbal/analysis , Chromatography, High Pressure Liquid/methods , Liquid Chromatography-Mass Spectrometry , Beverages/analysis , Lipidomics/methods
2.
Food Chem ; 442: 138462, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38245985

ABSTRACT

Yak milk is essential to maintain the normal physiological functions of herders in Tibetan areas of China. However, the lipid components of yak colostrum (YC) and mature milk (YM) have not been systematically studied. We employed a quantitative lipidomics to comprehensively describe the alterations in the milk lipid profile of lactating yaks. Herein, totally 851 lipids from 28 lipid subclasses in YC and YM were identified and screened for 43 significantly different lipids (SDLs; variable importance in projection > 1, fold change < 0.5 or > 2 with P < 0.05), with cholesterol ester (CE, 16:0) and triacylglycerol (TAG, 54:6 (20:5), 50:1 (16:0), 56:6 (20:5)) were the potential lipid biomarkers. Fourteen SDLs were modulated downwards, and 29 SDLs were modulated upwards in YM. Moreover, by analyzing lipid metabolic pathways in these SDLs, glycerophospholipid metabolism was the most critical. Our results furnish integral lipid details for evaluating yak milk's nutritional quality.


Subject(s)
Colostrum , Milk , Pregnancy , Female , Animals , Cattle , Colostrum/metabolism , Lactation/metabolism , Lipidomics/methods , Chromatography, High Pressure Liquid , Triglycerides/metabolism
3.
Chem Biodivers ; 20(3): e202200920, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683009

ABSTRACT

Memory impairment (MI) is caused by a variety of causes, endangering human health. Yuanzhi San (YZS) is a common prescription used for the treatment of MI, but its mechanism of action needs further exploration. The purpose of this study was to investigate this mechanism through lipidomics and network pharmacology. Sprague Dawley (SD) rats were divided randomly into the normal, model, and YZS groups. The rats were gavaged with aluminum chloride (200 mg/kg) and intraperitoneally injected with D-galactose (400 mg/kg) every day for 60 days, except for the normal group. From the 30th day, YZS (13.34 g/kg) was gavaged once a day to the rats in the YZS group. Post-YZS treatment, ultra-high-performance liquid chromatography-mass spectrometry (UHPLC/MS) analysis was implemented to conduct a lipidomics study in the hippocampus of rats with memory impairment induced by aluminum chloride and D-galactose. Eight differential metabolites were identified between the normal group and the model group, whereas between the model group and the YZS group, 20 differential metabolites were established. Metabolic pathway analysis was performed on the aforementioned lipid metabolites, all of which were involved in sphingolipid and glycerophospholipid metabolism. Furthermore, serum pharmacochemistry analysis of YZS was carried out at the early stage of our research, which discovered 62 YZS prototype components. The results of the network pharmacology analysis showed that they were related to 1030 genes, and 451 disease genes were related to MI. There were 73 intersections between the YZS and MI targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these targets were closely related to the sphingolipid metabolic, calcium signaling, and other pathways. The integrated approach of lipidomics and network pharmacology was then focused on four major targets, including PHK2, GBA, SPTLC1, and AChE, as well as their essential metabolites (glucosylceramide, N-acylsphingosine, phosphatidylserine, phosphatidylcholine, and phosphatidylcholine) and pathways (sphingolipid, glycerophospholipid, and arachidonic acid metabolism). The significant affinity of the primary target for YZS was confirmed by molecular docking. The obtained results revealed that the combination of lipidomics and network pharmacology could be used to determine the effect of YZS on the MI biological network and metabolic state, and evaluate the drug efficacy of YZS and its related mechanisms of action.


Subject(s)
Drugs, Chinese Herbal , Lipidomics , Network Pharmacology , Animals , Humans , Rats , Aluminum Chloride , Drugs, Chinese Herbal/pharmacology , Galactose , Glycerophospholipids , Lipidomics/methods , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Molecular Docking Simulation , Network Pharmacology/methods , Phosphatidylcholines , Rats, Sprague-Dawley
4.
Biomed Pharmacother ; 158: 114066, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528915

ABSTRACT

Lingguizhugan Decoction (LGZGD) is a classical traditional Chinese medicine prescription. Our previous studies found that disorders of lipid metabolism were reversed by LGZGD in heart failure (HF) mice. This study aimed to reveal the regulation of lipid metabolism of LGZGD. A mice model of HF was established by intraperitoneal injection of doxorubicin. The components of LGZGD were identified with the UHPLC-QTOF-MS method. The regulation of lipid metabolism by LGZGD was detected by serum lipidomics and heart tissue proteomics. Molecular docking was further performed to screen active components. A total of 78 compounds in LGZGD were identified. Results of lipidomics showed that 37 lipids illustrated a significant recovery trend to normal after the treatment of LGZGD. Results of proteomics demonstrated that 55 proteins were altered by the administration of LGZGD in HF mice. After enrichment analysis, the Prakg2/Ucp2/Plin1 axis on the Apelin pathway plays a vital role in HF treatment by LGZGD. Nine active components exhibited the outstanding ability of binding to the apelin receptor with MM-GBSA value lower than -60 Kcal/mol. In conclusion, all results combined together revealed that multi-component in the LGZGD had beneficial effects on the HF through ameliorating lipid disorders, which provides a novel insight into the cardioprotective effects of LGZGD and its clinical application.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Mice , Animals , Lipidomics/methods , Lipid Metabolism , Proteomics , Molecular Docking Simulation , Heart Failure/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216253

ABSTRACT

In recent years, several studies have demonstrated that polyunsaturated fatty acids have strong immunomodulatory properties, altering several functions of macrophages. In the present work, we sought to provide a multi-omic approach combining the analysis of the lipidome, the proteome, and the metabolome of RAW 264.7 macrophages supplemented with phospholipids containing omega-3 (PC 18:0/22:6; ω3-PC) or omega-6 (PC 18:0/20:4; ω6-PC) fatty acids, alone and in the presence of lipopolysaccharide (LPS). Supplementation of macrophages with ω3 and ω6 phospholipids plus LPS produced a significant reprogramming of the proteome of macrophages and amplified the immune response; it also promoted the expression of anti-inflammatory proteins (e.g., pleckstrin). Supplementation with the ω3-PC and ω6-PC induced significant changes in the lipidome, with a marked increase in lipid species linked to the inflammatory response, attributed to several pro-inflammatory signalling pathways (e.g., LPCs) but also to the pro-resolving effect of inflammation (e.g., PIs). Finally, the metabolomic analysis demonstrated that supplementation with ω3-PC and ω6-PC induced the expression of several metabolites with a pronounced inflammatory and anti-inflammatory effect (e.g., succinate). Overall, our data show that supplementation of macrophages with ω3-PC and ω6-PC effectively modulates the lipidome, proteome, and metabolome of these immune cells, affecting several metabolic pathways involved in the immune response that are triggered by inflammation.


Subject(s)
Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Immunologic Factors/metabolism , Lipids/physiology , Macrophages/metabolism , Phospholipids/metabolism , Proteins/metabolism , Animals , Immunity/physiology , Inflammation/metabolism , Lipidomics/methods , Metabolome/physiology , Mice , Proteome/metabolism , RAW 264.7 Cells , Signal Transduction/physiology
6.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35076027

ABSTRACT

Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.


Subject(s)
Arthritis , Bacterial Physiological Phenomena/immunology , Gastrointestinal Microbiome/physiology , Group II Phospholipases A2/metabolism , Lipid Metabolism/immunology , Animals , Animals, Genetically Modified , Arthritis/immunology , Arthritis/microbiology , Humans , Immune System Phenomena , Lipidomics/methods , Mice , Models, Animal , Pathology, Molecular/methods , Transgenes
7.
Biomed Chromatogr ; 36(2): e5271, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34727379

ABSTRACT

In recent years, with the improvement of people's living standards, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in the world. In this paper, the metabolic disorders in Sprague Dawley (SD) rats were induced by a choline-deficient, l-amino acid-defined (CDAA) diet. The therapeutic effects of polyene phosphatidylcholine (PPC) and Babao Dan (BBD) on NAFLD were observed. Lipidomic analysis was performed using ultra-high-performance liquid chromatography-Orbitrap MS, and data analysis and lipid identification were performed using the software LipidSearch. Both PPC and BBD can reduce lipid accumulation in the liver and improve abnormal biochemical indicators in rats, including reduction of triglycerides, total cholesterol, alanine transaminase and aspartate transaminase in serum. In addition, lipids in rat serum were systematically analyzed by lipidomics. The lipidomic results showed that the most obvious lipids with abnormal metabolism in CDAA diet-induced rats were glycerides (triglycerides and diacylglycerols), phospholipids and cholesterol esters. Both BBD and PPC partly reversed the disturbance to lipids induced by the CDAA diet. PPC may be more effective than BBD in alleviating NAFLD because it has a better effect on inhibiting the abnormal accumulation of lipids and reducing the inflammatory reaction in the body.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , Lipidomics/methods , Non-alcoholic Fatty Liver Disease/metabolism , Phosphatidylcholines/pharmacology , Animals , Diet , Liver/chemistry , Liver/drug effects , Rats , Rats, Sprague-Dawley
8.
Article in English | MEDLINE | ID: mdl-34753002

ABSTRACT

The use of acellular fish skin grafts (FSG) for the treatment of burn wounds is becoming more common due to its beneficial wound healing properties. In our previous study we demonstarted that FSG is a scaffold biomaterial that is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) conjugated to phosphatidylcholines. Here we investigated whether EPA and DHA derived lipid mediators are influenced during the healing of burn wounds treated with FSG. Deep partial and full thickness burn wounds (DPT and FT, respectively) were created on Yorkshire pigs (n = 4). DPT were treated with either FSG or fetal bovine dermis while FT were treated either with FSG or cadaver skin initially and followed by a split thickness skin graft. Punch biopsies were collected on days 7, 14, 21, 28 and 60 and analyzed in respect of changes to approximately 45 derivatives of EPA, DHA, arachidonic acid (AA), and linoleic acid (LA) employing UPLC-MS/MS methodology. Nine EPA and DHA lipid mediators, principally mono-hydroxylated derivatives such as 18-HEPE and 17-HDHA, were significantly higher on day 7 in the DPT when treated with FSG. A similar but non-significant trend was observed for the FT. The results suggest that the use of FSG in burn wound treatment can alter the formation of EPA and DHA mono hydroxylated lipid mediators in comparison to other grafts of mammalian origin. The differences observed during the first seven days after treatment indicates that FSG affects the early stages of wound healing.


Subject(s)
Burns/therapy , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Gadiformes , Lipidomics/methods , Skin Transplantation/methods , Animals , Burns/etiology , Burns/metabolism , Cattle , Chromatography, High Pressure Liquid , Disease Models, Animal , Lipid Metabolism , Phosphatidylcholines/metabolism , Swine , Tandem Mass Spectrometry , Wound Healing
9.
Plant Cell Rep ; 40(12): 2303-2323, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34427748

ABSTRACT

KEY MESSAGE: Proteomic and lipidomics analyses of WT and GmDGAT1-2 transgenic soybeans showed that GmDGAT1-2 over-expression induced lipoxygenase down-regulatation and oleoin up-regulatation, which significantly changed the compositions and total fatty acid. The main goal of soybean breeding is to increase the oil content. Diacylglycerol acyltransferase (DGAT) is a key rate-limiting enzyme in fatty acid metabolism and may regulate oil content. Herein, 10 GmDGAT genes were isolated from soybean and transferred into wild-type (WT) Arabidopsis. The total fatty acid was 1.2 times higher in T3 GmDGAT1-2 transgenic Arabidopsis seeds than in WT. Therefore, GmDGAT1-2 was transferred into WT soybean (JACK), and four T3 transgenic soybean lines were obtained. The results of high-performance gas chromatography and Soxhlet extractor showed that, compared with those of JACK, oleic acid (18:1), and total fatty acid levels in transgenic soybean plants were much higher, but linoleic acid (18:2) was lower than WT. Palmitic acid (16:0), stearic acid (18:0), and linolenic acid (18:3) were not significantly different. For mechanistic studies, 436 differentially expressed proteins (DEPs) and 180 differentially expressed metabolites (DEMs) were identified between WT (JACK) and transgenic soybean pods using proteomic and lipidomics analyses. Four lipoxygenase proteins were down-regulated in linoleic acid metabolism while four oleosin proteins were up-regulated in the final oil formation. The results showed an increase in the total fatty acid and 18:1 composition, and a decrease in the 18:2 composition of fatty acid. Our study brings new insights into soybean genetic transformation and the deep study of molecular mechanism that changes the total fatty acid, 18:1, and 18:2 compositions in GmDGAT1-2 transgenic soybean.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Glycine max/genetics , Lipoxygenase/metabolism , Membrane Proteins/metabolism , Plant Proteins/metabolism , Soybean Oil/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Diacylglycerol O-Acyltransferase/metabolism , Gene Expression Regulation, Plant , Linoleic Acid/genetics , Linoleic Acid/metabolism , Lipidomics/methods , Lipoxygenase/genetics , Membrane Proteins/genetics , Multigene Family , Plant Proteins/genetics , Plants, Genetically Modified , Proteomics/methods , Seeds/genetics , Seeds/metabolism , Soybean Oil/genetics , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/metabolism
10.
Molecules ; 26(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34361633

ABSTRACT

The lipidome of a brown seaweed commonly known as wakame (Undaria pinnatifida), which is grown and consumed around the world, including Western countries, as a healthy nutraceutical food or supplement, was here extensively examined. The study was focused on the characterization of phospholipids (PL) and glycolipids (GL) by liquid chromatography (LC), either hydrophilic interaction LC (HILIC) or reversed-phase LC (RPLC), coupled to electrospray ionization (ESI) and mass spectrometry (MS), operated both in high and in low-resolution mode. Through the acquisition of single (MS) and tandem (MS/MS) mass spectra more than 200 PL and GL of U. pinnatifida extracts were characterized in terms of lipid class, fatty acyl (FA) chain composition (length and number of unsaturations), and regiochemistry, namely 16 SQDG, 6 SQMG, 12 DGDG, 5 DGMG, 29 PG, 8 LPG, 19 PI, 14 PA, 19 PE, 8 PE, 38 PC, and 27 LPC. The FA (C16:0) was the most abundant saturated acyl chain, whereas the monounsaturated C18:1 and the polyunsaturated C18:2 and C20:4 chains were the prevailing ones. Odd-numbered acyl chains, iJ., C15:0, C17:0, C19:0, and C19:1, were also recognized. While SQDG exhibited the longest and most unsaturated acyl chains, C18:1, C18:2, and C18:3, in the sn-1 position of glycerol, they were preferentially located in the sn-2 position in the case of PL. The developed analytical approach might pave the way to extend lipidomic investigations also for other edible marine algae, thus emphasizing their potential role as a source of bioactive lipids.


Subject(s)
Glycolipids/analysis , Phospholipids/analysis , Plant Extracts/chemistry , Undaria/chemistry , Lipidomics/methods
11.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299399

ABSTRACT

Celastrol, a pentacyclic triterpene isolated from the traditional Chinese medicine Tripterygium wilfordii Hook. F., exhibits effectiveness in protection against multiple central nervous system (CNS) diseases such as cerebral ischemia, but its influence on lipidomics still remains unclear. Therefore, in the present study, the efficacy and potential mechanism of celastrol against cerebral ischemia/reperfusion (I/R) injury were investigated based on lipidomics. Middle cerebral artery occlusion (MCAO) followed by reperfusion was operated in mice to set up a cerebral I/R model. TTC staining and TUNEL staining were used to evaluate the therapeutic effect of celastrol. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS) was employed for lipidomics analysis in ipsilateral hemisphere and plasma. Celastrol remarkably reduced cerebral infarct volume and apoptosis positive cells in tMCAO mice. Furthermore, lipidomics analysis showed that 14 common differentially expressed lipids (DELs) were identified in brain and five common DELs were identified in plasma between the Sham, tMCAO and Celastrol-treated tMCAO groups. Through enrichment analysis, sphingolipid metabolism and glycerophospholipid metabolism were demonstrated to be significantly enriched in all the comparison groups. Among the DELs, celastrol could reverse cerebral I/R injury-induced alteration of phosphatidylcholine, phosphatidylethanolamine and sulfatide, which may be responsible for the neuroprotective effect of celastrol. Our findings suggested the neuroprotection of celastrol on cerebral I/R injury may be partially associated with its regulation of lipid metabolism.


Subject(s)
Brain Ischemia/metabolism , Brain/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/complications , Lipids/analysis , Pentacyclic Triterpenes/pharmacology , Reperfusion Injury/metabolism , Animals , Brain/drug effects , Brain Ischemia/drug therapy , Brain Ischemia/etiology , Brain Ischemia/pathology , Lipidomics/methods , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/etiology , Reperfusion Injury/pathology
12.
Biomolecules ; 11(5)2021 05 17.
Article in English | MEDLINE | ID: mdl-34067705

ABSTRACT

Tripterygium wilfordii glycosides (TWG) is a traditional Chinese medicine with effectiveness against rheumatoid arthritis (RA), supported by numerous clinical trials. Lipid mediators (LM) are biomolecules produced from polyunsaturated fatty acids mainly by cyclooxygenases (COX) and lipoxygenases (LOX) in complex networks which regulate inflammation and immune responses and are strongly linked to RA. The mechanism by which TWG affects LM networks in RA treatment remains elusive. Employing LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed striking modulation of LM pathways by TWG in human monocyte-derived macrophage (MDM) phenotypes. In inflammatory M1-MDM, TWG (30 µg/mL) potently suppressed agonist-induced formation of 5-LOX products which was confirmed in human PMNL and traced back to direct inhibition of 5-LOX (IC50 = 2.9 µg/mL). TWG also efficiently blocked thromboxane formation in M1-MDM without inhibiting other prostanoids and COX enzymes. Importantly, in anti-inflammatory M2-MDM, TWG (30 µg/mL) induced pronounced formation of specialized pro-resolving mediators (SPM) and related 12/15-LOX-derived SPM precursors, without COX and 5-LOX activation. During MDM polarization, TWG (1 µg/mL) decreased the capacity to generate pro-inflammatory 5-LOX and COX products, cytokines and markers for M1 phenotypes. Together, suppression of pro-inflammatory LM but SPM induction may contribute to the antirheumatic properties of TWG.


Subject(s)
Antirheumatic Agents/administration & dosage , Arachidonate 5-Lipoxygenase/metabolism , Glycosides/pharmacology , Prostaglandin-Endoperoxide Synthases/metabolism , Tripterygium/chemistry , A549 Cells , Antirheumatic Agents/pharmacology , Chromatography, High Pressure Liquid , Gene Expression Regulation/drug effects , Humans , Immunity, Innate/drug effects , Lipidomics/methods , Macrophages/drug effects , Macrophages/metabolism , Prostaglandins/metabolism , Tandem Mass Spectrometry , Thromboxanes
13.
J Am Soc Mass Spectrom ; 32(7): 1798-1809, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34096708

ABSTRACT

Vegetables oils, rich in polyunsaturated fatty acids, are vulnerable to oxidation during manufacturing, processing, and food preparation. Currently, individual oxidation products are not well characterized, and hence, the health impacts of these unique lipid species remain unknown. Here, we introduce an extensive oxidized lipidomics in silico tandem mass spectrometry library and integrate these libraries within a user-friendly software covering a comprehensive redox lipidomics workflow. We apply this workflow to olive, soy, and walnut cooking oil; comparing unheated oil, oil after deep frying potatoes, and oil after oven frying potatoes. We annotated over a thousand oxidized triglycerides across 273 features (many coeluted). This software was validated against traditional chemical assays of oxidation, known oxidized lipids in castor oil, synthesized standards, and an alternate software LPPtiger. Development of these new software programs for redox lipidomics opens the door to characterize health implications of individual oxidation products.


Subject(s)
Cooking , Lipidomics/methods , Plant Oils , Solanum tuberosum/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Liquid , Oxidation-Reduction , Plant Oils/analysis , Plant Oils/chemistry
14.
Exp Eye Res ; 209: 108667, 2021 08.
Article in English | MEDLINE | ID: mdl-34119484

ABSTRACT

Fatty acids, and especially docosahexaenoic acid (DHA), are essential for photoreceptor cell integrity and are involved in the phototransduction cascade. In this study, we analyzed the changes in the fatty acid profile in the retina of the rd10 mouse, model of retinitis pigmentosa, in order to identify potential risk factors for retinal degeneration and possible therapeutic approaches. Fatty acids from C57BL/6J and rd10 mouse retinas were extracted with Folch's method and analyzed by gas chromatography/mass spectrometry. Changes in retinal morphology were evaluated by immunohistochemistry. The rd10 mouse retina showed a decreased number of photoreceptor rows and alterations in photoreceptor morphology compared to C57BL/6J mice. The total amount of fatty acids dropped by 29.4% in the dystrophic retinas compared to C57BL/6J retinas. A positive correlation was found between the retinal content of specific fatty acids and the number of photoreceptor rows. We found that the amount of several short-chain and long-chain saturated fatty acids, as well as monounsaturated fatty acids, decreased in the retina of rd10 mice. Moreover, the content of the n-6 polyunsaturated fatty acid arachidonic acid and the n-3 polyunsaturated DHA decreased markedly in the dystrophic retina. The fall of DHA was more pronounced, hence the n-6/n-3 ratio was significantly increased in the diseased retina. The content of specific fatty acids in the retina decreased with photoreceptor degeneration in retinitis pigmentosa mice, with a remarkable reduction in DHA and other saturated and unsaturated fatty acids. These fatty acids could be essential for photoreceptor cell viability, and they should be evaluated for the design of therapeutical strategies and nutritional supplements.


Subject(s)
Docosahexaenoic Acids/pharmacology , Fatty Acids/pharmacology , Lipidomics/methods , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/drug therapy , Animals , Cell Death , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retinal Rod Photoreceptor Cells/drug effects , Retinitis Pigmentosa/diagnosis
15.
Front Immunol ; 12: 608875, 2021.
Article in English | MEDLINE | ID: mdl-33968013

ABSTRACT

Adipose tissue is now recognized as an active organ with an important homeostatic function in glucose and lipid metabolism and the development of insulin resistance. The present research investigates the role of lipid mediators and lipid profiling for controlling inflammation and the metabolic normal function of white adipose tissue from rats suffering from diet-induced prediabetes. Additionally, the contribution to the adipose lipidome induced by the consumption of marine ω-3 PUFAs as potential regulators of inflammation is addressed. For that, the effects on the inflammatory response triggered by high-fat high-sucrose (HFHS) diets were studied in male Sprague-Dawley rats. Using SPE-LC-MS/MS-based metabolo-lipidomics, a range of eicosanoids, docosanoids and specialized pro-resolving mediators (SPMs) were measured in white adipose tissue. The inflammatory response occurring in prediabetic adipose tissue was associated with the decomposition of ARA epoxides to ARA-dihydroxides, the reduction of oxo-derivatives and the formation of prostaglandins (PGs). In an attempt to control the inflammatory response initiated, LOX and non-enzymatic oxidation shifted toward the production of the less pro-inflammatory EPA and DHA metabolites rather than the high pro-inflammatory ARA hydroxides. Additionally, the change in LOX activity induced the production of intermediate hydroxides precursors of SPMs as protectins (PDs), resolvins (Rvs) and maresins (MaRs). This compensatory mechanism to achieve the restoration of tissue homeostasis was significantly strengthened through supplementation with fish oils. Increasing proportions of ω-3 PUFAs in adipose tissue significantly stimulated the formation of DHA-epoxides by cytochrome P450, the production of non-enzymatic EPA-metabolites and prompted the activity of 12LOX. Finally, protectin PDX was significantly reduced in the adipose tissue of prediabetic rats and highly enhanced through ω-3 PUFAs supplementation. Taken together, these actively coordinated modifications constitute key mechanisms to restore adipose tissue homeostasis with an important role of lipid mediators. This compensatory mechanism is reinforced through the supplementation of the diet with fish oils with high and balanced contents of EPA and DHA. The study highlights new insides on the targets for effective treatment of incipient diet-induced diabetes and the mechanism underlying the potential anti-inflammatory action of marine lipids.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Fish Oils/administration & dosage , Homeostasis/drug effects , Lipid Metabolism/drug effects , Lipidomics , Metabolic Networks and Pathways/drug effects , Animals , Biomarkers , Chromatography, Liquid , Diet , Inflammation Mediators , Lipidomics/methods , Male , Rats , Tandem Mass Spectrometry
16.
J Extracell Vesicles ; 10(7): e12089, 2021 05.
Article in English | MEDLINE | ID: mdl-34012516

ABSTRACT

Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region.  AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.


Subject(s)
Alzheimer Disease/metabolism , Extracellular Vesicles/physiology , Frontal Lobe/metabolism , Aged , Alzheimer Disease/physiopathology , Biomarkers , Brain/metabolism , Central Nervous System , Exosomes/metabolism , Extracellular Vesicles/metabolism , Glycerophospholipids/metabolism , Homeostasis , Humans , Lipid Metabolism/physiology , Lipidomics/methods , Lipids/analysis , Male , Mass Spectrometry/methods , Sphingolipids/metabolism , Tomography, X-Ray Computed/methods
17.
Food Funct ; 12(10): 4519-4534, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33890948

ABSTRACT

Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. leaves (ESL) were reported to have neuroprotective function and are also used to treat cranial and cerebral traumas as a traditional Chinese medicine and food herbage plant. However, there has been no previous study on ESL treatment for stroke at the level of lipid disorders. To clarify the mechanism of ESL in treating ischemic stroke, this study was carried out from 3 aspects, namely, the regulation of lipid disorders, protection of the nervous system, as well as anti-inflammatory and antioxidant actions. This study established a lipidomics research strategy that was developed by UPLC-Q-TOF/MS analysis. The quantification of neurotransmitters in the serum and brain tissue of rats was performed using UPLC-TQ/MS. Also, we quantified the oxidative stress and inflammatory reaction by measuring the contents of SOD, MDA, TNF-α, IL-6, and IL-10 via the ELISA kits for serum and brain tissue. According to UPLC-Q-TOF/MS-based lipidomics analysis, 27 lipidomics biomarkers were identified in this study, including PC, PE, SM, and TG, which were distributed in various lipid metabolic pathways, including glycerophospholipid, linoleic acid, alpha-linolenic acid, glycerolipid, sphingolipid, and arachidonic acid metabolism pathways. By reversing the changes in the lipid content caused by the disease, ESL has a therapeutic effect on ischemic stroke. Furthermore, quantitative results of neurotransmitters indicated that they can be regulated by ESL. Finally, the results of ELISA showed that ESL can treat ischemic stroke to a certain extent by reducing the oxidative and inflammatory damage. Therefore, ESL may play a therapeutic role in the treatment of ischemic stroke in different ways. This research preliminarily revealed the mechanism of ESL in the treatment of ischemic stroke and provided support for the further application of ESL.


Subject(s)
Eleutherococcus/chemistry , Ischemic Stroke/drug therapy , Lipidomics/methods , Mass Spectrometry/methods , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Biomarkers , Brain/pathology , Brain Ischemia/drug therapy , Disease Models, Animal , Male , Metabolic Networks and Pathways/drug effects , Oxidative Stress , Rats
18.
Cells ; 10(4)2021 04 13.
Article in English | MEDLINE | ID: mdl-33924316

ABSTRACT

During aging, body adiposity increases with changes in the metabolism of lipids and their metabolite levels. Considering lipid metabolism, excess adiposity with increased lipotoxicity leads to various age-related diseases, including cardiovascular disease, cancer, arthritis, type 2 diabetes, and Alzheimer's disease. However, the multifaceted nature and complexities of lipid metabolism make it difficult to delineate its exact mechanism and role during aging. With advances in genetic engineering techniques, recent studies have demonstrated that changes in lipid metabolism are associated with aging and age-related diseases. Lipid accumulation and impaired fatty acid utilization in organs are associated with pathophysiological phenotypes of aging. Changes in adipokine levels contribute to aging by modulating changes in systemic metabolism and inflammation. Advances in lipidomic techniques have identified changes in lipid profiles that are associated with aging. Although it remains unclear how lipid metabolism is regulated during aging, or how lipid metabolites impact aging, evidence suggests a dynamic role for lipid metabolism and its metabolites as active participants of signaling pathways and regulators of gene expression. This review describes recent advances in our understanding of lipid metabolism in aging, including established findings and recent approaches.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Arthritis/metabolism , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Neoplasms/metabolism , Obesity/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adiposity/physiology , Aging/genetics , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Arthritis/etiology , Arthritis/genetics , Arthritis/pathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Fatty Acids/metabolism , Gene Expression Regulation , Humans , Leptin/genetics , Leptin/metabolism , Lipid Metabolism/genetics , Lipidomics/methods , Neoplasms/etiology , Neoplasms/genetics , Neoplasms/pathology , Obesity/complications , Obesity/genetics , Obesity/pathology , Signal Transduction
19.
Biomed Chromatogr ; 35(7): e5091, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33618435

ABSTRACT

High-throughput lipidomics technology was used to explore the potential therapeutic targets and mechanism of action of gelanxinning capsule on rat model with coronary heart disease (CHD). This study attempts to provide a novel method to interpret the molecular mechanism of traditional medicine. The lipid markers of CHD were determined by full-scan analysis based on ultra-performance liquid chromatography-high-definition mass spectrometry. Then, the metabolic changes associated with gelanxinning capsule treatment via the modulation of lipid biomarkers and pathway in rats were characterized. After gelanxinning treatment, the metabolic profile tended to recover compared with the model group. A total of 26 potential biomarkers were identified to represent the disorders of lipid metabolism in CHD animal model, of which 19 were regulated by gelanxinning capsule administration, and four metabolic pathways such as glycerophospholipid metabolism, sphingolipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, and glycerolipid metabolism were involved. From the pathway analysis, it was found that glycerophospholipid metabolism and sphingolipid metabolism with significant differences have the potential to be regarded as new targets for the treatment of CHD. Gelanxinning capsule with its good therapeutic effect protects against CHD by regulating lipid biomarkers and pathway from lipidomics-guided biochemical analysis.


Subject(s)
Coronary Disease , Drugs, Chinese Herbal/pharmacology , Lipid Metabolism/drug effects , Lipidomics/methods , Lipids/blood , Animals , Biomarkers/blood , Chromatography, Liquid/methods , Coronary Disease/blood , Coronary Disease/metabolism , Male , Rats , Rats, Sprague-Dawley
20.
J Am Heart Assoc ; 10(3): e018126, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33461307

ABSTRACT

Background Supplementation with long chain n-3 polyunsaturated fatty acids is used to reduce total circulating triacylglycerol (TAG) concentrations. However, in about 30% of people, supplementation with long chain n-3 polyunsaturated fatty acids does not result in decreased plasma TAG. Lipidomic analysis may provide insight into this inter-individual variability. Methods Lipidomic analyses using targeted, mass spectrometry were performed on plasma samples obtained from a clinical study in which participants were supplemented with 3 g/day of long chain n-3 in the form of fish oil capsules over a 6-week period. TAG species and cholesteryl esters (CE) were quantified for 130 participants pre- and post-supplementation. Participants were segregated into 3 potential responder phenotypes: (1) positive responder (Rpos; TAG decrease), (2) non-responder (Rnon; lacking TAG change), and (3) negative responder (Rneg; TAG increase) representing 67%, 18%, and 15% of the study participants, respectively. Separation of the 3 phenotypes was attributed to differential responses in TAG with 50 to 54 carbons with 1 to 4 desaturations. Elevated TAG with higher carbon number and desaturation were common to all phenotypes following supplementation. Using the TAG responder phenotype for grouping, decreases in total CE and specific CE occurred in the Rpos phenotype versus the Rneg phenotype with intermediate responses in the Rnon phenotype. CE 20:5, containing eicosapentaenoic acid (20:5n-3), was elevated in all phenotypes. A classifier combining lipidomic and genomic features was built to discriminate triacylglycerol response phenotypes and reached a high predictive performance with a balanced accuracy of 75%. Conclusions These data identify lipidomic signatures, TAG and CE, associated with long chain n-3 response p henotypes and identify a novel phenotype based upon CE changes. Registration URL: https://www.ClinicalTrials.gov; Unique Identifier: NCT01343342.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Hypertriglyceridemia/therapy , Lipidomics/methods , Triglycerides/blood , Adolescent , Adult , Biomarkers/blood , Female , Follow-Up Studies , Humans , Hypertriglyceridemia/blood , Male , Middle Aged , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL