Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters

Publication year range
1.
J Ethnopharmacol ; 326: 117911, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38355028

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dolomiaea costus (Falc.), formerly Saussurea costus (Falc.) Lipsch., an ayurvedic medicinal plant, has long been recognized and utilized in diverse indigenous systems of medicine for its multifaceted therapeutic properties, including anti-inflammatory, carminative, expectorant, antiarthritic, antiseptic, aphrodisiac, anodyne, and antidiabetic effects. AIM OF THE STUDY: The potential and underlying mechanisms of D. costus root as an antidiabetic agent were investigated in this study. Additionally, the quantification of phenolic and flavonoid compounds, which dominate the extracts, was of particular interest in order to elucidate their contribution to the observed effects. MATERIALS AND METHODS: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was employed to analyze the chemical constituents in D. costus root aqueous extract (DCA) and D. costus root ethanolic extract (DCE). Furthermore, the inhibitory potentials of DCE and its respective fractions as well as DCA against α-amylase, α-glucosidase, and lipase enzymes were assessed. Subsequently, the efficacy of DCA and DCE extracts was evaluated using an established streptozotocin (STZ)-induced diabetic animal model; this involved administering the extracts at doses of 200 and 400 mg/kg bwt. and comparing them with a positive control (glibenclamide (Glib.) at 0.6 mg/kg bwt.). After induction of diabetes (except for negative control), all animals received the treatments orally for 21 days consecutively, followed by the collection of rat serum to assess various parameters including, glycemic and lipid profiles, liver and kidney functions, antioxidant activity, glycolysis, and gluconeogenesis pathways. RESULTS: The results of HPLC-ESI-MS/MS revealed that isochlorogenic acid A (8393.64 µg/g) and chlorogenic acid (6532.65 µg/g) were the predominant compounds in DCE and DCA, respectively. Both extracts exhibited notable antidiabetic properties, as evidenced by their ability to regulate blood glycemic and lipid profiles (glucose, insulin, HBA1C; HDL, TC, TGs), liver enzymes (ALT, ALP, AST), kidney function (urea, creatinine, uric acid), oxidative stress biomarkers (MDA), antioxidant enzymes (CAT, GSH, SOD), as well as glycolysis (glucokinase) and gluconeogenesis (G-6-P, FBP1) pathways. CONCLUSIONS: Furthermore, the administration of D. costus extracts significantly mitigated STZ-induced diabetic hyperglycemia. These results can be attributed, at least partially, to the presence of several polyphenolic compounds with potent antioxidant and anti-inflammatory activities.


Subject(s)
Costus , Diabetes Mellitus, Experimental , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Streptozocin , Costus/chemistry , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Carbohydrate Metabolism , Anti-Inflammatory Agents/pharmacology , Lipids/therapeutic use , Blood Glucose
2.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38311542

ABSTRACT

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Subject(s)
Cholestenones , Diet, High-Fat , Obesity , Mice , Animals , Diet, High-Fat/adverse effects , Obesity/drug therapy , Adipose Tissue, White/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Glucose/metabolism , Insulin/pharmacology , Lipids/pharmacology , Lipids/therapeutic use , Mammals/metabolism
3.
J Ethnopharmacol ; 324: 117781, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38253278

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The application of Cortex Mori (CM) in the treatment of diabetes mellitus (DM) has been extensively documented in traditional medicine. In recent years, the chemical composition of CM has been gradually unraveled, and its therapeutic mechanism in treating DM, diabetic nephropathy, diabetic cardiomyopathy, and other related conditions has been highlighted in successive reports. However, there is no systematic study on the treatment of DM based on the chemical composition of CM. AIM OF THE STUDY: This study was conducted to systematically explore the hypoglycemic activity mechanism of CM based on its chemical composition. METHODS: The material basis of Cortex Mori extract (CME) was investigated through qualitative analyses based on liquid chromatography-mass spectrometry (LC-MS). The possible acting mechanism was simulated using network pharmacology and validated in streptozotocin (STZ) + high fat diet (HFD)-induced diabetic rats and glucosamine-induced IR-HepG2 model with the assistance of molecular docking techniques. RESULTS: A total of 39 compounds were identified in CME by the LC-MS-based qualitative analysis. In diabetic rats, it was demonstrated that CME significantly ameliorated insulin resistance, blood lipid levels, and liver injury. The network pharmacology analysis predicted five major targets, including AKT1, PI3K, FoxO1, Gsk-3ß, and PPARγ. Additionally, three key compounds (resveratrol, protocatechuic acid, and kaempferol) were selected based on their predicted contributions. The experimental results revealed that CME, resveratrol, protocatechuic acid, and kaempferol could promote the expression of AKT1, PI3K, and PPARγ, while inhibiting the expression of FoxO1 and Gsk-3ß. The molecular docking results indicated a strong binding affinity between resveratrol/kaempferol and their respective targets. CONCLUSIONS: CME contains a substantial amount of prenylated flavonoids, which may be the focal point of research on the efficacy of CM in the treatment of DM. Besides, CME is effective in controlling blood glucose and insulin resistance, improving lipid levels, and mitigating liver injury in patients with DM. Relevant mechanisms may be associated with the activation of the PI3K/Akt pathway, the inhibition of the expression of FoxO1 and Gsk-3ß, and the enhancement of PPARγ activity. This study represents the first report on the role of CME in the treatment of DM through regulating PPARγ, FoxO1, and Gsk-3ß.


Subject(s)
Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Hydroxybenzoates , Insulin Resistance , Rats , Humans , Animals , Glycogen Synthase Kinase 3 beta , Kaempferols/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Molecular Docking Simulation , Resveratrol , Phosphatidylinositol 3-Kinases/metabolism , PPAR gamma , Lipids/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Drugs, Chinese Herbal/pharmacology
4.
Adv Biol (Weinh) ; 8(2): e2300370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37840428

ABSTRACT

This study investigates the therapeutic potential of electroacupuncture (EA) on obesity, focusing on its influence on autophagy and energy metabolism, utilizing a high-fat diet (HFD)-induced mouse model. Treatment with EA significantly reduces body weight, fat deposition, and lipid accumulation in HFD-fed mice. Additionally, EA effectively ameliorates metabolic imbalances, reducing blood glucose levels and plasma markers of liver function. At the molecular level, EA enhances the expression of thermogenesis-associated genes in brown adipose tissue and decreases p53 expression, suggesting a decrease in apoptosis. Autophagy in white adipose tissue is inhibited by EA, as demonstrated by the suppression of key autophagy-related proteins. Further experiments highlight the critical role of Sirtuin 3 (Sirt3) in EA's anti-obesity effects. Sirt3 supplementation combined with EA results in reduced body weight, fat deposition, and lipid accumulation, along with modulations in key metabolic indicators. Moreover, EA's modulatory effect on uncoupling protein 1 (Ucp1), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α), and p53 is found to be Sirt3 dependent. In conclusion, EA exerts beneficial effects against obesity through Sirt3-dependent modulation of autophagy and energy metabolism, indicating a potential therapeutic approach for obesity and related metabolic disorders.


Subject(s)
Electroacupuncture , Sirtuin 3 , Mice , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/therapeutic use , Diet, High-Fat/adverse effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/therapeutic use , Obesity/therapy , Obesity/genetics , Obesity/metabolism , Body Weight , Autophagy/genetics , Lipids/therapeutic use
5.
Zhonghua Xue Ye Xue Za Zhi ; 44(10): 838-844, 2023 Oct 14.
Article in Chinese | MEDLINE | ID: mdl-38049336

ABSTRACT

Objective: To explore the dynamic changes in serum lipid levels and nutritional status during BCMA-CAR-T-cell therapy in patients with refractory or relapsed multiple myeloma (R/R MM) based on LEGEND-2. Methods: The data of patients with R/R MM who underwent BCMA-CAR-T therapy at our hospital between March 30, 2016, and February 6, 2018, were retrospectively collected. Serum lipid levels, controlled nutritional status (CONUT) score, and other clinical indicators at different time points before and after CAR-T-cell infusion were compared and analyzed. The best cut-off value was determined by using the receiver operator characteristic (ROC) curve. The patients were divided into high-CONUT score (>6.5 points, malnutrition group) and low-CONUT score groups (≤6.5 points, good nutrition group), comparing the progression-free survival (PFS) and total survival (OS) of the two groups using Kaplan-Meier survival analysis. Results: Before the infusion of CAR-T-cells, excluding triglycerides (TG), patients' serum lipid levels were lower than normal on average. At 8-14 d after CAR-T-cell infusion, serum albumin (ALB), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and apolipoprotein A1 (Apo A1) levels dropped to the minimum, whereas CONUT scores reached the maximum. In addition to TG, apolipoprotein B (Apo B) levels increased compared with baseline. After CAR-T-cell therapy, the patients' serum lipid levels significantly increased with well-improved nutritional status. Spearman's related analysis showed that TC, HDL, and ApoA1 levels after CAR-T-cell injection were significantly negatively correlated with the grade of cytokine-release syndrome (CRS) (r=-0.548, P=0.003; r=-0.444, P=0.020; r=-0.589, P=0.001). Furthermore, survival analysis indicated that the CONUT score was unrelated to PFS, and the median OS of patients with R/R MM in the high-CONUT score group was shorter than that in the low-CONUT score group (P=0.046) . Conclusions: During CAR-T-cell therapy, hypolipidemia and poor nutritional status were aggravated, which is possibly related to CRS. The patients' serum lipid levels and nutritional status were significantly improved after CAR-T-cell treatment. The CONUT score affected the median OS in patients treated with CAR-T-cells. Therefore, specific screening and intervention for nutritional status in patients receiving CAR-T-cell therapy are required.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/drug therapy , Nutritional Status , Retrospective Studies , Receptors, Chimeric Antigen/therapeutic use , B-Cell Maturation Antigen/therapeutic use , Cell- and Tissue-Based Therapy , Lipids/therapeutic use
6.
J Health Popul Nutr ; 42(1): 143, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098069

ABSTRACT

OBJECTIVES: To compare the efficacy and safety of Shanhuang Jiangzhi tablets and atorvastatin in reducing blood lipid levels. METHODS: Patients with hyperlipidaemia admitted to the cardiac centre between January 2019 and December 2020 were included in the study. A total of 1063 patients with hyperlipidaemia took either Shanhuang Jiangzhi tablets (n = 372) or atorvastatin (n = 691) and met the inclusion and exclusion criteria. Clinical data, including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol, were retrospectively evaluated after propensity score matching (PSM) analysis. The adverse events were also recorded during the therapy process. RESULTS: Following PSM analysis, both groups were well matched across all parameters. Compared with the baseline, Shanhuang Jiangzhi tablets had greater effects on TC, TG and LDL-C, and the difference was statistically significant (p < 0.001). Furthermore, the results showed that Shanhuang Jiangzhi tablets are similar to atorvastatin in reducing TC and LDL-C, and all p-values were > 0.05. However, the decrease of TG was greater in the Shanhuang Jiangzhi group (p < 0.001). Clinical adverse reactions of Shanhuang Jiangzhi tablets are rare and have no statistical significance compared with atorvastatin (p = 0.682). CONCLUSIONS: Shanhuang Jiangzhi tablets have a higher hypotriglyceridaemic performance than atorvastatin and an equivalent ability to lower TC and LDL-C. In addition, Shanhuang Jiangzhi tablets are a low-risk option for lowering blood lipids.


Subject(s)
Anticholesteremic Agents , Heptanoic Acids , Hyperlipidemias , Humans , Atorvastatin/adverse effects , Hyperlipidemias/drug therapy , Hyperlipidemias/chemically induced , Cholesterol, LDL/therapeutic use , Anticholesteremic Agents/adverse effects , Retrospective Studies , Heptanoic Acids/adverse effects , Pyrroles/adverse effects , Lipids/therapeutic use , Triglycerides , Cholesterol, HDL/therapeutic use , Treatment Outcome
7.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836594

ABSTRACT

Periploca forrestii Schltr. (P. forrestii) is a classical medicinal plant and is commonly used in traditional medicine for the treatment of rheumatoid arthritis, soft tissue injuries, and traumatic injuries. The aim of this study was to evaluate the anti-arthritic effects of three fractions of P. forrestii alcoholic extracts (PAE), P. forrestii water extracts (PWE), and total flavonoids from P. forrestii (PTF) on Freund's complete adjuvant (FCA)-induced arthritis in rats, and to use a non-targeted lipidomic method to investigate the mechanism of action of the three fractions of P. forrestii in the treatment of rheumatoid arthritis. To assess the effectiveness of anti-rheumatoid arthritis, various indicators were measured, including joint swelling, histopathological changes in the joints, serum cytokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6)), and the joint inflammatory substance prostaglandin E2 (PGE2). Finally, ultra-performance liquid chromatography-quadrupole-orbitrap-high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS) was used to determine the non-targeted lipid histology of the collected rat serum and urine samples to investigate the possible mechanism of action. PWE, PAE, and PTF were all effective in treating FCA-induced rheumatoid arthritis. The administered groups all reduced joint swelling and lowered serum inflammatory factor levels in rats. In the screening of lipid metabolite differences between serum and urine of the rat model group and the normal group, a total of 52 different metabolites were screened, and the levels of lipid metabolites in PWE, PAE, and PTF were significantly higher than those in the normal group after administration. In addition, PWE, PAE, and PTF may have significant therapeutic effects on FCA-induced arthritis by modulating nicotinic acid, nicotinamide, and histidine metabolic pathways.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Periploca , Rats , Animals , Periploca/chemistry , Plant Extracts/analysis , Rats, Sprague-Dawley , Lipidomics , Arthritis, Rheumatoid/drug therapy , Collagen/therapeutic use , Interleukin-6 , Adjuvants, Immunologic/therapeutic use , Freund's Adjuvant , Adjuvants, Pharmaceutic , Lipids/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology
8.
Pharmacol Res ; 196: 106925, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37714392

ABSTRACT

With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.


Subject(s)
Biological Products , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/metabolism , Liver , Hypolipidemic Agents/therapeutic use , Drug Development , Lipids/therapeutic use
9.
Molecules ; 28(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446881

ABSTRACT

Diclofenac is the most prescribed nonsteroidal anti-inflammatory drug worldwide and is used to relieve pain and inflammation in inflammatory arthritis. Diclofenac is associated with serious adverse effects, even in regular-dose regimens. Drug delivery systems can overcome this issue by reducing adverse effects and optimizing their efficacy. This study evaluated the activity of lipid-core nanocapsules loaded with diclofenac (DIC-LNCs) in an experimental model of adjuvant-induced arthritis. The diclofenac nanoformulation was obtained via self-assembly. A stereological analysis approach was applied for the morphological quantification of the volume, density, and cellular profile count of the metatarsophalangeal joints of rats. Proinflammatory cytokines and biochemical profiles were also obtained. Our results showed that the diclofenac nanocapsule DIC-LNCs were able to reduce arthritis compared with the control group and the DIC group. DIC-LNCs efficiently reduced proinflammatory cytokines, C-reactive protein, and xanthine oxidase levels. Additionally, DIC-LNCs reduced the loss of synoviocytes and chondrocytes compared with the DIC (p < 0.05) and control groups (p < 0.05). These data suggest that DIC-LNCs have anti-arthritic activity and preserve joint components, making them promising for clinical use.


Subject(s)
Arthritis, Experimental , Nanocapsules , Rats , Animals , Diclofenac/pharmacology , Diclofenac/therapeutic use , Arthritis, Experimental/drug therapy , Lipids/therapeutic use , Cytokines
10.
J Ethnopharmacol ; 312: 116523, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37080364

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The capitulum of Coreopsis tinctoria Nutt. (CT, Xue-Ju in Chinese) is a precious medicine in Xinjiang Uygur Autonomous region of China. The Coreopsis tinctoria Nutt. is used to prevent and treat dyslipidemia, coronary heart disease, etc. Recent studies have shown that its extract has a pharmacological effect on hyperlipidemia and hyperglycemia. AIM OF THE STUDY: The study aimed to systematically evaluate the lipid-lowering activity of CT through a mice model of hyperlipidemia and a human hepatoma G2 (HepG2) cells model of lipid accumulation, and to investigate its main active components and mechanism. MATERIALS AND METHODS: Biochemical analysis of blood/liver lipids and liver histopathology were used to evaluate the effect of the aqueous extract of Coreopsis tinctoria Nutt. (AECT) on hyperlipidemia mice. High-performance liquid chromatography (HPLC) analysis was used to identify the main components in the AECT. Oil red O staining, immunofluorescence, western blotting, and determination of the total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were used to further study the effect and potential mechanism of the AECT main components on sodium oleate-induced lipid accumulation in HepG2 cells. RESULTS: We confirmed the lipid-lowering activity of the aqueous extract and further identified flavonoids as its main components. Among them, five Coreopsis tinctoria Nutt. flavonoids mixture (FM) significantly reduced lipid droplet area, lipid content, TC, TG, and LDL-C levels, and elevated HDL-C levels in HepG2 cells induced by sodium oleate. Furthermore, they increased lipophagy in HepG2 lipid-accumulating cells, while decreasing the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Most importantly, marein may be a key component. CONCLUSIONS: Our study demonstrated that AECT, with flavonoids as the main component, can improve diet-induced hyperlipidemia in obese mice. Among the main five flavonoids, marein plays a key role in promoting lipophagy by regulating the PI3K/AKT/mTOR pathway, resulting in a lipid-lowering effect.


Subject(s)
Hyperlipidemias , Phosphatidylinositol 3-Kinases , Mice , Humans , Animals , Proto-Oncogene Proteins c-akt , Cholesterol, LDL , Flavonoids/pharmacology , Flavonoids/therapeutic use , Hyperlipidemias/metabolism , Lipids/therapeutic use , Triglycerides , TOR Serine-Threonine Kinases
11.
Biomed Pharmacother ; 163: 114754, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094549

ABSTRACT

Metformin (MTF) and berberine (BBR) share several therapeutic benefits in treating metabolic-related disorders. However, as the two agents have very different chemical structure and bioavailability in oral route, the goal of this study is to learn their characteristics in treating metabolic disorders. The therapeutic efficacy of BBR and MTF was systemically investigated in the high fat diet feeding hamsters and/or ApoE(-/-) mice; in parallel, gut microbiota related mechanisms were studied for both agents. We discovered that, although both two drugs had almost identical effects on reducing fatty liver, inflammation and atherosclerosis, BBR appeared to be superior over MTF in alleviating hyperlipidemia and obesity, but MTF was more effective than BBR for the control of blood glucose. Association analysis revealed that the modulation of intestinal microenvironment played a crucial role in the pharmacodynamics of both drugs, in which their respective superiority on the regulation of gut microbiota composition and intestinal bile acids might contribute to their own merits on lowering glucose or lipids. This study shows that BBR may be a good alternative for MTF in treating diabetic patients, especially for those complicated with dyslipidemia and obesity.


Subject(s)
Berberine , Hyperlipidemias , Metformin , Cricetinae , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Berberine/pharmacology , Berberine/therapeutic use , Obesity/drug therapy , Hyperlipidemias/drug therapy , Lipids/therapeutic use
12.
Adv Biol (Weinh) ; 7(7): e2200310, 2023 07.
Article in English | MEDLINE | ID: mdl-36950773

ABSTRACT

Carassius auratus complex formula (CACF) is a traditional Chinese medicine known for its antidiabetic effects. Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide, and there are currently no effective therapies for advanced HCC. This study explores the comprehensive effects and possible mechanisms of CACF on HCC. The results show that CACF reduces the viability of hepatoma cells in vitro, while benefiting normal hepatocytes. In addition, CACF inhibits hepatoma cell growth in a zebrafish xenotransplantation model and decreases lipid accumulation, represses inflammation and cell proliferation markers in fatty acid translocase (CD36) transgenic zebrafish, and inhibits the expression of cell proliferation and ß-catenin downstream targets in telomerase (tert) transgenic zebrafish models. Ingenuity Pathway Analysis reveals that CACF exerts multiple functions, including reduction of inflammation and inhibition of lipid transporter and PPAR signaling pathway. Surprisingly, CACF also regulates the expression of genes and reduces coronavirus infection and pathogenesis in a zebrafish model. CACF treatment is validated to regulate the expression of genes for anti-coronavirus activity. Mechanistically, CACF stabilizes G-quadruplex and reduces cell senescence associated ß-galactosidase activity. In summary, CACF may be a promising therapeutic agent with multiple functions including anticancer, anti-inflammation, and anti-microorganisms in a zebrafish model.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Zebrafish/genetics , Goldfish , Carcinogenesis , Cellular Senescence , Inflammation , Lipids/therapeutic use
13.
Pharmacol Res ; 189: 106679, 2023 03.
Article in English | MEDLINE | ID: mdl-36764041

ABSTRACT

Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Adult , Child , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Diabetes Mellitus, Type 2/complications , Dietary Supplements , Liver Cirrhosis/complications , Cardiovascular Diseases/prevention & control , Lipids/therapeutic use
14.
Cannabis Cannabinoid Res ; 8(4): 642-656, 2023 08.
Article in English | MEDLINE | ID: mdl-35343818

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental conditions affecting social communication and social interaction. Medical cannabis (MC) treatment shows promising results as an approach to reduce behavioral difficulties, as determined mainly by subjective observations. We have recently shown the potential of cannabis-responsive biomarkers detected in saliva of children with ASD to objectively quantify the impact of successful MC treatment using a metabolomics approach. Since the pathology of ASD is associated with abnormal lipid metabolism, we used lipidomics on the same samples to (1) expand the repertoire of cannabis-responsive biomarkers and (2) provide preliminary insight into the role of MC on lipid metabolism. Materials and Methods: Saliva samples collected from children with ASD (n=15) treated with MC (both before and at the time of maximal impact of treatment) and an age-matched group of typically developing (TD) children (n=9) were subjected to untargeted lipidomics. The study was observational. Each child from the ASD group was receiving a unique individualized MC treatment regimen using off-the-shelf products as permitted by California law under physician supervision for at least 1 year. Doses of tetrahydrocannabinol (THC) ranged from 0.05 to 50 mg and cannabidiol (CBD) from 7.5 to 200 mg per treatment. The ASD group was evaluated for signs of improvement using parental brief Likert scale surveys. Results: Twenty-two potential lipid-based cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels in children with ASD after MC treatment were identified. Members from all five lipid subclasses known to be present in saliva were characterized. Preliminary lipid association network analysis suggests involvement of two subnetworks previously linked to (1) inflammation and/or redox regulation and (2) oxidative stress. The significant changes in sphingomyelin in this study and in N-acetyl-aspartate (NAA) previously detected in the metabolomics analysis of the same saliva samples may indicate a role of MC in neuron function. Conclusions: Our findings suggest that lipid metabolites in saliva can potentially serve as cannabis-responsive biomarkers and objectively quantify the impact of MC treatment, and indicate a possible mechanism of action for MC. This preliminary study requires further investigation with a larger population and appropriate clinical trial monitoring.


Subject(s)
Autism Spectrum Disorder , Cannabis , Medical Marijuana , Child , Humans , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/metabolism , Biomarkers/analysis , Cannabinoid Receptor Agonists/therapeutic use , Lipids/therapeutic use , Medical Marijuana/therapeutic use
15.
J Popul Ther Clin Pharmacol ; 29(4): e202-e210, 2022.
Article in English | MEDLINE | ID: mdl-36579951

ABSTRACT

Anti-diabetic therapies possess many side effects; thus, searching for alternative strategies with low cost, minimal side effects, and high therapeutic value is very important. The present study aimed to explore the combined use of selenium yeast (SY) and standard anti-diabetic drug pioglitazone (PGZ) for diabetes mellitus (DM) treatment in streptozotocin (STZ)-induced DM. STZ was injected daily intraperitoneally with a low dose (40 mg/kg) into Sprague-Dawley rats to induce DM. The synergistic effect of the SY (0.2 mg/kg) and PGZ (0.65 mg/kg) on DM complications was evaluated after 88 weeks of treatment. The impact of our medication on glucose levels, insulin sensitivity, lipid abnormalities, oxidative mediators, and inflammatory markers was assessed by biochemical techniques. STZ-induced diabetes has toxic effects, including toxic hepatic tissues, lipid disturbances, massive oxidative damage, and hyperinflammation. Experimental rats either treated with monotherapy alone or combined therapy resulted in a significant anti-diabetic effect. The PGZ+ SY combination has the best effect, as illustrated by significant (P < 0.05) decreases in fasting blood glucose, (FBG) insulin, HbA1c, and HOMA-IR levels. This combination attenuated (P < 0.05) lipid disturbances and their associated elevated atherogenicity biomarkers. At the same time, treatments with PGZ+ SY exhibited an anti-inflammatory effect as they ameliorated the increase in inflammatory parameters (CRP, TNF-α, IL-6). Also, it restored the total antioxidant capacity and peroxisome proliferator-activated receptor (PPARƔ) levels that were decreased by STZ-DM induction. In conclusion, this study finds PGZ+ SY as a promising DM therapeutic alternative. This synergistic combination alleviates most DM-related complications and insulin resistance.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Selenium , Rats , Humans , Animals , Pioglitazone/therapeutic use , Selenium/therapeutic use , Saccharomyces cerevisiae , Streptozocin/therapeutic use , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Lipids/therapeutic use , Hypoglycemic Agents/pharmacology , Blood Glucose
16.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232316

ABSTRACT

Obesity is an increasing problem worldwide. It is often associated with co-morbidities such as type II diabetes, atherosclerotic diseases, and non-alcoholic fatty liver disease. The risk of these diseases can be lowered by relieving the systemic low-grade inflammation associated with obesity, even without noticeable weight loss. Bilberry is an anthocyanin-rich wild berry with known antioxidant and anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to investigate the effects of air-dried bilberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in the gene expression in adipose and hepatic tissues. The bilberry supplementation was unable to modify the weight gain, but it prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14 induced by the high-fat diet. The bilberry supplementation also partially prevented the increase in serum cholesterol, glucose, and insulin levels. In conclusion, the bilberry supplementation alleviated the systemic and hepatic inflammation and retarded the development of unwanted changes in the lipid and glucose metabolism induced by the high-fat diet. Thus, the bilberry supplementation seemed to support to retain a healthier metabolic phenotype during developing obesity, and that effect might have been contributed to by bilberry anthocyanins.


Subject(s)
Diabetes Mellitus, Type 2 , Insulins , Vaccinium myrtillus , Animals , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cholesterol/therapeutic use , Diet, High-Fat/adverse effects , Disease Models, Animal , Glucose/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Lipids/therapeutic use , Mice , Obesity/etiology , Obesity/genetics , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Powders/therapeutic use , Weight Gain
17.
Molecules ; 27(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144587

ABSTRACT

The main characteristic feature of diabetes mellitus is the disturbance of carbohydrate, lipid, and protein metabolism, which results in insulin insufficiency and can also lead to insulin resistance. Both the acute and chronic diabetic cases are increasing at an exponential rate, which is also flagged by the World Health Organization (WHO) and the International Diabetes Federation (IDF). Treatment of diabetes mellitus with synthetic drugs often fails to provide desired results and limits its use to symptomatic treatment only. This has resulted in the exploration of alternative medicine, of which herbal treatment is gaining popularity these days. Owing to their safety benefits, treatment compliance, and ability to exhibit effects without disturbing internal homeostasis, research in the field of herbal and ayurvedic treatments has gained importance. Medicinal phytoconstituents include micronutrients, amino acids, proteins, mucilage, critical oils, triterpenoids, saponins, carotenoids, alkaloids, flavonoids, phenolic acids, tannins, and coumarins, which play a dynamic function in the prevention and treatment of diabetes mellitus. Alkaloids found in medicinal plants represent an intriguing potential for the inception of novel approaches to diabetes mellitus therapies. Thus, this review article highlights detailed information on alkaloidal phytoconstituents, which includes sources and structures of alkaloids along with the associated mechanism involved in the management of diabetes mellitus. From the available literature and data presented, it can be concluded that these compounds hold tremendous potential for use as monotherapies or in combination with current treatments, which can result in the development of better efficacy and safety profiles.


Subject(s)
Alkaloids , Diabetes Mellitus , Saponins , Synthetic Drugs , Triterpenes , Alkaloids/therapeutic use , Amino Acids/therapeutic use , Carbohydrates , Carotenoids/therapeutic use , Coumarins/therapeutic use , Diabetes Mellitus/drug therapy , Flavonoids/therapeutic use , Humans , Insulin/therapeutic use , Lipids/therapeutic use , Micronutrients/therapeutic use , Oils/therapeutic use , Phytotherapy , Saponins/therapeutic use , Synthetic Drugs/therapeutic use , Tannins/therapeutic use , Triterpenes/therapeutic use
18.
J Control Release ; 350: 734-747, 2022 10.
Article in English | MEDLINE | ID: mdl-36063959

ABSTRACT

Mirroring the rapid clinical performance, immune checkpoint blockade (ICB) leads a remarkable clinical advance in combating cancer, but suffers poor response in most cancers. The low presence of tumor-infiltration lymphocytes and the poor immunogenicity in tumor microenvironment (TME) are the main factors hindering the effectiveness of ICB in the treatment of immunological "cold" tumors. Aiming at boosting immune response via TME modulation, we report a near-infrared laser-guided photoimmuno-strategy in which synergistic phototherapy, immune adjuvant, and ICB are integrated into one versatile nanoporphyrin platform. The prepared nanoporphyrins are self-assembled from purpurin18-lipids and have photodynamic/photothermal and immunomodulatory effects that can be tuned under a single laser irradiation, concomitant with fluorescence or MSOT imaging. In this work, the contributions of each component in the nanoporphyrin platform were specified. In particular, phototherapy-driven in situ tumor cell death provided abundant tumor-associated antigens to initiate immune responses. With the assist of spatiotemporally delivered immune adjuvant, phototherapy potentiated tumor immunogenicity, reprogrammed "cold" tumors into "hot" ones, and sensitized tumors to ICB therapy. Further combined with PD-L1 blockade, the photoimmune-strategy substantially stimulated tumor-specific immune-responses and long-term immunological memory against primary tumor, abscopal tumor as well as metastatic foci. Such single light-primed photoimmunotherapy offers a promising solution to overcome common hurdles in ICB treatment and can potentially be integrated into existing clinical practice.


Subject(s)
B7-H1 Antigen , Neoplasms , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Antigens, Neoplasm/therapeutic use , Etoposide/therapeutic use , Humans , Immune Checkpoint Inhibitors , Immunity , Immunotherapy/methods , Lipids/therapeutic use , Neoplasms/drug therapy , Phototherapy , Tumor Microenvironment
19.
Int Immunopharmacol ; 112: 109207, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36067655

ABSTRACT

Ankylosing spondylitis (AS) has been associated with an increased cardiovascular disease (CVD) risk, with current guidelines recommending multiple CVD-related risk assessment strategies. CVD risk prediction using a scoring model with lipids might be another promising alternative, for which ultrasound screening for subclinical atherosclerosis may be considered together with surrogate markers. Theoretically, tumor necrosis factor inhibitors (TNFi), which are known to inhibit endothelial activation and inflammation caused by the disease and underlying metabolic dysfunction, might prevent microvascular events. In this narrative review, we summarized the evidence of TNFi effects on CVD in AS. Although early case reports revealed that CVD occurred during TNFi treatment, more recent evidence shows that it could be successfully treated. Studies of TNFi on lipid changes and subclinical atherosclerosis have shown controversial results, possibly due to genetic predisposition, differences in affinity for membrane-bound TNF leading to insufficient inhibition of inflammation or primary failure response to TNFi, and not enough follow-up time to identify potential significance. Overall, patients vulnerable to CVD could benefit from long-term administration of TNFi when inflammation is under control. Besides healthy lifestyle modification, traditional CVD risk factors and metabolic syndrome-related diseases should be further assessed and treated if necessary.


Subject(s)
Antirheumatic Agents , Atherosclerosis , Cardiovascular Diseases , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/drug therapy , Tumor Necrosis Factor Inhibitors , Antirheumatic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/complications , Tumor Necrosis Factor-alpha , Biomarkers , Inflammation/drug therapy , Atherosclerosis/drug therapy , Lipids/therapeutic use , Treatment Outcome
20.
Nanomedicine (Lond) ; 17(15): 1055-1075, 2022 06.
Article in English | MEDLINE | ID: mdl-36066036

ABSTRACT

Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl ß-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPßCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPßCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPßCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.


Weight gain or obesity represents a major health risk and leads to diseases including cancer and heart disease. Most anti-obesity medications have significant side effects, and there are notable challenges concerning their availability in the body to produce an effect. Pterostilbene is a herbal drug with beneficial anti-obesity effects. However, it has problems such as poor solubility which restrict its use. The aim of the study was to formulate pterostilbene in a nano-based delivery system and fully characterize its anti-obesity effect when given orally. We evaluated the safety and anti-obesity effects of pterostilbene nanoparticles in cells and in obese rats fed on a high-fat diet. We also looked at how the body absorbs, distributes and gets rid of these nanoparticles. The prepared nanoparticles were nontoxic, with an improved anti-obesity effect; they decreased cholesterol levels and helped in changing white fat (which stores fat) to brown fat (which burns calories). We conclude that the developed pterostilbene nanoparticles, given orally, are a new and promising anti-obesity strategy given their long-lasting effect on weight loss and the minimal side effects. This may be of great economic and societal impact.


Subject(s)
Chitosan , Nanoparticles , Animals , Rats , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Caco-2 Cells , Cyclooxygenase 2 , Dietary Supplements , Interleukin-6 , Leptin/genetics , Leptin/therapeutic use , Lipids/therapeutic use , Obesity/drug therapy , Sirtuin 1/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL