Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Agric Food Chem ; 67(49): 13367-13392, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31591878

ABSTRACT

Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.


Subject(s)
Aldehyde-Lyases/chemistry , Cytochrome P-450 Enzyme System/chemistry , Flavoring Agents/chemistry , Lipoxygenases/chemistry , Plant Leaves/enzymology , Plant Proteins/chemistry , Volatile Organic Compounds/chemistry , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Flavoring Agents/metabolism , Lipoxygenases/genetics , Lipoxygenases/metabolism , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Volatile Organic Compounds/metabolism
2.
Pak J Pharm Sci ; 32(1): 217-220, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30772812

ABSTRACT

Millettia ovalifolia is traditionally used in variety of diseases including inflammation. In our investigation in to the phytochemical constituents of Millettia ovalifolia an effort was made to find out bioactive constituent from medicinal Plant M. ovalifolia to scientifically validate its use in inflammatory disorders. The compound 7-hydroxy-6-methoxy-2H-chromen-2-one was isolated from the bark of M. ovalifolia and was found to exhibited significant lipoxygenase (LOX) inhibitory activity with (IC50 value: 116.83±0.02µM). The Standard compounds Baicalein and Tenidap sodium revealed IC50 value being 22.1±0.03µM and 41.6±0.02µM. Molecular docking study further displayed significant molecular interactions between 7-hydroxy-6-methoxy-2H-chromen-2-one and LOX showed potential for further optimization as a possible anti-inflammatory lead compound.


Subject(s)
Benzopyrans/pharmacokinetics , Drug Discovery/methods , Lipoxygenase Inhibitors/pharmacology , Lipoxygenases/metabolism , Millettia , Molecular Docking Simulation , Plant Extracts/pharmacology , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Flavanones/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/isolation & purification , Lipoxygenases/chemistry , Millettia/chemistry , Oxindoles/pharmacology , Plant Bark , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Conformation , Structure-Activity Relationship
3.
Molecules ; 23(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261655

ABSTRACT

The present study investigated the phenolic profile and biological activity of dry extracts from leaves of C. bullatus, C. zabelii and C. integerrimus-traditional medicinal and dietary plants-and evaluated their potential in adjunctive therapy of cardiovascular diseases. Complementary UHPLC-PDA-ESI-MS³, HPLC-PDA-fingerprint, Folin-Ciocalteu, and n-butanol/HCl assays of the extracts derived by fractionated extraction confirmed that they are rich in structurally diverse polyphenols (47 analytes, content up to 650.8 mg GAE/g dw) with proanthocyanidins (83.3⁻358.2 mg CYE/g) dominating in C. bullatus and C. zabelii, and flavonoids (53.4⁻147.8 mg/g) in C. integerrimus. In chemical in vitro tests of pro-inflammatory enzymes (lipoxygenase, hyaluronidase) inhibition and antioxidant activity (DPPH, FRAP), the extracts effects were dose-, phenolic- and extraction solvent-dependent. The most promising polyphenolic extracts were demonstrated to be effective antioxidants in a biological model of human blood plasma-at in vivo-relevant levels (1⁻5 µg/mL) they normalized/enhanced the non-enzymatic antioxidant capacity of plasma and effectively prevented peroxynitrite-induced oxidative/nitrative damage of plasma proteins and lipids. As demonstrated in cytotoxicity tests, the extracts were safe-they did not affect viability of human peripheral blood mononuclear cells. In conclusion, Cotoneaster leaves may be useful in development of natural-based products, supporting the treatment of oxidative stress/inflammation-related chronic diseases, including cardiovascular disorders.


Subject(s)
Enzyme Inhibitors/pharmacology , Inflammation/prevention & control , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plasma/metabolism , Polyphenols/pharmacology , Rosaceae/chemistry , Antioxidants/pharmacology , Humans , Hyaluronoglucosaminidase/chemistry , In Vitro Techniques , Inflammation Mediators/metabolism , Lipoxygenases/chemistry , Plant Leaves/chemistry , Plasma/drug effects , Protective Agents/pharmacology
4.
Curr Mol Med ; 11(1): 13-25, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21189121

ABSTRACT

Eicosanoids, which originate from polyunsaturated fatty acids (PUFAs), have a major impact on homeostasis maintenance as secondary signal transducers. Signal cascade, which includes reception, processing and signal transduction coming from the environment into the cell, determines the type of response evoked. Signal distortion may take place on every level of this cascade and this in consequence could lead to the development of many diseases. Any intervention into PUFAs metabolism leads to quantitative and qualitative changes of synthesized eicosanoids. Some of them promote, whereas others inhibit carcinogenesis, some are pro- or anti-inflammatory and the overall result depends on the outcome of these contradictory effects. The type and amount of produced eicosanoids depends on substrates' availability and activity of enzymes catalyzing different stages of their transformation. A particularly negative role was assigned to the over expression of phospholipase A2, cyclooxygenase-2, 5- and 12-lipoxygenases, while the contribution of other oxygenases and their metabolites is considerably less clear. The information about their interplay is extremely sparse and inadequate to understand intricacies of the mechanisms involved. There are indications that utilization of selected eicosanoids (their analogs, agonists or antagonists) could be a better way of disease prevention and treatment, more effective than excessive dietary supplementation of fatty acids. This review presents a more global picture of oxygenases and their PUFA metabolites giving a brief summary of our current understanding of perspectives and pitfalls of their regulation and mediatory action in human diseases.


Subject(s)
Eicosanoids/therapeutic use , Amino Acid Substitution , Anti-Inflammatory Agents/therapeutic use , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/physiology , Eicosanoids/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/therapeutic use , Humans , Lipoxygenases/chemistry , Lipoxygenases/genetics , Lipoxygenases/physiology , Polymorphism, Genetic , Primary Prevention , Prostaglandin-Endoperoxide Synthases/chemistry , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL