Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894762

ABSTRACT

Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Mycobiome , Plants, Medicinal , DNA Barcoding, Taxonomic , Chromatography, High Pressure Liquid , Plant Extracts , Lonicera/genetics
2.
Mol Biol Rep ; 50(11): 8817-8825, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37658933

ABSTRACT

BACKGROUND: Lonicerae japonicae flos, also known as Jinyinhua (JYH), is an important component of traditional Chinese patent medicine (TCPM) products. However, the potential for adulteration and substitution with low-quality materials highlights the need for a reliable and sensitive approach to identify the species composition of TCPM products for consumer safety. METHODS AND RESULTS: We used universal ITS2 primers to amplify TCPMs containing JYH. However, the results were inconclusive, as only one operational taxonomic unit (OTU) was identified as Lonicera sp., which could not be identified at the species level. To confirm the species identification of Lonicera sp. in TCPM, we developed a short mini-barcode primer based on the psbA-trnH region, which, in combination with DNA metabarcoding technology, allowed for qualitative and quantitative analysis of artificially mixed samples. We applied the mini-barcode to distinguish TCPMs containing JYH and demonstrated its relatively accurate quantitative ability in identifying two Lonicera species. CONCLUSIONS: Our study presents a method for qualitative and quantitative identification of JYH, providing a promising application of DNA metabarcoding technology in the quality control of TCPM products.


Subject(s)
Drugs, Chinese Herbal , Lonicera , Medicine, Chinese Traditional , Quality Control , Lonicera/genetics , Chromatography, High Pressure Liquid
3.
Gene ; 888: 147739, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37633535

ABSTRACT

The active ingredients of many medicinal plants are the secondary metabolites associated with the growth period. Lonicera japonica Thunb. is an important traditional Chinese medicine, and the flower development stage is an important factor that influences the quality of medicinal ingredients. In this study, transcriptomics and metabolomics were performed to reveal the regulatory mechanism of secondary metabolites during flowering of L. japonica. The results showed that the content of chlorogenic acid (CGA) and luteolin gradually decreased from green bud stage (Sa) to white flower stage (Sc), especially from white flower bud stage (Sb) to Sc. Most of the genes encoding the crucial rate-limiting enzymes, including PAL, C4H, HCT, C3'H, F3'H and FNSII, were down-regulated in three comparisons. Correlation analysis identified some members of the MYB, AP2/ERF, bHLH and NAC transcription factor families that are closely related to CGA and luteolin biosynthesis. Furthermore, differentially expressed genes (DEGs) involved in hormone biosynthesis, signalling pathways and flowering process were analysed in three flower developmental stage.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Luteolin , Gene Expression Profiling , Lonicera/genetics , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Transcriptome/genetics
4.
BMC Genomics ; 24(1): 447, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553575

ABSTRACT

BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.


Subject(s)
Genome, Plant , Lonicera , Lonicera/genetics , Lonicera/metabolism , MADS Domain Proteins/metabolism , Transcription Factors/metabolism , Multigene Family , Phylogeny , Gene Expression Regulation, Plant , Flowers , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Article in English | MEDLINE | ID: mdl-37449344

ABSTRACT

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Subject(s)
COVID-19 , Lonicera , Oleanolic Acid , Plants, Medicinal , Saponins , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Saponins/genetics , Saponins/chemistry , Genomics , Evolution, Molecular
6.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37226859

ABSTRACT

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Quinic Acid/metabolism , Plant Breeding , Chromosome Mapping
7.
Genes (Basel) ; 14(3)2023 02 22.
Article in English | MEDLINE | ID: mdl-36980821

ABSTRACT

Both Lonicerae japonicae flos and Lonicerae similis flos are important components in traditional Chinese medicine (TCM) with precious medicinal value. However, the absence of studies on their chloroplast genomes and chromatography has considerably hindered the study of their evolutionary and phylogenetic relationships. In this study, the complete chloroplast (cp) genomes of Lonicera acuminata Wall. and Lonicera similis Hemsl. were sequenced using the Illumina sequencing platform and compared with that of Lonicera japonica Thunb., which has been previously reported. Furthermore, the chromatographic fingerprints of the three plants were constructed using HPLC and the content of quality marker (Q-Marker) was calculated. The annotation results showed that the two chloroplast genomes were typical quadripartite structures with lengths of 155,330 bp (L. acuminata) and 155,207 bp (L. similis). A total of 126 different genes were annotated, containing 82 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The expansion and contraction of the inverted repeat (IR) regions suggested that the boundary regions of IR/SC were comparatively conserved in the three species, and six regions (trnH-GUG-psbA, rps2-rpoC2, rbcL-psaI, trnN-GUU-ndhF, rps15-ycf1, and infA) with nucleotide diversity values (Pi) of variable sites higher than 1% were identified. Phylogenetic relation indicated that L. similis had a closer genetic relationship with L. japonica than L. acuminata. Additionally, the chromatographic fingerprints showed that the characteristic peaks of the three medicinal plants were similar, including Neochlorogenic acid, Chlorogenic acid, 4-Dicaffeoylquinic acid, Sweroside, Secoxyloganin, Luteoloside, Isochlorogenic acid A, Isochlorogenic acid B, and Isochlorogenic acid C. The content of chlorogenic acid and total phenolic acid in L. acuminata (7.4633 ± 0.4461%, 14.8953 ± 0.0728%) and L. similis (14.1055 ± 0.2566%, 21.9782 ± 0.1331%) was much higher than that of L. japonica (3.9729 ± 0.0928%, 6.0964 ± 0.1228%), respectively. This study provides appropriate information for species identification, phylogeny, quality assessment, and rational use of three medicinal plants of the genus Lonicera.


Subject(s)
Genome, Chloroplast , Lonicera , Plants, Medicinal , Plants, Medicinal/genetics , Phylogeny , Lonicera/genetics , Lonicera/chemistry , Chlorogenic Acid
8.
Plant Physiol Biochem ; 196: 793-806, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36848865

ABSTRACT

Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.


Subject(s)
Lonicera , Plants, Medicinal , Lonicera/genetics , Lonicera/metabolism , Chlorogenic Acid/metabolism , Plant Leaves/metabolism , Plants, Medicinal/metabolism , Biosynthetic Pathways
9.
Genes Genomics ; 45(4): 437-450, 2023 04.
Article in English | MEDLINE | ID: mdl-36694039

ABSTRACT

BACKGROUND: Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. OBJECTIVE: To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. METHODS: Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. RESULTS: Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. CONCLUSIONS: This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.


Subject(s)
Lonicera , Lonicera/genetics , Lonicera/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Breeding , Gene Expression Profiling , Ethylenes/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3749-3755, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850831

ABSTRACT

Lonicera japonica is a ubiquitous medicinal species in China.Winter pruning has long been used to improve its quality and yield, but the mechanism is rarely studied.Therefore, in this study, the growth phenotypes of L.japonica processed with different pruning methods were observed and the yield-and quality-boosting mechanism of pruning was analyzed.Specifically, the young shoots of the three-year old L.japonica were cut to different degrees(heavy pruning, mild pruning, and no pruning, respectively) in winter in 2020 and 2021, respectively, and the growth phenotypes, hormone content, and gene expression of the lateral buds at the sprouting stage and young shoots at the anthesis stage in the next year were analyzed.The result showed that the length, flower bud number, internode length, and node number of young shoots in the next year were in the order of heavy pruning>mild pruning>no pruning.The content of auxin and zeatin in apical buds of young shoots at the anthesis stage was the highest in the heavy pruning group, followed by the mild pruning group, and coming in the third was the no pruning group.The content of auxin and zeatin in lateral buds at the sprouting stage was in the order of no pruning>mild pruning>heavy pruning.Transcriptome analysis of the lateral buds at sprouting stage yielded the differentially expressed genes related to auxin and cytokinin, such as Lj1A1163T36, Lj3A719T115, Lj7C657T7, Lj9C505T15, and Lj9A505T70.In conclusion, the growth phenotypes of young shoots of L.japonica processed with different pruning methods in winter were related to the difference in hormone content in the apical buds.Therefore, winter pruning influenced the content of auxin and cytokinin in new shoots of L.japonica and further regulated the expression of hormone-related genes, thereby promoting shoot growth and increasing the yield of L.japonica.


Subject(s)
Lonicera , Plant Growth Regulators , Cytokinins/genetics , Cytokinins/metabolism , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Indoleacetic Acids/metabolism , Lonicera/genetics , Lonicera/metabolism , Plant Shoots/genetics , Zeatin/metabolism
11.
Sci Data ; 9(1): 226, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610245

ABSTRACT

Lonicera japonica (honeysuckle) is one of the most important medicinal plants and widely utilized in traditional Chinese medicine. At present, there are many varieties of honeysuckle used in cultivation, among which Sijihua variety are widely cultivated due to its wide adaptability, stress resistance, early flowering and high yield. In this study, we assembled the genome of Sijihua, which was approximately 886.04 Mb in size with a scaffold N50 of 79.5 Mb. 93.28% of the total assembled sequences were anchored to 9 pseudo-chromosomes by using PacBio long reads and Hi-C sequencing data. We predicted 39,320 protein-coding genes and 92.87% of them could be annotated in NR, GO, KOG, KEGG and other databases. In addition, we identified 644 tRNAs, 2,156 rRNAs, 109 miRNAs and 5,502 pseudogenes from the genome. The chromosome-scale genome of Sijihua will be a significant resource for understanding the genetic basis of high stress-resistance, which will facilitate further study of the genetic diversity and accelerate the genetic improvement and breeding of L. japonica.


Subject(s)
Genome, Plant , Lonicera , Plants, Medicinal , Chromosomes, Plant , Lonicera/genetics , Phylogeny , Plant Breeding , Plants, Medicinal/genetics
12.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2419-2429, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531689

ABSTRACT

In order to explore the functions of genes of key rate-limiting enzymes chalcone isomerase(CHI) and chalcone synthase(CHS) in the biosynthesis of flavonoids in Lonicera macranthoides, this study screened and cloned the cDNA sequences of CHI and CHS genes from the transcriptome data of conventional variety and 'Xianglei' of L. macranthoides. Online bioinformatics analysis software was used to analyze the characteristics of the encoded proteins, and quantitative reverse-transcription polymerase chain reaction(qRT-PCR) to detect the expression of CHI and CHS in different parts of the varieties at different flowering stages. The content of luteo-loside was determined by high performance liquid chromatography(HPLC) and the correlation with the expression of the two genes was analyzed. The results showed that the CHI and CHS of the two varieties contained a 627 bp and 1170 bp open reading frame(ORF), respectively, and the CHI protein and CHS protein were stable, hydrophilic, and non-secretory. qRT-PCR results demonstrated that CHI and CHS of the two varieties were differentially expressed in stems and leaves at different flowering stages, particularly the key stages. Based on HPLC data, luteoloside content was in negative correlation with the relative expression of the genes. Thus, CHI and CHS might regulate the accumulation of flavonoids in L. macranthoides, and the specific functions should be further studied. This study cloned CHI and CHS in L. macranthoides and analyzed their expression for the first time, which laid a basis for investigating the molecular mechanism of the differences in flavonoids such as luteoloside in L. macranthoides and variety breeding.


Subject(s)
Chalcone , Lonicera , Acyltransferases/genetics , Acyltransferases/metabolism , Cloning, Molecular , Intramolecular Lyases , Lonicera/genetics , Lonicera/metabolism , Plant Breeding
13.
Plant Physiol Biochem ; 173: 87-96, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35114506

ABSTRACT

Lonicera japonica flowers (LJF) is a traditional Chinese medicine packed with phenols constituents and widely used in the treatments of various diseases throughout the world. However, there is still very little known on how LJF identifies and resists salt stress. Here in, we systematically investigated the effect of salt on the phenotypic, metabolite, and transcriptomic in LJF. During long term stress (35 days), 1055 differential expression genes (DEGs) involved in the biosynthesis of secondary metabolites were screened through transcriptome analysis, among which the candidate genes and pathways involved in phenols biosynthesis were highlighted; and performed by phylogenetic tree analysis and multiple nucleotide sequence alignment. Ninety compounds were identified and their relative levels were compared between the control and stressed groups based on the LC-MS analysis, Putative biosynthesis networks of phenolic acid and flavonoid were con-structed with structural DEGs. Strikingly, the expression patterns of structural DEGs were mostly consistent with the variations of phenols under salt stress. Notably, the upregulation of UDP-glycosyl transferases under salt stress indicated post-modification of glycosyl transferases may participate in downstream flavonoids synthesis. This study reveals the relationships of the gene regulation and the phenols biosynthesis in LJF under salt stress, paving the way for the use of gene-specific expression to improve the yield of biocomponent.


Subject(s)
Lonicera , Flowers/genetics , Gene Expression Profiling , Lonicera/genetics , Phylogeny , Salt Stress , Transcriptome
14.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2798-2805, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34296578

ABSTRACT

In order to study the regulation mechanism of secondary metabolites biosynthesis in Lonicera macranthoides, the key genes involved in the regulation of biosynthesis and the mechanism of differential metabolites were explored. In this study, high-throughput sequencing technology was used for transcriptome sequencing of L. macranthoides at different development stages. By using Liquid chromatography-tandem mass spectrometry(LC-MS/MS) technology, the laws of qualitative, quantitative and synthetic accumulation of its metabolites were studied, and the key enzyme genes for the biosynthesis of phenolic acid and flavonoids were screened out according to the differentially expressed genes. A total of 111 differentially accumulate metabolites(DAM) and 6 653 differentially expressed genes(DGE) were obtained by metabonomics and transcriptomics analysis. The metabolites and key enzyme genes in the Erqing(KE) were significantly different from those in the Dabai(KD) and Yinhua(KY) stages. In the phenylalanine biosynthesis pathway, the ion abundance of chlorogenic acid, naringin, quercetin, rutin, coniferol and other metabolites decreased with the development of flowers, while the ion abundance of ferulic acid, coumarin and syringoside increased with the development of flowers. Key enzyme genes such as CHS, HCT, CCR, FLS and COMT positively regulate the downstream metabolites, while PAL, C4H and 4CL negatively regulate the downstream metabolites. This study provides candidate genes and theoretical basis for the further exploration of key enzymes in the biosynthesis of secondary metabolites and for the regulation of the accumulation of secondary metabolites in L. macranthoides by molecular biological methods.


Subject(s)
Lonicera , Chromatography, Liquid , Flowers/genetics , Lonicera/genetics , Metabolomics , Proteomics , Tandem Mass Spectrometry
15.
Plant Sci ; 308: 110924, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034872

ABSTRACT

Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.


Subject(s)
Chlorogenic Acid/metabolism , Lonicera/genetics , Plant Proteins/genetics , Secondary Metabolism , Transcription Factors/genetics , Amino Acid Sequence , Base Sequence , Lonicera/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
16.
PLoS One ; 16(5): e0251390, 2021.
Article in English | MEDLINE | ID: mdl-34038434

ABSTRACT

Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in South China. The developmental stage and corolla dehiscence of the flower are the important factors affecting the quality of medicinal ingredients. However, neither the regulatory mechanism controlling chlorogenic acids biosynthesis in L. macranthoides nor the molecular basis of effect of corolla dehiscence on the quality of medicinal materials is fully understood. In this study, metabolomics and transcriptomics were used to analyze the metabolic and transcriptional differences of two different cultivars closed bud type (Bt), and flowering type (Ft), as well as the effect of jasmonic acid methyl ester (MeJA) on chlorogenic acids (CGAs) biosynthesis. In total, large number of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were filtered among three lines of samples. Gene metabolite correlation analyses revealed a 'core set' of 30 genes and 54 genes that were strongly correlated with CGAs biosynthesis and regulating the flowering, respectively. Quantitative real-time polymerase chain reaction results proved the alterations in the expression levels of genes encoding the pathways involved in CGAs biosynthesis. The ion abundances of CGAs were most significantly increased, while some of the CGAs derived and Caffeoyl-CoA-derived substances showed the most largely reduced abundances in the closed bud type (Bt) compared to the flowering type (Ft). MeJA may leads to the activation of downstream genes in CGAs biosynthesis pathway. Overall, there were significant differences in the transcriptional and metabolic levels of CGAs biosynthesis pathway in flower buds of different flowering cultivars. The redirection of metabolic flux may contribute to increased accumulation of CGAs. However, whether MeJA and flowering have direct effects on the accumulation of CGAs needs further studied. These researches effectively expanded the functional genomic library and provide new insights into CGAs biosynthesis in L. macranthoides.


Subject(s)
Biosynthetic Pathways/genetics , Chlorogenic Acid/metabolism , Lonicera/genetics , Metabolome/genetics , Plants, Medicinal/genetics , Transcriptome/genetics , Flowers/genetics , Gene Expression Profiling/methods , Metabolomics/methods
17.
Mol Biol Rep ; 47(12): 9301-9311, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190199

ABSTRACT

Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with chlorogenic acid, flavonoid and iridoid. The biosynthesis of these compounds could be affected by genetic inheritance and epigenetic modification. However, the mechanisms that regulate the expression of genes involved in the biosynthesis of these compounds are rarely known. The results of qRT-PCR showed that the biosynthesis gene expression of these compounds was related to histone H3K4 and H3K9 methylation levels. These active compounds content of L. japonica were measured by UPLC-MS/MS. H3K4me3 showed a positive correlation with chlorogenic acid and loganic acid content, and H3K9me positively correlated with luteolin content. The correlation between histone methylation levels and the levels of luteolin and loganic acid in L. japonica from different producing areas validate the regulatory role of histone methylation in biosynthesis of bioactive compounds. Our study demonstrated a potential regulatory network of H3K9/H3K4 methylation to gene expression and content of secondary metabolites, and provided a basis for understanding the mechanism underlying the variation of major bioactive compounds in L. japonica.


Subject(s)
Chlorogenic Acid/metabolism , Flavonoids/biosynthesis , Histones/metabolism , Iridoids/metabolism , Lonicera/genetics , Lonicera/metabolism , Plant Proteins/metabolism , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Gene Expression , Gene Expression Regulation, Plant , Gene Regulatory Networks , Methylation , Plant Leaves/genetics , Plant Leaves/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Tandem Mass Spectrometry
18.
J Tradit Chin Med ; 40(1): 73-82, 2020 02.
Article in English | MEDLINE | ID: mdl-32227768

ABSTRACT

OBJECTIVE: To develop the chromatographic fingerprint of Lonicera japonica (L. japonica) and evaluate the effects of polyploidy on the quality of L. japonica. METHODS: High-performance liquid chromatography (HPLC) methods used to establish the chromatographic fingerprint were developed. The quality of 11 batches of diploid L. japonica and 13 batches of tetraploid L. japonica collected from different regions across China were analyzed. The contents of five active compounds, consisting of chlorogenic acid, rutin, galuteolin, isochlorogenic acid A and quercetin, were further detected in L. japonica. RESULTS: The chromatographic fingerprint established by the optimized HPLC method was verified for qualitative analysis of L. japonica. Quantitative analysis showed that the contents of chlorogenic acid, isochlorogenic acid A, and quercetin in tetraploid plants were higher than those in diploid plants, whereas rutin and galuteolin contents in tetraploid plants were lower than those in diploid plants. CONCLUSION: The developed HPLC method is suitable for qualitative analysis of L. japonica. Polyploidy was indicated to influence the chemical properties of L. japonica. Tetraploid L. japonica shows potential for utilization as a medicinal plant with different active components.


Subject(s)
Chromatography , Diploidy , Lonicera/chemistry , Lonicera/genetics , Tetraploidy , Quality Control
19.
Int J Mol Sci ; 20(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514380

ABSTRACT

Lonicera japonica Thunb. is a widely used medicinal plant and is rich in a variety of active ingredients. Flavonoids are one of the important components in L. japonica and their content is an important indicator for evaluating the quality of this herb. To study the regulation of flavonoid biosynthesis in L. japonica, an R2R3-MYB transcription factor gene LjaMYB12 was isolated and characterized. Bioinformatics analysis indicated that LjaMYB12 belonged to the subgroup 7, with a typical R2R3 DNA-binding domain and conserved subgroup 7 motifs. The transcriptional level of LjaMYB12 was proportional to the total flavonoid content during the development of L. japonica flowers. Subcellular localization analysis revealed that LjaMYB12 localized to the nucleus. Transactivation activity assay indicated that LjaMYB12 was a transcriptional activator. Then, ectopic expression of LjaMYB12 in Arabidopsis could increase PAL activity and flavonoid content and promote transcription of a range of flavonoid biosynthetic genes. Interestingly, the fold changes of downstream genes in the flavonoid biosynthetic pathway were significantly higher than that of the upstream genes, which suggested that LjaMYB12 may have different regulatory patterns for the upstream and downstream pathways of flavonoid biosynthesis. The results provided here will effectively facilitate the study of subgroup 7 MYBs and transcriptional regulation of flavonoid biosynthesis in L. japonica.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Flavonoids/metabolism , Genes, Plant , Lonicera/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Cell Nucleus/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation
20.
J Proteomics ; 208: 103470, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31374363

ABSTRACT

Lonicera japonica Thunb. is an important medicinal plant. The secondary metabolites in L. japonica are diverse and vary in levels during development, leading to the ambiguous evaluation for its medical value. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Further proteomic analysis revealed that uniquely identified proteins were mainly involved in glycolysis/phenylpropanoids and tricarboxylic acid cycle/terpenoid backbone pathways in early and late stages, respectively. Transketolase was commonly identified in the 5 developmental stages and 2-fold increase in gold flowering stage compared with juvenile bud stage. Simple phenylpropanoids/flavonoids and 1-deoxy-D-xylulose-5-phosphate were accumulated in early stages and upregulated in late stages, respectively. These results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development. BIOLOGICAL SIGNIFICANCE: Lonicera japonica Thunb. is a native species in the East Asian and used in traditional Chinese medicine. In order to reveal the regulatory mechanism of secondary metabolites during the flowering stages, transcriptomic, proteomic, and metabolomic analyses were performed. The integration analysis of omic-data illustrated that the metabolic changes over the flower developmental stages were mainly involved in sugar metabolism, lipopolysaccharide biosynthesis, carbon conversion, and secondary metabolism. Our results indicate that phenylpropanoids were accumulated attributing to the activated glycolysis process in the early stages, while the terpenoids biosynthetic pathways might be promoted by the transketolase-contained regulatory circuit in the late stages of L. japonica flower development.


Subject(s)
Gene Expression Profiling , Lonicera , Metabolome , Metabolomics , Proteomics , Flowers/genetics , Flowers/metabolism , Lonicera/genetics , Lonicera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL