Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
BMC Genomics ; 24(1): 447, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553575

ABSTRACT

BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.


Subject(s)
Genome, Plant , Lonicera , Lonicera/genetics , Lonicera/metabolism , MADS Domain Proteins/metabolism , Transcription Factors/metabolism , Multigene Family , Phylogeny , Gene Expression Regulation, Plant , Flowers , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Plant Biotechnol J ; 21(11): 2209-2223, 2023 11.
Article in English | MEDLINE | ID: mdl-37449344

ABSTRACT

Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of ß-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.


Subject(s)
COVID-19 , Lonicera , Oleanolic Acid , Plants, Medicinal , Saponins , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Saponins/genetics , Saponins/chemistry , Genomics , Evolution, Molecular
3.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2103-2115, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282899

ABSTRACT

As a large family of transcription factors, the MYB family plays a vital role in regulating flower development. We studied the MYB family members in Lonicera macranthoides for the first time and identified three sequences of 1R-MYB, 47 sequences of R2R3-MYB, two sequences of 3R-MYB, and one sequence of 4R-MYB from the transcriptome data. Further, their physicochemical properties, conserved domains, phylogenetic relationship, protein structure, functional information, and expression were analyzed. The results show that the 53 MYB transcription factors had different conserved motifs, physicochemical properties, structures, and functions in wild type and 'Xianglei' cultivar of L. macranthoides, indicating their conservation and diversity in evolution. The transcript level of LmMYB was significantly different between the wild type and 'Xianglei' cultivar as well as between flowers and leaves, and some genes were specifically expressed. Forty-three out of 53 LmMYB sequences were expressed in both flowers and leaves, and 9 of the LmMYB members showed significantly different transcript levels between the wild type and 'Xianglei' cultivar, which were up-regulated in the wild type. The results provide a theoretical basis for further studying the specific functional mechanism of the MYB family.


Subject(s)
Lonicera , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Lonicera/metabolism , Phylogeny , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37226859

ABSTRACT

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Quinic Acid/metabolism , Plant Breeding , Chromosome Mapping
5.
Plant Physiol Biochem ; 196: 793-806, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36848865

ABSTRACT

Light has important effects on plant metabolism. However, the relationship between the chlorogenic acid (CGA) content and light in plants remains unclear. Here, we investigated the effects of shading treatment on gene expression and CGA content in Lonicera macranthoides Hand.-Mazz. (LM), a widely used medicinal plant. A total of 1891 differentially expressed genes (DEGs) were obtained in flower buds and 819 in leaves in response to light in shading treatment compared to the control sample by RNA-Seq. After shading treatment, the content of CGA in LM leaves decreased significantly by 1.78-fold, the carotenoid content increased, and the soluble sugar and starch contents significantly decreased. WGCNA and the expression of related genes verified by qRT‒PCR revealed that CGA synthesis pathway enzyme genes form a co-expression network with genes for carbohydrate synthesis, photosynthesis, light signalling elements, and transcription factor genes (TFs) that affect the accumulation of CGA. Through a virus-induced gene silencing (VIGS) system and CGA assay in Nicotiana benthamiana (NB), we determined that downregulation of NbHY5 expression decreased the CGA content in NB leaves. In this study, we found that light provides energy and material for the accumulation of CGA in LM, and light affects the expression of CGA accumulation-related genes. Our results show that different light intensities have multiple effects on leaves and flower buds in LM and are able to coregulate LmHY5 expression and CGA synthesis.


Subject(s)
Lonicera , Plants, Medicinal , Lonicera/genetics , Lonicera/metabolism , Chlorogenic Acid/metabolism , Plant Leaves/metabolism , Plants, Medicinal/metabolism , Biosynthetic Pathways
6.
Genes Genomics ; 45(4): 437-450, 2023 04.
Article in English | MEDLINE | ID: mdl-36694039

ABSTRACT

BACKGROUND: Lonicera macranthoides Hand.-Mazz. is an important medicinal plant. Xianglei-type (XL) L. macranthoides was formed after many years of cultivation by researchers on the basis of the natural mutant. The corolla of L. macranthoides XL remains unexpanded and its flowering period is nearly three times longer than that of wild-type (WT) plants. However, the molecular mechanism behind this desirable trait remains a mystery. OBJECTIVE: To understand the floral phenotype differences between L. macranthoides and L. macranthoides XL at the molecular level. METHODS: Transcriptome analysis was performed on L. macranthoides XL and WT. One DEG was cloned by RT-PCR amplification and selected for qRT-PCR analysis. RESULTS: Transcriptome analysis showed that there were 5603 differentially expressed genes (DEGs) in XL vs. WT. Enrichment analysis of DEGs showed that pathways related to plant hormone signal transduction were significantly enriched. We identified 23 key genes in ethylene biosynthesis and signal transduction pathways. The most abundant were the ethylene biosynthesis DEGs. In addition, the open reading frames (ORFs) of WT and XL ETR2 were successfully cloned and named LM-ETR2 (GenBank: MW334978) and LM-XL-ETR2 (GenBank: MW334978), respectively. qRT-PCR at different flowering stages suggesting that ETR2 acts in the whole stage of flower development of WT and XL. CONCLUSIONS: This study provides new insight into the molecular mechanism that regulates the development of special traits in the flowers of L. macranthoides XL. The plant hormone ethylene plays an important role in flower development and flowering duration prolongation in L. macranthoides. The ethylene synthesis gene could be more responsible for the flower phenotype of XL. The genes identified here can be used for breeding and improvement of other flowering plants after functional verification.


Subject(s)
Lonicera , Lonicera/genetics , Lonicera/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Breeding , Gene Expression Profiling , Ethylenes/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3749-3755, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850831

ABSTRACT

Lonicera japonica is a ubiquitous medicinal species in China.Winter pruning has long been used to improve its quality and yield, but the mechanism is rarely studied.Therefore, in this study, the growth phenotypes of L.japonica processed with different pruning methods were observed and the yield-and quality-boosting mechanism of pruning was analyzed.Specifically, the young shoots of the three-year old L.japonica were cut to different degrees(heavy pruning, mild pruning, and no pruning, respectively) in winter in 2020 and 2021, respectively, and the growth phenotypes, hormone content, and gene expression of the lateral buds at the sprouting stage and young shoots at the anthesis stage in the next year were analyzed.The result showed that the length, flower bud number, internode length, and node number of young shoots in the next year were in the order of heavy pruning>mild pruning>no pruning.The content of auxin and zeatin in apical buds of young shoots at the anthesis stage was the highest in the heavy pruning group, followed by the mild pruning group, and coming in the third was the no pruning group.The content of auxin and zeatin in lateral buds at the sprouting stage was in the order of no pruning>mild pruning>heavy pruning.Transcriptome analysis of the lateral buds at sprouting stage yielded the differentially expressed genes related to auxin and cytokinin, such as Lj1A1163T36, Lj3A719T115, Lj7C657T7, Lj9C505T15, and Lj9A505T70.In conclusion, the growth phenotypes of young shoots of L.japonica processed with different pruning methods in winter were related to the difference in hormone content in the apical buds.Therefore, winter pruning influenced the content of auxin and cytokinin in new shoots of L.japonica and further regulated the expression of hormone-related genes, thereby promoting shoot growth and increasing the yield of L.japonica.


Subject(s)
Lonicera , Plant Growth Regulators , Cytokinins/genetics , Cytokinins/metabolism , Flowers/genetics , Flowers/metabolism , Hormones/metabolism , Indoleacetic Acids/metabolism , Lonicera/genetics , Lonicera/metabolism , Plant Shoots/genetics , Zeatin/metabolism
8.
Phytomedicine ; 104: 154284, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777121

ABSTRACT

BACKGROUND: Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE: In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS: Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS: A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS: LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Lonicera , Animals , Chromatography, Liquid , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/pathology , DNA, Ribosomal/metabolism , DNA, Ribosomal/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal , Flavonoids/pharmacology , Flavonoids/therapeutic use , Inflammation Mediators/metabolism , Lonicera/metabolism , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Tandem Mass Spectrometry , Weight Loss
9.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2419-2429, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531689

ABSTRACT

In order to explore the functions of genes of key rate-limiting enzymes chalcone isomerase(CHI) and chalcone synthase(CHS) in the biosynthesis of flavonoids in Lonicera macranthoides, this study screened and cloned the cDNA sequences of CHI and CHS genes from the transcriptome data of conventional variety and 'Xianglei' of L. macranthoides. Online bioinformatics analysis software was used to analyze the characteristics of the encoded proteins, and quantitative reverse-transcription polymerase chain reaction(qRT-PCR) to detect the expression of CHI and CHS in different parts of the varieties at different flowering stages. The content of luteo-loside was determined by high performance liquid chromatography(HPLC) and the correlation with the expression of the two genes was analyzed. The results showed that the CHI and CHS of the two varieties contained a 627 bp and 1170 bp open reading frame(ORF), respectively, and the CHI protein and CHS protein were stable, hydrophilic, and non-secretory. qRT-PCR results demonstrated that CHI and CHS of the two varieties were differentially expressed in stems and leaves at different flowering stages, particularly the key stages. Based on HPLC data, luteoloside content was in negative correlation with the relative expression of the genes. Thus, CHI and CHS might regulate the accumulation of flavonoids in L. macranthoides, and the specific functions should be further studied. This study cloned CHI and CHS in L. macranthoides and analyzed their expression for the first time, which laid a basis for investigating the molecular mechanism of the differences in flavonoids such as luteoloside in L. macranthoides and variety breeding.


Subject(s)
Chalcone , Lonicera , Acyltransferases/genetics , Acyltransferases/metabolism , Cloning, Molecular , Intramolecular Lyases , Lonicera/genetics , Lonicera/metabolism , Plant Breeding
10.
Oxid Med Cell Longev ; 2022: 6316611, 2022.
Article in English | MEDLINE | ID: mdl-35313639

ABSTRACT

Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of 71.89 ± 0.92 kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (P > 0.05). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (P < 0.01). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (P < 0.01), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (P < 0.05). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (P < 0.05), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (P < 0.05). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (P < 0.05). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (P < 0.05). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.


Subject(s)
Amino Acids , Lonicera , Amino Acids/metabolism , Animal Feed/analysis , Animals , Chlorogenic Acid/pharmacology , Dietary Supplements , Lonicera/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Biosynthesis , Swine
11.
J Plant Res ; 134(6): 1311-1321, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34351552

ABSTRACT

Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China which is often threatened by high temperature at midday during summer. Heat-induced effects on the photosynthetic apparatus in honeysuckle are associated with a depression of the photosystem II (PSII) photochemical efficiency. However, very limited information is available on regulation of photosynthetic electron flow in PSI photoprotection in heat-stressed honeysuckle. Simultaneous analyses of chlorophyll fluorescence and the change in absorbance of P700 showed that energy transformation and electron transfer activity in PSII decreased under heat stress, but the fraction of photo-oxidizable PSI (Pm) remained stable. With treatments at 38 and 42 °C, the photochemical electron transport in PSII was suppressed, whereas the cyclic electron flow (CEF) around PSI was induced. In addition, the levels of high energy state quenching (qE) and P700 oxidation increased significantly with increasing temperature. However, a decline of qE in antimycin A (AA)- or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated leaves after heat treatment was observed, while P700 oxidation decreased only in the presence of AA. The results indicate that heat-induced inhibition of PSII and induction of CEF cooperatively protect PSI from ROS damages through moderate down-regulation of photosynthetic electron flow from PSII to PSI.


Subject(s)
Lonicera , Photosystem I Protein Complex , Chlorophyll , Down-Regulation , Electron Transport , Light , Lonicera/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism
12.
Plant Sci ; 308: 110924, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34034872

ABSTRACT

Lonicera macranthoides Hand-Mazz is an important medicinal plant widely distributed in southern China that has long been used in Chinese traditional medicines. Chlorogenic acid (CGA, 3-caffeoylquinic acid) is the major biologically active ingredient in L. macranthoides. Although key CGA biosynthetic genes have been well documented, their transcriptional regulation remains largely unknown. In this study, we observed that a R2R3 MYB transcription factor LmMYB15 showed a significant correlation with CGA content, indicating its potential role in CGA biosynthesis. A yeast two-hybrid assay suggested that LmMYB15 functions as a transcriptional activator. Overexpression of LmMYB15 in tobacco led to increased accumulation of CGA compared to those in wild-type leaves. To elucidate its functional mechanism, genome-wide DAP-seq was employed and identified the conserved binding motifs of LmMYB15, that is [(C/T) (C/T) (C/T) ACCTA(C/A) (C/T) (A/T)], as well as its direct downstream target genes, including 4CL, MYB3, MYB4, KNAT6/7, IAA26, and ETR2. Subsequently, yeast one-hybrid and dual-luciferase reporter assays verified that LmMYB15 could bind and activate the promoters of 4CL, MYB3 and MYB4, thereby facilitating CGA biosynthesis and phenylpropanoid metabolism. Our findings provide a new track for breeding strategies aiming to enhance CGA content in L. macranthoides that can significantly contribute to better mechanical properties.


Subject(s)
Chlorogenic Acid/metabolism , Lonicera/genetics , Plant Proteins/genetics , Secondary Metabolism , Transcription Factors/genetics , Amino Acid Sequence , Base Sequence , Lonicera/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
13.
Sci Rep ; 11(1): 3939, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594134

ABSTRACT

Lonicerae Japonicae Flos (LJF) is an important traditional Chinese medicine for the treatment of various ailments and plays a vital role in improving global human health. However, as unable to escape from adversity, the quality of sessile organisms is dramatically affected by salt stress. To systematically explore the quality formation of LJF in morphology, physiology, and bioactive constituents' response to multiple levels of salt stress, UFLC-QTRAP-MS/MS and multivariate statistical analysis were performed. Lonicera japonica Thunb. was planted in pots and placed in the field, then harvested after 35 days under salt stress. Indexes of growth, photosynthetic pigments, osmolytes, lipid peroxidation, and antioxidant enzymes were identified to evaluate the salt tolerance in LJF under different salt stresses (0, 100, 200, and 300 mM NaCl). Then, the total accumulation and dynamic variation of 47 bioactive constituents were quantitated. Finally, Partial least squares discrimination analysis and gray relational analysis were performed to systematically cluster, distinguish, and evaluate the samples, respectively. The results showed that 100 mM NaCl induced growth, photosynthetic, antioxidant activities, osmolytes, lipid peroxidation, and multiple bioactive constituents in LJF, which possessed the best quality. Additionally, a positive correlation was found between the accumulation of phenolic acids with antioxidant enzyme activity under salt stress, further confirming that phenolic acids could reduce oxidative damage. This study provides insight into the quality formation and valuable information to improve the LJF medicinal value under salt stress.


Subject(s)
Lonicera/metabolism , Plant Extracts/metabolism , Salt Stress , Antioxidants/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Lipid Peroxidation , Lonicera/growth & development , Mass Spectrometry , Multivariate Analysis , Plants, Medicinal
14.
Chin J Nat Med ; 19(1): 70-80, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33516454

ABSTRACT

Pesticides' overuse and misuse have been reported to induce ingredient variations in herbal medicine, which is now gaining attention in the medicinal field as a form of alternative medicine. To date, available studies on pesticide-induced ingredient variations of herbal medicine are limited only on a few compounds and remain most others unexamined. In this study, a plant metabolomics-based strategy was performed to systematically explore the effects of two frequently used insecticides on the comprehensive constituents of Lonicerae Japonicae Flos (LJF), the flower buds of Lonicera japonica Thunb. Field trials were designed on a cultivating plot of L. japonica with controls and treatments of imidacloprid (IMI) and compound flonicamid and acetamiprid (CFA). Unbiased metabolite profiling was conducted by ultra-high performance liquid chromatography/quadrupole-Orbitrap mass spectrometer. After data pretreatment by automatic extraction and screening, a data matrix of metabolite features was submitted for statistical analyses. Consequently, 29 metabolic markers, including chlorogenic acids, iridoids and organic acid-glucosides were obtained and characterized. The relative quantitative assay was subsequently performed to monitor their variations across flowering developments. This is the first study that systematically explored the insecticide-induced metabolite variations of LJF while taking into account the inherent variability of flowering development. The results were beneficial for holistic quality assessment of LJF and significant for guiding scientific use of pesticides in the large-scale cultivation.


Subject(s)
Drugs, Chinese Herbal , Insecticides , Lonicera , Metabolomics , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Flowers/metabolism , Insecticides/pharmacology , Lonicera/drug effects , Lonicera/metabolism , Plants, Medicinal/drug effects , Plants, Medicinal/metabolism
15.
Food Chem ; 342: 128386, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33268162

ABSTRACT

Lonicerae Japonicae Flos (LJF) has historically been widely utilized as a tea and health food. To better understand and evaluate its quality evaluate its quality, a near-infrared spectroscopy (NIRS) method was developed for the rapid and simultaneous analysis of the 3 main active components (chlorogenic acid, isochlorogenic acid A and isochlorogenic acid C). The NIRS model was built using 2 different strategies: partial least squares (PLS) as a linear regression method and artificial neural networks (ANN) as a nonlinear regression method. Furthermore, the NIRS method was applied to analyze the 4 main quality factors, which included 5 processing methods (shade drying, sun drying, vacuum drying, freeze drying and hot-air drying), 2 kinds of harvest time (flower bud stage and florescence stage), 2 species and 8 geographical origins. Collectively, NIRS is a promising method for the quality analysis of LJF.


Subject(s)
Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/analysis , Lonicera/chemistry , Spectroscopy, Near-Infrared , Desiccation , Food Storage , Freeze Drying , Least-Squares Analysis , Lonicera/metabolism , Neural Networks, Computer , Plant Extracts/chemistry
16.
PLoS One ; 15(12): e0243111, 2020.
Article in English | MEDLINE | ID: mdl-33259548

ABSTRACT

Salt stress affects the metabolic homeostasis of medicinal plants. However, medicinal plants are sessile organisms that cannot escape from salt stress. They acclimatize themselves to the stress by reprogramming their metabolic pathways. Lonicerae Japonicae Flos (LJF) with strong antioxidant activity is commonly used in traditional Chinese medicine, tea, and beverage. Nevertheless, the variation of integrated metabolites in LJF under different salt stresses remains unclear. In this study, High Performance Liquid Chromatography tandem triple time-of-flight mass spectrometry (HPLC- triple TOF-MS/MS) coupled with multivariate statistical analysis was applied to comparatively investigate the metabolites changes in LJF under different salt stress (0, 100, 200, 300 mM NaCl). Total 47 differential metabolites were screened from 79 metabolites identified in LJF under different salt stress. Low salt-treated group (100 mM NaCl) appeared to be the best group in terms of relative contents (peak areas) of the wide variety in bioactive components. Additionally, the phenylpropanoid pathway, monoterpenoid biosynthesis, glycolysis, TCA cycle, and alkaloid biosynthesis were disturbed in all salt-stress LJF. The results showed that LJF metabolisms were dramatically induced under salt stress and the quality of LJF was better under low salt stress. The study provides novel insights into the quality assessment of LJF under salt stress and a beneficial framework of knowledge applied to improvement the medicinal value of LJF.


Subject(s)
Lonicera/metabolism , Plant Extracts/metabolism , Plants, Medicinal/metabolism , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/standards , Flavonoids/biosynthesis , Humans , Hydroxybenzoates/metabolism , Iridoids/metabolism , Medicine, Chinese Traditional , Metabolic Networks and Pathways , Metabolome , Metabolomics , Multivariate Analysis , Plant Extracts/standards , Quality Control , Salt Stress/physiology , Tandem Mass Spectrometry
17.
Mol Med Rep ; 22(6): 5219-5230, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174016

ABSTRACT

Honeyberry (Lonicera caerulea) has long been used as a traditional medicine in China, Japan and northern Russia. Functional studies of honeyberry have mainly focused on the fruits, which have been reported to exert various pharmacological activities, including anti­inflammatory activity, with limited or no studies on the other parts of the plant, such as the leaves and branches. In the present study, the anti­inflammatory effects of extracts of the leaves (HBL), branches (HBB) and fruit (HBF) of honeyberry plant were evaluated in lipopolysaccharide (LPS)­stimulated RAW264.7 cells. HBL and HBB significantly inhibited the production of pro-inflammatory mediators in LPS­stimulated RAW264.7 cells, and the inhibitory effects of HBL and HBB were stronger than those of HBF. HBL and HBB blocked the nuclear accumulation of p65 independently of IκB­α. HBL did not inhibit the phosphorylation of ERK1/2 or p38; however, HBB effectively inhibited the phosphorylation of p38 but not ERK1/2. HBL and HBB increased the expression of heme oxygenase­1 (HO­1) protein by inducing the nuclear accumulation of nuclear factor erythroid 2­related factor 2 (Nrf2) through the activation of the reactive oxygen species (ROS)/p38 pathway; the reduction in inducible nitric oxide synthase (iNOS) and interleukin­1ß (IL­1ß) expression by HBL and HBB was inhibited by HO­1 knockdown. In addition, HBL and HBB increased the expression of activating transcription factor­3 (ATF3), and the reduction in iNOS and IL­1ß expression by HBL and HBB was inhibited by ATF3 knockdown. Collectively, HBL and HBB inhibited LPS­induced nuclear factor­κB activation by blocking the nuclear accumulation of p65, increasing HO­1 expression through activation of the ROS/p38/Nrf2 pathway, and increasing ATF3 expression. Furthermore, HBB inhibited LPS­induced p38 phosphorylation. These findings suggest that HBL and HBB may have great potential as natural products for the development of anti­inflammatory drugs.


Subject(s)
Lonicera/metabolism , Plant Extracts/pharmacology , Activating Transcription Factor 3/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , China , Fruit/metabolism , Heme Oxygenase-1/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Medicine, Chinese Traditional , Mice , NF-E2-Related Factor 2/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Leaves/metabolism , RAW 264.7 Cells/drug effects , Reactive Oxygen Species/metabolism
18.
Mol Biol Rep ; 47(12): 9301-9311, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33190199

ABSTRACT

Lonicera japonica is used in Chinese herbal medicines with a wide spectrum of pharmacological properties associated with chlorogenic acid, flavonoid and iridoid. The biosynthesis of these compounds could be affected by genetic inheritance and epigenetic modification. However, the mechanisms that regulate the expression of genes involved in the biosynthesis of these compounds are rarely known. The results of qRT-PCR showed that the biosynthesis gene expression of these compounds was related to histone H3K4 and H3K9 methylation levels. These active compounds content of L. japonica were measured by UPLC-MS/MS. H3K4me3 showed a positive correlation with chlorogenic acid and loganic acid content, and H3K9me positively correlated with luteolin content. The correlation between histone methylation levels and the levels of luteolin and loganic acid in L. japonica from different producing areas validate the regulatory role of histone methylation in biosynthesis of bioactive compounds. Our study demonstrated a potential regulatory network of H3K9/H3K4 methylation to gene expression and content of secondary metabolites, and provided a basis for understanding the mechanism underlying the variation of major bioactive compounds in L. japonica.


Subject(s)
Chlorogenic Acid/metabolism , Flavonoids/biosynthesis , Histones/metabolism , Iridoids/metabolism , Lonicera/genetics , Lonicera/metabolism , Plant Proteins/metabolism , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Gene Expression , Gene Expression Regulation, Plant , Gene Regulatory Networks , Methylation , Plant Leaves/genetics , Plant Leaves/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Tandem Mass Spectrometry
19.
Food Chem Toxicol ; 141: 111404, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32413456

ABSTRACT

Diets rich in polyphenols are known to reduce cancer among high-risk populations. Haskap (Lonicera caerulea L.) berry has abundant phenolic acids and flavonoids, especially anthocyanins. Tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) present in cigarette smoke, is a major lung carcinogenic factor. We analyzed the efficacy of anthocyanin-rich haskap berry extracts in preventing DNA damage induced by 4-[(acetoxymethyl) nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc), a precursor of NKK, in human lung epithelial BEAS-2B cells in vitro. A cocktail of monomeric polyphenols from haskap berries was extracted separately in ethanol and water and profiled. Sub-lethal concentrations of NNKOAc were used to induce DNA damage in BEAS-2B cells, and a cell viability assay was performed to confirm that the tested concentrations of haskap extracts were not cytotoxic to BEAS-2B cells. Cells were pre-treated with the haskap extracts prior to NNKOAc exposure. Dose-dependent DNA damage was observed with carcinogenic NNKOAc, but did not occur in the presence of the haskap extracts. Pre-treatment of the cells with the haskap extracts significantly reduced NNKOAc-induced DNA damage, DNA fragmentation, and intracellular reactive oxygen species and upregulated the ATM-dependent DNA damage repair cascade compared to non-treated BEAS-2B cells. The protective effect of haskap extracts could be related to their polyphenol content and high antioxidant capacity.


Subject(s)
Carcinogens/toxicity , DNA Damage/drug effects , Lonicera/metabolism , Lung/drug effects , Nitrosamines/toxicity , Plant Extracts/pharmacology , Antioxidants/pharmacology , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Histones/metabolism , Humans , In Vitro Techniques , Lung/metabolism
20.
Molecules ; 25(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050498

ABSTRACT

Lonicera caerulea L., also known as haskap or honeysuckle berry, is a fruit commonly planted in eastern Europe, Canada and Asia. The fruit was registered as a traditional food from a third country under European Union regulations only on December 2018. It is resistant to cold, pests, various soil acidities and diseases. However, its attractiveness is associated mostly with its health properties. The fruit shows anticancer, anti-inflammatory, and antioxidant activity-important factors in improving health. These features result from the diverse content of phytochemicals in honeysuckle berries with high concentrations of phytocompounds, mainly hydroxycinnamic acids, hydroxybenzoic acids, flavanols, flavones, isoflavones, flavonols, flavanones and anthocyanins but also iridoids, present in the fruit in exceptional amounts. The content and health properties of the fruit were identified to be dependent on cultivar, genotype and the place of harvesting. Great potential benefits of this nutritious food are its ability to minimize the negative effects of UV radiation, diabetes mellitus and neurodegenerative diseases, and to exert hepato- and cardioprotective activity.


Subject(s)
Anthocyanins/isolation & purification , Coumaric Acids/isolation & purification , Flavonoids/isolation & purification , Fruit/chemistry , Hydroxybenzoates/isolation & purification , Iridoids/isolation & purification , Lonicera/chemistry , Anthocyanins/chemistry , Anthocyanins/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Asia , Canada , Cardiotonic Agents/chemistry , Cardiotonic Agents/isolation & purification , Cardiotonic Agents/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Europe , Flavonoids/chemistry , Flavonoids/pharmacology , Fruit/metabolism , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Iridoids/chemistry , Iridoids/pharmacology , Lonicera/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/isolation & purification , Sunscreening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL