Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
Add more filters

Complementary Medicines
Publication year range
1.
PLoS One ; 19(4): e0301205, 2024.
Article in English | MEDLINE | ID: mdl-38625974

ABSTRACT

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Subject(s)
Catfishes , Lysine , Animals , Amino Acids , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Disease Resistance , Lysine/pharmacology , Methionine/pharmacology , Racemethionine , Staphylococcus aureus , Tryptophan/pharmacology
2.
Reprod Domest Anim ; 59(4): e14558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566368

ABSTRACT

We aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on uterine involution and the resumption of ovarian function in dairy cows. Fifty-two multiparous Holstein cows were categorized based on parity and expected calving date and randomly assigned to the RPL or control (CON) groups. The RPL group received 80 g of RPL daily from day 21 before the expected calving date until parturition. Blood samples were obtained twice weekly from pre-supplementation to 6 weeks postpartum. The onset of luteal activity postpartum was determined via ultrasonography twice weekly for up to 6 weeks postpartum. Uterine involution was tracked at 3 and 5 weeks postpartum through the vaginal discharge score, percentage of polymorphonuclear cells (PMN) in endometrial cytology samples, presence of intrauterine fluid, and gravid horn diameter via ultrasonography. Before supplementation, the RPL group showed amino acid imbalance, which was improved by RPL supplementation. There were no significant differences in the onset of luteal activity, percentage of PMN, intrauterine fluid, or the diameter of the uterine horn between the two groups. The vaginal discharge score in the RPL group decreased from 3 to 5 weeks postpartum, whereas that in the CON groups did not decrease. The number of cows with clinical endometritis was lower in the RPL group. Overall, RPL supplementation during the close-up period enhanced vaginal discharge clearance, potentially averting clinical endometritis, but did not affect the first ovulation in dairy cows.


Subject(s)
Cattle Diseases , Endometritis , Vaginal Discharge , Animals , Cattle , Female , Pregnancy , Cattle Diseases/drug therapy , Cattle Diseases/prevention & control , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Endometritis/prevention & control , Endometritis/veterinary , Endometritis/metabolism , Lactation , Lutein/analysis , Lutein/metabolism , Lysine/pharmacology , Milk/chemistry , Postpartum Period , Rumen/metabolism , Vaginal Discharge/veterinary
3.
J Agric Food Chem ; 72(14): 7894-7905, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551085

ABSTRACT

Antimicrobial peptides are potent food additive candidates, but most of them are sensitive to proteases, which limits their application. Therefore, we substituted arginine for lysine and introduced a lysine isopeptide bond to peptide IDR-1018 in order to improve its enzymatic stability. Subsequently, the protease stability and antimicrobial/antibiofilm activity of the novel peptides (1018K2-1018KI11) were investigated. The data revealed that the antienzymatic potential of 1018KI11 to bromelain and papain increased by 2-8 folds and 16 folds, respectively. The minimum inhibitory concentration (MIC) of 1018KI11 against methicillin-resistant Staphylococcus aureus (MRSA) ATCC43300 and Escherichia coli (E. coli) ATCC25922 was reduced 2-fold compared to 1018K11. Mechanism exploration suggested that 1018KI11 was more effective than 1018K11 in disrupting the cell barrier and damaging genomic DNA. Additionally, 1018KI11 at certain concentration conditions (2-64 µg/mL) reduced biofilm development of MRSA ATCC43300 by 4.9-85.9%. These data indicated that novel peptide 1018KI11 is a potential food preservative candidate.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Food Preservatives/pharmacology , Lysine/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms
4.
J Dairy Sci ; 107(7): 4537-4557, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395403

ABSTRACT

Lysine is one of the limiting AA in the diets of dairy cows and is typically fed as rumen-protected Lys (RPL). We hypothesized that supplementation of RPL during the postpartum period would improve the productive performance in dairy cows. Objectives were to use meta-analytic methods to explore the effects of feeding RPL on performance and blood AA profile in lactating dairy cows. An additional objective was to identify an optimal concentration (%) of Lys in MP (LYSMP) and determine if responses to LYSMP were associated with the concentration (%) of Met in MP (METMP). The literature was systematically reviewed, and 13 experiments, comprising 40 treatment means and 594 lactating cows, were included in the meta-analysis. All experiments had a nonsupplemental control (CON; n = 17 treatment means), or a group supplemented with RPL (n = 23 treatment means). Cows supplemented with RPL were supplied additionally with a mean (±standard deviation) 19.3 ± 10.3 g/d metabolizable Lys (5.1-40.6 g/d). Meta-analytical statistics were used to estimate the weighted mean difference in STATA. Mixed models were fitted to the data to investigate the linear and quadratic effects of LYSMP, METMP, and interactions between LYSMP and METMP. All models included the random effect of experiment and weighting by the inverse of the SE of the means squared. Cows that began receiving RPL in early lactation (≤90 DIM) or for an extended duration (≥70 DIM) produced 1.51 kg/d more milk compared with CON cows. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased yields of milk, FCM, ECM, and milk fat by 1.8, 2.5, 2.4, and 0.10 kg/d, respectively, and tended to increase milk protein yield and body weight gain by 0.07 and 0.09 kg/d, respectively, without a concurrent increase in DMI. Interactions between the linear effects of LYSMP and METMP were observed for FCM/DMI or ECM/DMI. In a diet with low METMP (e.g., 1.82% of MP), a digestible supply of 7.40% LYSMP would result in 1.46 and 1.47 kg/kg FCM/DMI or ECM/DMI, respectively; however, with high digestible METMP (e.g., 2.91% of MP), supplying 7.40% of digestible LYSMP would result in 1.68 and 1.62 kg/kg FCM/DMI or ECM/DMI, respectively. Increasing digestible LYSMP from 6.5% to 8.5% linearly increased blood concentrations of Lys by 16.6 µM, whereas blood concentrations of Met and Ala decreased by 4.6 and 6.0 µM, respectively. Nevertheless, an interaction was also observed between LYSMP and METMP for blood concentrations of total EAA because as METMP increased, the positive response to LYSMP on total EAA was also increased, suggesting a competitive mobilization of AA and their utilization in various body tissues. Only 4 out of the 13 experiments in this meta-analysis involved primiparous cows; thus, insufficient data were available to understand the role of supplemental RPL in primiparous cows. Collectively, feeding RPL improved productive performance, and the increments were maximized up to 9.25% of LYSMP in multiparous dairy cows.


Subject(s)
Amino Acids , Animal Feed , Dietary Supplements , Lactation , Lysine , Milk , Rumen , Animals , Cattle , Female , Amino Acids/metabolism , Diet/veterinary , Lactation/drug effects , Lysine/pharmacology , Milk/chemistry , Postpartum Period , Rumen/metabolism
5.
Int J Biol Macromol ; 263(Pt 1): 130162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365149

ABSTRACT

Sorafenib (SF) is a first-line drug for the treatment of hepatocellular carcinoma (HCC) in clinical practice. However, acquired drug resistance tremendously limits the clinical efficacy of sorafenib in treating HCC, which has attracted great attention. PDL1 plays a crucial role in the drug resistance of HCC. Here, a codelivery system based on poly-SS-lysine modified chitosan (TAT-C-SS-P) was established and was applied to deliver sorafenib and PDL1-siRNA for synergetic HCC therapy. The successful synthesis of TAT-C-SS-P was confirmed by 1H NMR. Additionally, sorafenib and PDL1-siRNA were successfully transported into the cells as the decreased expression of VEGF and PD-L1 by administrated with TAT-C-SS-P@SF@ PDL1-siRNA. Simultaneously, the expression of pro-apoptosis proteins cyt-c and Bax was prominently augmented, whereas the expression of anti-apoptosis protein Bcl-2 was decreased. The reduced expression of PDL1 resulted in the downregulation of P-GP and MRP1, which contributed to more sorafenib aggregation in tumor cells. Moreover, TAT-C-SS-P@PDL1-siRNA@SF efficiently promotes apoptosis of HepG2-SI cells, as the apoptosis rate rised to 73 %. A sorafenib-insensitive model was established to evaluate in vivo antitumor effect of TAT-C-SS-P@PDL1-siRNA@SF. TAT-C-SS-P@PDL1-siRNA@SF showed a tumor inhibition rate of 90.2 ± 3.5 % and no significant decrease in body weight. Taken together, our study provided compelling evidence that TAT-C-SS-P@PDL1-siRNA@SF has great potential application in the treatment of HCC clinically.


Subject(s)
Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Chitosan/pharmacology , Lysine/pharmacology , RNA, Small Interfering , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , B7-H1 Antigen , Cell Line, Tumor , Apoptosis , Drug Resistance, Neoplasm/genetics , Cell Proliferation
6.
Poult Sci ; 103(1): 103222, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980732

ABSTRACT

The etiology of Wooden Breast (WB) is unknown; therefore, it is difficult to produce broiler flocks with similar proportions of WB-affected and unaffected birds. Because WB has been detected as early as 15 d posthatch, the objective of this randomized complete block experiment with a 2 × 2 factorial treatment arrangement was to determine whether combining the effects of light intensity (LI) and early nutrient reduction strategies could reliably produce WB-affected and normal broilers to further investigate the physiological mechanisms underlying WB. On day of hatch, male, Ross 708 × Yield Plus broilers (n = 384; 16 birds per pen; 3 replicate blocks) were randomly allotted to floor pens in the same facility and exposed to either 2 (LOWLI) or 30 (HIGHLI) lux of light from d 0 to 35. Birds were fed either a commercial starter diet (CON) or the CON diet with a 10% reduction in both ME and digestible lysine (dLys; RED) from d 0 to 14 and then a common grower diet from d 15 to 35. Broiler growth performance, breast yield, and incidence and severity of WB and White Striping (WS) were assessed. Data were analyzed as a 2-way ANOVA with SAS PROC GLIMMIX and means separated at P < 0.05 with PDIFF. No interaction among LI and diet was observed (P > 0.05). Broilers reared with HIGHLI were heavier on d 35 and consumed more feed in all phases compared with broilers reared under LOWLI (P ≤ 0.0096). Broilers reared under LOWLI gained less BW from d 15 to 35 and d 0 to 35 compared with broilers reared under HIGHLI (P = 0.0073). Broilers fed the RED starter diet consumed more feed and had higher FCR from d 0 to 14 compared with broilers fed the CON diet (P ≤ 0.0012). In conclusion, combining reductions in LI and starter diet ME and dLys did not produce the hypothesized reductions in breast yield and incidence and severity of WB or WS.


Subject(s)
Chickens , Lysine , Animals , Male , Lysine/pharmacology , Chickens/physiology , Animal Feed/analysis , Random Allocation , Diet/veterinary , Meat/analysis , Animal Nutritional Physiological Phenomena , Dietary Supplements
7.
Sci Rep ; 13(1): 19943, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968448

ABSTRACT

Single amino acid (AA) supplementations in foods are increasing, however their potential nutritional and physiological impacts are not fully understood. This study examined the effects of L-lysine (Lys) supplementation on protein quality of diets, serum AA concentrations and associations between the ratio of supplemental Lys to dietary protein (X) with body weight gain (BWG) in Sprague-Dawley male rats. Rats were fed one of 10 diets containing either 7% or 20% casein and supplemented with 0% (Control), 1.5%, 3%, 6% Lys or 6% Lys + 3% L-arginine (Arg) (8 rats/diet group) for 1 week. Lys supplementation reduced the protein quality of the casein-based diets (p < 0.01). BWG was reduced by supplemental Lys when X > 0.18. Free Lys supplementation dose-dependently increased serum Lys levels (p < 0.01), while increased protein-bound Lys (1.4% vs 0.52%) had little effect on serum Lys (p > 0.05). In the 7% casein diets, ≥ 1.5% supplemental Lys reduced serum alanine, asparagine, glycine, isoleucine, leucine, serine, tyrosine, valine, carnitine, ornithine, and increased urea. Supplementation of ≥ 3% Lys additionally reduced tryptophan and increased histidine, methionine and α-aminoadipic acid (α-AAA) compared to the Control (p < 0.05). In the 20% casein diets, addition of ≥ 1.5% Lys reduced serum asparagine and threonine, and ≥ 3% Lys reduced leucine, proline, tryptophan, valine, and ornithine, and 6% Lys reduced carnitine, and increased histidine, methionine, and α-AAA. Overall, this study showed that free Lys supplementation in a Lys-sufficient diet reduced the protein quality of the diets and modified the serum concentrations of many amino acids. Excess free Lys intake adversely affected growth and utilization of nutrients due to AA imbalance or antagonism. Overall lower protein intake increases susceptibility to the adverse effects of Lys supplementation.


Subject(s)
Lysine , Tryptophan , Male , Animals , Rats , Lysine/pharmacology , Leucine , Caseins/pharmacology , Histidine , Asparagine , Rats, Sprague-Dawley , Dietary Supplements , Amino Acids/pharmacology , Diet , Methionine , Dietary Proteins/pharmacology , Weight Gain , Valine , Racemethionine , Carnitine , Ornithine
8.
Nutrients ; 15(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004100

ABSTRACT

Skeletal muscle is the key tissue for maintaining protein and glucose homeostasis, having a profound impact on the development of diabetes. Diabetes causes deleterious changes in terms of loss of muscle mass, which will contribute to reduced glucose uptake and therefore progression of the disease. Nutritional approaches in diabetes have been directed to increase muscle glucose uptake, and improving protein turnover has been at least partially an oversight. In muscle, ß-hydroxy ß-methyl butyrate (HMB) promotes net protein synthesis, while arginine and lysine increase glucose uptake, albeit their effects on promoting protein synthesis are limited. This study evaluates if the combination of HMB, lysine, and arginine could prevent the loss of muscle mass and function, reducing the progression of diabetes. Therefore, the combination of these ingredients was tested in vitro and in vivo. In muscle cell cultures, the supplementation enhances glucose uptake and net protein synthesis due to an increase in the amount of GLUT4 transporter and stimulation of the insulin-dependent signaling pathway involving IRS-1 and Akt. In vivo, using a rat model of diabetes, the supplementation increases lean body mass and insulin sensitivity and decreases blood glucose and serum glycosylated hemoglobin. In treated animals, an increase in GLUT4, creatine kinase, and Akt phosphorylation was detected, demonstrating the synergic effects of the three ingredients. Our findings showed that nutritional formulations based on the combination of HMB, lysine, and arginine are effective, not only to control blood glucose levels but also to prevent skeletal muscle atrophy associated with the progression of diabetes.


Subject(s)
Diabetes Mellitus , Lysine , Rats , Animals , Lysine/pharmacology , Lysine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Blood Glucose/metabolism , Arginine/pharmacology , Arginine/metabolism , Muscle, Skeletal/metabolism , Diabetes Mellitus/metabolism , Glucose/metabolism , Insulin/metabolism , Dietary Supplements
9.
Biomed Pharmacother ; 164: 114936, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37257226

ABSTRACT

Fixed airflow limitation (FAO), prevalent in patients with severe or difficult-to-treat asthma, is mainly caused by airway remodeling. Airway remodeling is initiated by inflammation and involves subsequent pathological changes. Glycyl-l-histidyl-l-lysine (GHK) is a matrikine with anti-inflammatory and antioxidant effects, naturally existing in human tissue. At present, the GHK level in human plasma and whether it is related to airway remodeling of asthma remain unclear. This study was conducted to determine how GHK is involved in airway remodeling in asthma. Our result showed that the plasma GHK levels of patients with asthma were significantly lower than those of age-matched healthy controls. In asthma patients, plasma GHK levels display a moderate correlation with FEF25-75%, and patients with FAO had significantly lower GHK levels. Ovalbumin-induced mice of asthma model treated with PBS or GHK-Cu (a form of GHK with higher bioavailability) were used to evaluate the effect of exogenous GHK supplement on airway remodeling. GHK-Cu administration alleviated airway remodeling, as reflected by decreased peribronchial collagen deposition and airway mucus secretion, and suppressed epithelial-mesenchymal transition. The therapeutical effect related to decreased TGF-ß1 level. Successively, network pharmacology and the validation data of experiments in vivo and vitro demonstrated that GHK-Cu decreased TGF-ß1 level by increasing SIRT1 expression and activating SIRT1 deacetylation in airway epithelial cells, thereby alleviating airway remodeling. Collectively, decreased plasma GHK levels were related to FAO in asthma patients. Through the direct binding and activation of SIRT1, exogenous GHK-Cu administration alleviated airway remodeling in asthmatic mice.


Subject(s)
Asthma , Transforming Growth Factor beta1 , Humans , Mice , Animals , Transforming Growth Factor beta1/metabolism , Ovalbumin , Lysine/pharmacology , Airway Remodeling , Sirtuin 1 , Asthma/drug therapy , Epithelial Cells/metabolism , Disease Models, Animal
10.
Reprod Domest Anim ; 58(8): 1070-1079, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37254573

ABSTRACT

The use of antibiotics in semen extenders can contribute to the development of antibiotic resistance. The objective of the study was to evaluate epsilon-polylysine (Ɛ-PL) as a substitute for antibiotics in the buffalo semen extender. For this, 20 semen ejaculates were collected from four Murrah buffalo bulls. Each ejaculate was divided into three equal aliquots and extended into an egg yolk-based semen extender containing either antibiotics (strepto-penicillin) or different concentrations of Ɛ-PL (0.64 and 1.28 g/L) to make the final concentration 80 million sperm/mL and cryopreserved as per the standard procedure. The antibiogram sensitivity test confirmed that Ɛ-PL is an effective antimicrobial against microbes present in buffalo semen ejaculates. Furthermore, the addition of Ɛ-PL in the semen extender significantly reduces the colony forming unit (CFU)/mL in cryopreserved semen equivalent to strepto-penicillin. The sperm motility and kinematic parameters assessed by a computer-assisted sperm analyser showed that Ɛ-PL did not inhibit either sperm motility not kinematic parameters of cryopreserved sperm. The flow-cytometric evaluation of frozen-thawed sperm revealed interesting results. The extender supplemented with Ɛ-PL protected sperm acrosome and mitochondrial membrane potential greater than the extender supplemented with strepto-penicillin. Further, Ɛ-PL reduced significantly the production of superoxide anions from mitochondria during the cryopreservation process. In this way, Ɛ-PL may be a suitable alternative to antibiotics in semen extenders. In conclusion, Ɛ-PL at a concentration of 0.64 g/L acts as an effective antimicrobial as well as antioxidant in semen extender for cryopreservation of buffalo sperm.


Subject(s)
Semen Preservation , Semen , Male , Animals , Lysine/pharmacology , Semen Analysis/veterinary , Sperm Motility , Semen Preservation/veterinary , Semen Preservation/methods , Cryoprotective Agents/pharmacology , Spermatozoa , Cryopreservation/veterinary , Cryopreservation/methods , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Penicillins , Buffaloes
11.
PeerJ ; 11: e14384, 2023.
Article in English | MEDLINE | ID: mdl-36684675

ABSTRACT

The method of anticancer bioactive peptide (ACBP) functionalized selenium particle (Se), which has enhanced anticancer activity, inhibited the growth of gastric cancer (GC) cells, and increased the ability of apoptosis in vitro, has been reported in previous studies. We used tandem mass spectrometry (TMT) labeling to construct a complete atlas of the acetylation-modified proteome in GC MKN-45 cells treated with ACBP-Se. The proteomics data database was searched and analyzed by bioinformatics: Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), functional enrichment, and protein-protein interaction network. Finally, we conducted a quantitative PRM analysis of the selected target-modified peptides. We identified 4,958 acetylation sites from 1,926 proteins in this research. Among these, 4,467 acetylation sites corresponding to 1,777 proteins were quantified. Based on the above data and standards, we found that in the ACBP-Se group vs. the control group, 297 sites were upregulated, and 665 sites were downregulated. We systematically assessed the proteins containing quantitative information sites, including protein annotation, functional classification, and functional enrichment, cluster analysis supported by functional enrichment, domain structures, and protein interaction networks. Finally, we evaluated differentially expressed lysine acetylation sites. We revealed that SHMT2 K200 and PGK1 K97 were the most critical acetylated non-histone proteins, which may have an essential role in ACBP-Se treatment. Here, we identified and quantified the lysine acetylation proteins in GC cells treated with ACBP-Se. The characterization of acetylation indicates that acetylated proteins might be pivotal in the biological process, molecular binding, and metabolic pathways of ACBP-Se treatment progress. Our findings provide a broad understanding of acetylation ACBP-Se treatment of GC, suggesting a potential application for molecular targeted therapy.


Subject(s)
Antineoplastic Agents , Selenium , Stomach Neoplasms , Humans , Acetylation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lysine/pharmacology , Peptides/pharmacology , Proteome/metabolism , Selenium/pharmacology , Selenium/therapeutic use , Stomach Neoplasms/drug therapy
12.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 28-36, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35213754

ABSTRACT

This study aimed to evaluate the effects of rumen-protected lysine (RPL) supplementation during the close-up period on blood metabolites and calf growth. Forty multiparous Holstein dams were selected based on parity, body condition score, and expected calving date, and randomly assigned to a group: with RPL (n = 22) or without (control [CON], n = 18). RPL dams were supplied daily with 80 g of RPL from Day 21 before the expected calving date to parturition. Blood samples were obtained from the dams before the start of supplementation, 1 week before calving, and immediately after calving, and from calves immediately after birth and weekly until 8 weeks of age. Body weight measurements were performed immediately after birth in all calves and at weekly intervals until 8 weeks of age in female calves. No significant difference was observed in serum metabolite levels and plasma amino acid concentrations between the RPL and CON dams before supplementation, whereas plasma lysine concentrations tended to be higher in RPL dams immediately after calving (p = 0.07). Serum total protein levels (p < 0.05) were higher, whereas plasma total amino acid, total essential amino acid, total non-essential amino acid, and other amino acid concentrations were lower in the calves of RPL dams than those of CON dams (p < 0.05). There were no significant differences in calf birth weight between the two groups, although female calves of RPL dams (n = 7) had higher serum total protein (p < 0.05) and tended to have greater body weight (p = 0.09) from 1 to 8 weeks of age than those of CON dams (n = 11). Overall, RPL supplementation during the close-up period may increase placenta-mediated amino acid transfer to the foetus and enhance protein synthesis in the calf, leading to improved weight gain during the suckling period.


Subject(s)
Diet , Lysine , Pregnancy , Animals , Cattle , Female , Lysine/pharmacology , Diet/veterinary , Animals, Newborn , Rumen/metabolism , Dietary Supplements , Body Weight
13.
J Zhejiang Univ Sci B ; 23(11): 943-956, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36379613

ABSTRACT

OBJECTIVES: Primary tumor treatment through surgical resection and adjuvant therapy has been extensively studied, but there is a lack of effective strategies and drugs for the treatment of tumor metastases. Here, we describe a functional product based on a combination of compounds, which can be used as an adjuvant therapy and has well-known mechanisms for inhibiting cancer metastases, improving anti-cancer treatment, and enhancing immunity and antioxidant capacity. Our designed combination, named MVBL, consists of four inexpensive compounds: L-selenium-methylselenocysteine (MSC), D-|α|-tocopheryl succinic acid (VES), ß|-carotene (ß|-Ca), and L-lysine (Lys). METHODS: The effects of MVBL on cell viability, cell cycle, cell apoptosis, cell migration, cell invasion, reactive oxygen species (ROS), and paclitaxel (PTX)-combined treatment were studied in vitro. The inhibition of tumor metastasis, antioxidation, and immune enhancement capacity of MVBL were determined in vivo. RESULTS: MVBL exhibited higher toxicity to tumor cells than to normal cells. It did not significantly affect the cell cycle of cancer cells, but increased their apoptosis. Wound healing, adhesion, and transwell assays showed that MVBL significantly inhibited tumor cell migration, adhesion, and invasion. MVBL sensitized MDA-MB-231 breast cancer cells to PTX, indicating that it can be used as an adjuvant to enhance the therapeutic effect of chemotherapy drugs. In mice, experimental data showed that MVBL inhibited tumor metastasis, prolonged their survival time, and enhanced their antioxidant capacity and immune function. CONCLUSIONS: This study revealed the roles of MVBL in improving immunity and antioxidation, preventing tumor growth, and inhibiting metastasis in vitro and in vivo. MVBL may be used as an adjuvant drug in cancer therapy for improving the survival and quality of life of cancer patients.


Subject(s)
Neoplasms , beta Carotene , Mice , Animals , Lysine/pharmacology , Antioxidants/pharmacology , Quality of Life , Paclitaxel/pharmacology , Apoptosis , alpha-Tocopherol , Succinates/pharmacology , Cell Line, Tumor , Cell Proliferation
14.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35986917

ABSTRACT

This experiment investigated the effects of xylanase on growth performance, nutrient digestibility, serum metabolites, and fecal microbiota in growing pigs fed wheat-soybean meal-based diets. Seventy-two crossbred pigs (Duroc × [Landrace × Large White]) pigs (body weight of 23.30 ± 1.51 kg) were allotted two treatments with six pens per treatment and six pigs per pen. The diets were a wheat-soybean meal-based diet (Control group) and a wheat-soybean meal-based diet supplemented with 500 U/kg xylanases (XYL group). The experiment was divided into two periods (phase 1: days 1 to 35 and phase 2: days 36 to 70). Xylanase improved G:F during phase 1 and the entire experiment (P < 0.05) and tended to improve G:F during phase 2 (P = 0.09). Compared with the control group, pigs in the XYL group had greater apparent total tract digestibility of dry matter, organic matter, and gross energy on days 35 and 70 (P < 0.05) and had greater apparent ileal digestibility of amino acids (histidine, lysine, methionine, and serine) on day 70 (P < 0.05). The fecal microbiota in the XYL group contained greater abundances of g_Terrisporobacter, g_Lactobacillus, g_Clostridium_sensu_stricto_1, and g_Romboutsia than the Control group on day 70. Xylanase increased the fecal Lactobacillus populations on day 35 (P < 0.05). On days 35 and 70, xylanase reduced the fecal E. coli populations (P < 0.05). Supplementing xylanase to wheat-soybean meal-based diets collectively improved fecal microbiota, and nutrient digestibility, thereby improving growth performance in growing pigs.


The potentiality of wheat on nutritive value is not fully realized because of the presence of (NSP). The arabinoxylan in the wheat represents about 70% of the total NSP, which may bring about the encapsulation of nutrients and increase digesta viscosity. In this experiment, we found that a wheat­soybean meal-based diet supplemented with 500 U/kg xylanases could improve the fecal microbiota and nutrient digestibility, thereby improving growth performance in growing pigs.


Subject(s)
Microbiota , Triticum , Swine , Animals , Triticum/chemistry , Glycine max/metabolism , Animal Feed/analysis , Digestion , Endo-1,4-beta Xylanases/pharmacology , Lysine/pharmacology , Histidine , Escherichia coli/metabolism , Diet/veterinary , Dietary Supplements/analysis , Nutrients , Amino Acids/metabolism , Methionine/pharmacology , Serine/pharmacology
15.
J Pharmacol Exp Ther ; 382(3): 246-255, 2022 09.
Article in English | MEDLINE | ID: mdl-35779948

ABSTRACT

Aberrations in spinal glycinergic signaling are a feature of pain chronification. Normalizing these changes by inhibiting glycine transporter (GlyT)-2 is a promising treatment strategy. However, existing GlyT2 inhibitors (e.g., ORG25543) are limited by narrow therapeutic windows and severe dose-limiting side effects, such as convulsions, and are therefore poor candidates for clinical development. Here, intraperitoneally administered oleoyl-D-lysine, a lipid-based GlyT2 inhibitor, was characterized in mouse models of acute (hot plate), inflammatory (complete Freund's adjuvant), and chronic neuropathic (chronic constriction injury) pain. Side effects were also assessed on a numerical rating score, convulsions score, for motor incoordination (rotarod), and for respiratory depression (whole body plethysmography). Oleoyl-D-lysine produced near complete antiallodynia for chronic neuropathic pain, but no antiallodynia/analgesia in inflammatory or acute pain. No side effects were seen at the peak analgesic dose, 30 mg/kg. Mild side effects were observed at the highest dose, 100 mg/kg, on the numerical rating score, but no convulsions. These results contrasted markedly with ORG25543, which reached less than 50% reduction in allodynia score only at the lethal/near-lethal dose of 50 mg/kg. At this dose, ORG25543 caused maximal side effects on the numerical rating score and severe convulsions. Oleoyl-D-lysine (30 mg/kg) did not cause any respiratory depression, a problematic side effect of opiates. These results show the safe and effective reversal of neuropathic pain in mice by oleoyl-D-lysine and provide evidence for a distinct role of glycine in chronic pain over acute or short-term pain conditions. SIGNIFICANCE STATEMENT: Partially inhibiting glycine transporter (GlyT)-2 can alleviate chronic pain by restoring lost glycinergic function. Novel lipid-based GlyT2 inhibitor ol-D-lys is safe and effective in alleviating neuropathic pain, but not inflammatory or acute pain. Clinical application of GlyT2 inhibitors may be better suited to chronic neuropathic pain over other pain aetiologies.


Subject(s)
Acute Pain , Chronic Pain , Neuralgia , Respiratory Insufficiency , Animals , Disease Models, Animal , Glycine Plasma Membrane Transport Proteins , Hyperalgesia/drug therapy , Lipids , Lysine/pharmacology , Lysine/therapeutic use , Male , Mice , Neuralgia/drug therapy , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy
16.
Nutrients ; 14(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35631316

ABSTRACT

Evidence of the impact of nutrition on human brain development is compelling. Previous in vitro and in vivo results show that three specific amino acids, histidine, lysine, and threonine, synergistically inhibit mTOR activity and behavior. Therefore, the prenatal availability of these amino acids could be important for human neurodevelopment. However, methods to study the underlying mechanisms in a human model of neurodevelopment are limited. Here, we pioneer the use of human cerebral organoids to investigate the impact of amino acid supplementation on neurodevelopment. In this study, cerebral organoids were exposed to 10 mM and 50 mM of the amino acids threonine, histidine, and lysine. The impact was determined by measuring mTOR activity using Western blots, general cerebral organoid size, and gene expression by RNA sequencing. Exposure to threonine, histidine, and lysine led to decreased mTOR activity and markedly reduced organoid size, supporting findings in rodent studies. RNA sequencing identified comprehensive changes in gene expression, with enrichment in genes related to specific biological processes (among which are mTOR signaling and immune function) and to specific cell types, including proliferative precursor cells, microglia, and astrocytes. Altogether, cerebral organoids are responsive to nutritional exposure by increasing specific amino acid concentrations and reflect findings from previous rodent studies. Threonine, histidine, and lysine exposure impacts the early development of human cerebral organoids, illustrated by the inhibition of mTOR activity, reduced size, and altered gene expression.


Subject(s)
Amino Acids , Histidine , Amino Acids/metabolism , Histidine/pharmacology , Humans , Lysine/pharmacology , Organoids , TOR Serine-Threonine Kinases , Threonine
17.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1258-1267, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34927293

ABSTRACT

Experiment was conducted to study the effects of Mulberry Leaf (ML) powder on reproductive performance, serum and milk amino acid composition in sows. Fifty sows (D 85 at gestation) with parity 3 or 4 were randomly divided into 5 groups: C, M100, M200, M300 and M400, receiving 0, 100, 200, 300 and 400 g ML powder per sow per day. Blood and milk of sows at Days 1 and 21 of lactation were collected. Results showed that average daily feed intake (ADFI) during lactation was higher in groups supplemented ML compared with control group (p < 0.01). Litter weight gain during lactation was higher in M400 than in groups M200 and C (p < 0.05), with no significant difference compared with M100 and M300. Serum glucose concentration in groups M400 and M300 was higher than those in the other groups (p < 0.01). Serum HDL-C concentration in group M400 was significantly greater than those in groups M100 and M200 (p < 0.05), with no significant difference between group M400 and groups M300, control. Milk amino acid concentrations such as isoleucine, leucine, lysine and valine were all lower in group M400 than in control (p < 0.01). Serum methionine (Met) concentration was higher in M300 than in other groups (p < 0.01). Milk Met concentration in group C was higher than those of the sows in the group M400, with no significant difference compared with groups M100, M200 and M300 (p < 0.05). Serum Lys and Met concentrations were lower in M400 than in control group (p < 0.05). In summary, our results have revealed the ML supplementation at a high dose such as 300 g/day during later gestation and lactation showed benefit in regulating lipid and amino acid metabolism in sows and then improved growth performance of their offspring.


Subject(s)
Milk , Morus , Swine , Animals , Female , Pregnancy , Milk/chemistry , Lactation/physiology , Amino Acids/metabolism , Powders/pharmacology , Litter Size , Diet/veterinary , Lysine/pharmacology , Plant Leaves/metabolism , Animal Feed/analysis
18.
Reprod Domest Anim ; 57(3): 253-261, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34787945

ABSTRACT

The present study aimed to evaluate the influence of dietary supplementation of different levels of L-carnitine and/or lysine-methionine (Lys-Met) on reproductive performance of breeder ducks. Three L-carnitine (0, 75 and 150 mg/kg) and three lysine-methionine (100%, 110% and 120% above the NRC (Nutrient requirements of poultry, 1994, National Academy Press) recommendations) levels were fed to 180 breeder ducks (144 females and 36 males) in a completely randomized design for 49 days. Laying performance and reproductive traits were evaluated; additionally, uric acid, total protein total, triglycerides, total cholesterol, low-density lipoprotein, high-density lipoprotein, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were assessed. The Lys-Met above 100% NRC (Nutrient requirements of poultry, 1994, National Academy Press) recommendations with or without L-carnitine improved feed utilization (p < .05). Furthermore, Lys-Met above 100% recommendations without L-carnitine improved egg fertility and hatchability. Fertility and hatchability improved in breeders fed on L-carnitine with 120% Lys-Met (p < .05). Serum glucose increased and total cholesterol reduced on 100% Ly-Met without L-carnitine or 110% Ly-Met with 150 mg L-carnitine (p < .05). Glucose was reduced, while total cholesterol increased on 75 mg L-carnitine and 100% Lys-Met (p < .05). Increasing Lys-Met without L-carnitine reduced serum protein (p < .05). Albumin and ALT increased on 75 mg L-carnitine-100% Lys-Met and reduced on 150 mg L-carnitine-120% Lys-Met (p < .05). There were no interaction effects on globulin, uric acid and AST (p > .05). Thus, based on findings, breeder ducks responded to dietary Lys-Met more efficiently than L-carnitine; however, more research is needed to evaluate also economic aspects related to L-carnitine dietary supplementation.


Subject(s)
Dietary Supplements , Ducks , Lysine , Animal Feed/analysis , Animals , Carnitine/pharmacology , Diet/veterinary , Female , Lysine/pharmacology , Male , Methionine/pharmacology
19.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1118-1129, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34496098

ABSTRACT

The purpose of this study was to investigate the effects on growth of Lysine (Lys) supplementation in a low protein diet. We also investigated the gene or protein expression related to skeletal muscle development and intestinal amino acid transporters, and determined the major signalling associated with Lys-regulating skeletal muscle development. 1000 healthy, weights averaging 938.6 ± 6.54 g weaned rabbits were randomly divided into five groups (five replicates in each group and 40 rabbits in each replicate). These groups consisted of the normal protein group (NP group, consuming a diet containing 16.27% protein), the low protein group (LP group, 14.15%-14.19% protein) and the LP group with an addition of 0.15%, 0.3% or 0.45% Lys. The trial included 7 d of pre-feeding and 28 d of exposure to the treatment. Compared with NP diet and LP diet, LP+0.3% Lys group improved growth performance (p < 0.05), full-bore weight and half-bore weight of rabbits (p < 0.05). The LP+0.3% Lys group also resulted in a decrease in the excretion of faecal nitrogen and urinary nitrogen (FN; UN; p < 0.05), and an increase in nitrogen utilisation rate (NUR; p < 0.05). LP diet increased the mRNA expression of MSTN and WWP1, and decreased the mRNA expression of IGF1 (p < 0.05). LP diet decreased the protein expression of P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group attenuated the effects of LP diet on the expression of MSTN, WWP1, IGF1, P-P70S6K1, P-4EBP1 and P-S6 (p < 0.05). LP+0.3% Lys group resulted in an increase in mRNA expression of MyoD and protein expression of P-mTOR relative to the NP and LP groups (p < 0.05). In summary, the addition of Lys to a LP diet provides a theoretical basis for the popularisation and application of Lys in rabbit production.


Subject(s)
Diet, Protein-Restricted , Lysine , Animal Feed/analysis , Animals , Diet/veterinary , Diet, Protein-Restricted/veterinary , Dietary Supplements , Lysine/pharmacology , Muscle Development , Muscle, Skeletal/metabolism , Nitrogen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits
20.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 825-831, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34423869

ABSTRACT

A total of 150 growing pigs ([Landrace × Yorkshire] × Duroc) with an initial average body weight (BW) of 24.45 kg were used in a 6-week trial to estimate the optimum lysine to glutamic acid ratio in pigs fed low-protein diets supplemented with increasing level of synthetic glutamic acid (Glu). Pigs were randomly allotted to 5 dietary treatments consisting of either control diet (CON) formulated to have 157 g crude protein (CP) or negative control diets (NC, NC1, NC2 and NC3) with 20 g CP reduction and addition of Glu (1.1, 3.9, 6.8 and 9.6 g/kg feed respectively). Supplementing the increasing level of Glu to low CP diets did not exert any linear or quadratic responses in the growth performance parameters as well as nutrient digestibility. The serum creatinine concentration in pigs receiving CON diet showed trends (p = 0.063) in increment compared with pigs receiving NC diet. However, with the increase in the supplementation of Glu, there were no linear or quadratic responses on serum blood urea nitrogen (BUN) and creatinine concentrations. There was a tendency in the reduction (p = 0.088, p = 0.064) of backfat thickness and lean percentage, respectively, at week 3 and a trend in the reduction (p = 0.092) in lean percentage at week 6 in pigs fed NC diet compared with those fed CON diet. The increase in the supplemental level of Glu tended to show quadratic responses in the backfat thickness and lean percentage at week 3 and 6. In conclusion, the growth performance parameters as well as carcass traits with Lys: Glu ratio 1: 2.71 were very close with the mean values of CON diet indicating that 6.8 g Glu when supplemented to 2% CP reduced diet could achieve the comparable growth performance and carcass trait as that of standard basal diet.


Subject(s)
Animal Feed , Glutamic Acid , Animal Feed/analysis , Animals , Body Composition , Body Weight , Diet/veterinary , Diet, Protein-Restricted/veterinary , Dietary Supplements , Glutamic Acid/pharmacology , Lysine/pharmacology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL