Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 19-25, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063123

ABSTRACT

Breast cancer is the most common type of cancer in women and the second  cause of cancer-related death after lung cancer. Although the common methods used in the treatment of breast cancer are chemotherapy, radiotherapy and surgery, the search for alternative treatments continues.  The leading  alternative treatments are medicinal plants which actually inspire the production of many cancer drugs. In this study, the proliferative and metastatic effects of Carthamus tinctorius L., known for its many therapeutic properties, on metastatic breast cancer were investigated. Here, intending to evaluate the the content and actions of different extracts of safflower leaves extracts were prepared by extracting in water, alcohol and oil and analysed by FTIR. Their antioxidant effect was tested and then the extracts were applied to metastatic breast cancer cells. FTIR spectrums of all three extracts have revealed the presence of organic compounds.  It is found that all extracts but mostly the oil extract has antioxidant property. MTT assay, wound healing assay and gene expression analysis were performed to assess the antiproliferative and anti metastatic effects of the extracts on breast cancer cells. It is found that, there is no significant antiproliferative effect of extracts on MDA-MB-231 cells except the alcohol extract. However, all safflower extracts, especially the oil extract, significantly reduced the metastatic potential of breast cancer cells. It is concluded that safflower contents are potent chemicals which inhibit the cellular mechanisms underlying the spreading of cancer cells and further analysis may lead to new initiatives in drug design research.


Subject(s)
Breast Neoplasms , Carthamus tinctorius , Humans , Female , Carthamus tinctorius/chemistry , Carthamus tinctorius/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , MDA-MB-231 Cells , Antioxidants/pharmacology , Antioxidants/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Cell Biochem Funct ; 41(8): 1442-1450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37933894

ABSTRACT

Phenolic compounds present in plants have demonstrated several biological properties such as antioxidant, antitumor, cardioprotective, and antiproliferative. On the other hand, doxorubicin, a chemotherapeutic widely used to treat breast cancer, usually exhibits chronic cardiotoxicity associated with oxidative stress. Therefore, we aimed to study the effects of phenolic compound-enriched extract (PCEE) with doxorubicin in breast cancer. To achieve this, after an SPE-C18 -column purification process of crude extracts obtained from pecan nutshells (Carya illinoinensis), the resulting PCEE was used to evaluate the cytotoxicity and antioxidant properties against the human breast cancer cell line MDA-MB-231 and the normal-hamster ovary cell line CHO-K1. PCEE was selectively cytotoxic against both cell lines, with an IC50 value (≈26.34 mg/L) for MDA-MB-231 lower than that obtained for CHO-K1 (≈55.63 mg/L). As a cytotoxic mechanism, PCEE inhibited cell growth by G2/M cell cycle arrest in MDA-MB-231 cells. Simultaneously, the study of the antioxidant activity showed that PCEE had a cytoprotective effect, evidenced by reduced ROS production in cells with oxidative stress caused by doxorubicin. The results highlight PCEE as a potential antitumor agent, thus revaluing it as an agro-industrial residue.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carya , Humans , Female , Polyphenols/pharmacology , Polyphenols/therapeutic use , Breast Neoplasms/pathology , Antioxidants/pharmacology , Antioxidants/chemistry , MDA-MB-231 Cells , Cell Line, Tumor , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation , Phenols/pharmacology , Doxorubicin/pharmacology , Apoptosis
3.
Food Chem Toxicol ; 182: 114102, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865333

ABSTRACT

Ginger exosome-like nanoparticles (GELNs) have been extensively implicated in alleviating inflammation, maintaining intestinal microbiome and are considered competent drug delivery vehicles. Despite this, the current knowledge of the GELN interaction with cancer cells is limited. Triple-negative breast cancer (TNBC), an aggressive variant lacking efficient therapeutics, necessitates novel natural counterparts with minimal side effects. This study investigates the action of GELNs isolated from ginger rhizomes against TNBC cells. GELNs were isolated by ultracentrifugation and characterized physicochemically. The interaction of GELNs with TNBC cells (MDA-MB-231) was studied in detail. The GELNs induced a concentration-dependent decrease in cell viability in MDA-MB-231 cells without affecting the normal cell lines tested. GELNs induced apoptosis as indicated by morphological changes, nuclear fragmentation, membrane damage, phosphatidyl serine translocation, ROS generation, drop in mitochondrial membrane potential, expression of apoptotic specific proteins, and increased caspase activity. GELNs also instigated cell cycle arrest, retarded cell migration and colony formation in TNBC cells. These findings report a novel action of GELNs against TNBC cells and a closer look at the underlying molecular mechanism of this interspecies communication. This opens newer prospects for using dietary ELNs to target therapeutically challenging cancers.


Subject(s)
Exosomes , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , MDA-MB-231 Cells , Exosomes/metabolism , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , Cell Proliferation
4.
Food Funct ; 14(22): 10083-10096, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37870074

ABSTRACT

Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.


Subject(s)
Cucurbita , Daucus carota , Animals , Mice , Lipopolysaccharides/pharmacology , Carbon Dioxide/pharmacology , Culture Media, Conditioned/pharmacology , Reactive Oxygen Species , MDA-MB-231 Cells , Plant Extracts/pharmacology , Macrophages , Oxidative Stress , Inflammation/drug therapy , Carotenoids/pharmacology , RAW 264.7 Cells
5.
J Ethnopharmacol ; 315: 116644, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37196814

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zhuidu Formula (ZDF) is composed of triptolide, cinobufagin and paclitaxel, which are the active ingredients of Tripterygium wilfordii Hook. F, dried toad skin and Taxus wallichiana var. chinensis (Pilg) Florin, respectively. Modern pharmacological studies show that triptolide, cinobufagin, and paclitaxel are well-known natural compounds that exert anti-tumor effects by interfering with DNA synthesis, inducing tumor cell apoptosis, and inhibiting the dynamic balance of the tubulin. However, the mechanism by which the three compounds inhibit triple-negative breast cancer (TNBC) metastasis is unknown. OBJECTIVE: The objective of this investigation was to examine the inhibitory essences of ZDF on the metastasis of TNBC and elucidate its potential mechanism. MATERIALS AND METHODS: Cell viability of triptolide (TPL), cinobufagin (CBF), and paclitaxel (PTX) on MDA-MB-231 cells was assessed employing a CCK-8 assay. The drug interactions of the three drugs on MDA-MB-231 cells were determined in vitro utilizing the Chou-Talalay method. MDA-MB-231 cells were identified for migration, invasion and adhesion in vitro through the implementation of the scratch assay, transwell assay and adhesion assay, respectively. The formation of cytoskeleton protein F-actin was detected by immunofluorescence assay. The expressions of MMP-2 and MMP-9 in the supernatant of the cells were determined by ELISA analysis. The Western blot and RT-qPCR were employed to explore the protein expressions associated with the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. The anti-tumor efficacy of ZDF in vivo and its preliminary mechanism were investigated in the mouse 4T1 TNBC model. RESULTS: The results demonstrated that ZDF could significantly reduce the viability of the MDA-MB-231 cell, and the combination index (CI) values of actual compatibility experimental points were all less than 1, demonstrating a favorable synergistic compatibility relationship. It was found that ZDF reduces RhoA/ROCK and CDC42/MRCK dual signaling pathways, which are responsible for MDA-MB-231cell migration, invasion, and adhesion. Additionally, there has been a significant reduction in the manifestation of cytoskeleton-related proteins. Furthermore, the expression levels of RhoA, CDC42, ROCK2, and MRCKß mRNA and protein were down-regulated. ZDF significantly decreased the protein expressions of vimentin, cytokeratin-8, Arp2 and N-WASP, and inhibited actin polymerization and actomyosin contraction. Furthermore, MMP-2 and MMP-9 levels in the high-dose ZDF group were decreased by 30% and 26%, respectively. ZDF significantly reduced the tumor volume and protein expressions of ROCK2 and MRCKß in tumor tissues without eliciting any perceptible alterations in the physical mass of the mice, and the reduction was more pronounced than that of the BDP5290 treated group. CONCLUSION: The current investigation demonstrates that ZDF exhibits a proficient inhibitory impact on TNBC metastasis by regulating cytoskeletal proteins through the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Furthermore, the findings indicate that ZDF has significant anti-tumorigenic and anti-metastatic characteristics in breast cancer animal models.


Subject(s)
Medicine, Chinese Traditional , Myotonin-Protein Kinase , Neoplasm Invasiveness , Paclitaxel , Signal Transduction , Triple Negative Breast Neoplasms , rho-Associated Kinases , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Signal Transduction/drug effects , rho-Associated Kinases/metabolism , Myotonin-Protein Kinase/drug effects , Cell Movement/drug effects , Cytoskeleton/drug effects , Ethnopharmacology , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , MDA-MB-231 Cells , Cell Adhesion/drug effects , Humans , Animals , Mice , Neoplasm Metastasis/drug therapy , Disease Models, Animal , Female , Drug Synergism , Matrix Metalloproteinases/metabolism , Actins/metabolism , Cell Growth Processes/drug effects
6.
Bioprocess Biosyst Eng ; 46(6): 803-811, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36977929

ABSTRACT

This study showed that bio-functional silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) were synthesized in aqueous extracts of Gymnema sylvestre leaves and tested for toxicity assessment against triple-negative breast cancer cells (TNBC). Biofunctional nanoparticle (NPs) samples were characterized using UV-Vis spectroscopy, FT-IR, XRD, SEM, and TEM. The results showed that the phytofabrication of AgNPs resulted in a dark brown, UV-vis maximum absorbance peak at 413 nm. The AgNPs were crystalline and spherical, with sizes ranging from 20 to 60 nm, as confirmed by the XRD pattern and TEM images. Another phytofabrication of ZnONPs exhibited a white precipitate corresponding to a UV-Vis maximum absorption peak at 377 nm and a fine micro flower morphology with a particle-sized tribution between 100 and 200 nm. In addition, FT-IR spectra showed that bioorganic compounds are associated with NPs that respond to reduced Ag+ ions and AgNPs tabilizers. Invitro cytotoxicity studies revealed the potent anti-cancer effects of phytofabricated AgNPs and ZnONPs on TNBC cells. Furthermore, the AO/EB double staining assay results proved that apoptotic cells are distinguished by greenish-yellow fluorescence of the cell nuclei with IC50 concentrations of 44 ± 0.8 µg/mL for AgNPs and 26.2 ± 0.5 µg/mL for ZnONPs, respectively. Based on our results, we expect that the anticancer function of the biofunctional NPs is due to the apoptotic activation of TNBC cells by increased ROS. Therefore, the presented study demonstrated that biofunctional AgNPs and ZnONPs have excellent prospects for the anti-cancer activity that can be used in pharmaceutical and medical fields.


Subject(s)
Metal Nanoparticles , Triple Negative Breast Neoplasms , Zinc Oxide , Humans , Triple Negative Breast Neoplasms/drug therapy , Metal Nanoparticles/chemistry , Cell Line, Tumor , MDA-MB-231 Cells , Spectroscopy, Fourier Transform Infrared , Silver/pharmacology , Silver/chemistry , Zinc Oxide/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents
7.
Phytother Res ; 36(12): 4587-4603, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35916377

ABSTRACT

Andrographolide(ADE) has been demonstrated to inhibit tumor growth through direct cytotoxicity on tumor cells. However, its potential activity on tumor microenvironment (TME) remains unclear. Tumor-associated macrophages (TAMs), composed mainly of M2 macrophages, are the key cells that create an immunosuppressive TME by secretion of cytokines, thus enhancing tumor progression. Re-polarized subpopulations of macrophages may represent vital new therapeutic alternatives. Our previous studies showed that ADE possessed anti-metastasis and anoikis-sensitization effects. Here, we demonstrated that ADE significantly suppressed M2-like polarization and enhanced M1-like polarization of macrophages. Moreover, ADE inhibited the migration of M2 and tube formation in HUVECs under M2 stimulation. In vivo studies showed that ADE restrained the growth of MDA-MB-231 and HCC1806 human breast tumor xenografts and 4T-1 mammary gland tumors through TAMs. Wnt5a/ß-catenin pathway and MMPs were particularly associated with ADE's regulatory mechanisms to M2 according to RNA-seq and bioinformatics analysis. Moreover, western blot also verified the expressions of these proteins were declined with ADE exposure. Among the cytokines released by M2, PDGF-AA and CCL2 were reduced. Our current findings for the first time elucidated that ADE could modulate macrophage polarization and function through Wnt5a signaling pathway, thereby playing its role in inhibition of triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Diterpenes , Wnt Signaling Pathway , Female , Humans , beta Catenin , Breast Neoplasms/drug therapy , Tumor Microenvironment , Tumor-Associated Macrophages , Diterpenes/pharmacology , Human Umbilical Vein Endothelial Cells , MDA-MB-231 Cells , Animals
8.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613691

ABSTRACT

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , Diet , Animals , Mice , Cell Death , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/pharmacology , Lipid Peroxidation , Lipid Peroxides , MCF-7 Cells , MDA-MB-231 Cells , Humans , Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL