ABSTRACT
Four new sesquiterpene lactones (SLs) (1-4), along with a biosynthetically related SL (5), have been isolated from the leaves of Magnolia grandiflora. Magrandate A (1) is notable as the first C18 homogemarane type SL, featuring a unique 1,7-dioxaspiro[4.4]nonan-6-one core. Compounds 2 and 3, representing the first instances of chlorine-substituted gemarane-type SL analogs in natural products, were also identified. The structures of these isolates were elucidated through a combination of spectroscopic data analysis, electronic circular dichroism calculations, and X-ray single-crystal diffraction analysis. All isolates demonstrated anti-inflammatory activity in lipopolysaccharide-stimulated RAW264.7 cells. Notably, 3-5 showed a significant inhibitory effect on nitric oxide production, with IC50 values ranging from 0.79 to 4.73 µmol·L-1. Additionally, 4 and 5 exhibited moderate cytotoxic activities against three cancer cell lines, with IC50 values between 3.09 and 11.23 µmol·L-1.
Subject(s)
Magnolia , Sesquiterpenes , Molecular Structure , Magnolia/chemistry , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistryABSTRACT
Purpose: The aim of the present study was to fabricate a Fructus Xanthii and Magnolia liliiflora volatile oils liposomes-loaded thermosensitive in situ gel (gel/LIP/volatile oil) for effectively treating allergic rhinitis via intranasal administration. Patients and Methods: Particle size, polymer dispersity index (PDI), entrapment effectiveness, and cumulative drug permeation of the developed liposomes were assessed. Then, a thermoreversible in situ gel was created using the liposomes loaded with volatile oils of Fructus Xanthii and Magnolia liliiflora. The effectiveness of this treatment for allergic rhinitis was confirmed by evaluating nasal symptoms, and hematological results, after injecting the formulation into the ovalbumin (OVA)-sensitized mice, we conducted hematoxylin-eosin staining (HE) and immunohistochemistry to evaluate the outcomes. The effects of the gel/LIP/volatile oil formulation for nasal delivery of volatile oil in the treatment of rhinitis were then assessed. Results: The average particle size was 95.1 ± 3.6 nm, and the encapsulation efficiencies of Fructus Xanthii and Magnolia liliiflora volatile oils were 70.42 ± 5.41% and 67.10 ± 6.08%, respectively. Drug loadings of Fructus Xanthii and Magnolia liliiflora volatile oils were 9.10 ± 0.98% and 16.10 ± 1.03%, respectively. The binary formulation produced a gel rapidly in the nasal cavity with a strong mucosal adherence at a temperature of delivering volatile oil to the nasal mucosa steadily and continuously. After nasal administration, the gel/LIP/volatile oil sustained the volatile oil delivery into the mucosa. In comparison to the monolithic formulations, the gel/LIP/volatile oil binary formulation exhibited superior performance in terms of drug delivery capability and pharmacodynamic effects. Conclusion: This binary preparation displayed the ability to deliver drugs to the nasal mucosa and exhibited positive pharmacodynamic effects in treating OVA-induced rhinitis in mice. As a result, it has the potential to serve as a delivery platform for Traditional Chinese medicine in the treatment of allergic rhinitis.
Subject(s)
Drugs, Chinese Herbal , Magnolia , Oils, Volatile , Rhinitis, Allergic , Mice , Animals , Liposomes/therapeutic use , Oils, Volatile/therapeutic use , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Nasal MucosaABSTRACT
The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 â for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.
Subject(s)
Drugs, Chinese Herbal , Lignans , Magnolia , Zingiber officinale , Magnolia/chemistry , Drugs, Chinese Herbal/chemistry , Biphenyl Compounds/chemistry , Lignans/chemistryABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) theory believes that clearing heat and promoting dampness is the main treatment method for chronic gastritis. Coptis chinensis Franch. has the effects of clearing heat, detoxifying, and anti-inflammatory; Magnolia officinalis var. biloba can be used to treat abdominal pain, cough, and asthma. Coptis chinensis Franch. and Magnolia officinalis var. biloba can regulate the balance of intestinal microbiota and inhibit inflammatory reactions. AIM: This study will verify the therapeutic effect of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis, and explore its mechanism through transcriptome sequencing. METHODS: Firstly, a rat chronic gastritis model was established, and the anal temperature and body weight changes of the rats before and after modeling were observed. Next, H&E staining, TUNEL assay and ELISA assay were performed on rat gastric mucosal tissues. Subsequently, the key fractions of Coptis chinensis Franch. and Magnolia officinalis var. biloba were obtained by high performance liquid chromatography (HPLC), and a GES-1 cell inflammation model was constructed to select the optimal monomer. Finally, the mechanism of action of Coptis chinensis Franch. and Magnolia officinalis var. biloba was explored through RNA seq. RESULTS: Compared with the control group, the rats in the administered group were in better condition, with higher anal temperature, reduced inflammatory response in gastric mucosal tissue and reduced apoptosis. The optimal fraction Coptisine was subsequently determined by HPLC and GES-1 cell model. RNA-seq analysis revealed that DEG was significantly enriched in ribosomes, NF-κB signaling pathway, etc. The key genes TPT1 and RPL37 were subsequently obtained. CONCLUSIONS: This study verified the therapeutic effects of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis by in vivo and in vitro experiments in rats, identified Coptisine as the optimal component, and obtained two potential target genes.
Subject(s)
Coptis , Gastritis , Magnolia , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Coptis chinensis , Magnolia/chemistry , Coptis/chemistry , Fever , Gastritis/drug therapyABSTRACT
SUMMARY: Magnolia bark extract supplementation has an anti-oxidative role in mammalians. However, its role in physiological aged-associated heart insufficiency is not known yet. Therefore, we investigated the effects of a magnolia bark complex, including magnolol and honokiol components (MAHOC), in elderly rat hearts (24-month-old aged group). One group of aged rats was supplemented with MAHOC (400 mg/kg/d, for 12 weeks) besides the standard rat diet while the second group of elderly rats and adult rats (to 6-month- old adult-group) were only fed with the standard rat diet. The morphological analysis using light microscopy has shown marked myofibrillar losses, densely localized fibroblasts, vacuolizations, infiltrated cell accumulations, and collagen fibers in the myocardium of the elderly rats compared to the adults. We also detected a markedly increased amount of degenerated cardiomyocytes including the euchromatic nucleus. The MAHOC supplementation of the elderly rats provided marked ameliorations in these abnormal morphological changes in the heart tissue. Furthermore, electrophysiological analysis of electrocardiograms (ECGs) in the supplemented group showed significant attenuations in the prolonged durations of P-waves, QRS-complexes, QT-intervals, and low heart rates compared to the unsupplemented elderly group. The biochemical analysis also showed significant attenuations in the activity of arylesterase and total antioxidant status in the myocardium of the supplemented group. We further determined significant attenuations in the activity of a mitochondrial enzyme succinate dehydrogenase, known as a source of reactive oxygen species (ROS), and the decreased level of ATP/ADP in the heart homogenates of the supplemented group. Moreover, under in vitro conditions by using an aging-mimicked cardiac cell line induced by D-galactose, we demonstrated that MAHOC treatment could provide prevention of depolarization in mitochondria membrane potential and high-level ROS production. Overall, our data presented significant myocardial ameliorations in physiological aging-associated morphological alterations parallel to the function and biochemical attenuations with MAHOC supplementation, at most, through recoveries in mitochondria.
La suplementación con extracto de corteza de magnolia tiene un papel antioxidante en los mamíferos, sin embargo, su rol en la insuficiencia cardíaca asociada al envejecimiento fisiológico aún no se conoce. Por lo anterior, investigamos los efectos de un complejo de corteza de magnolia, incluidos los componentes magnolol y honokiol (MAHOC), en corazones de ratas seniles (grupo de edad de 24 meses). La alimentación de grupo de ratas seniles se complementó con MAHOC (400 mg/kg/d, durante 12 semanas) además de la dieta estándar, mientras que el segundo grupo de ratas seniles y ratas adultas (hasta el grupo de adultos de 6 meses) solo recibió la dieta estándar para ratas. El análisis morfológico mediante microscopía óptica ha mostrado marcadas pérdidas miofibrilares, fibroblastos densamente localizados, vacuolizaciones, acumulaciones de células infiltradas y fibras de colágeno en el miocardio de las ratas seniles en comparación con las adultas. También detectamos una cantidad notablemente mayor de cardiomiocitos degradados, incluido el núcleo eucromático. La suplementación con MAHOC de las ratas seniles proporcionó mejoras marcadas en estos cambios morfológicos anormales en el tejido cardiaco. Por otra parte, el análisis de los electrocardiogramas (ECG) en el grupo suplementado mostró atenuaciones significativas en las duraciones prolongadas de las ondas P, los complejos QRS, los intervalos QT y las frecuencias cardíacas bajas, en comparación con el grupo de ratas seniles sin suplementación alimenticia. El análisis bioquímico también mostró atenuaciones significativas en la actividad de la arilesterasa y el estado antioxidante total en el miocardio del grupo suplementado. Determinamos además atenuaciones significativas en la actividad de la enzima mitocondrial succinato deshidrogenasa, conocida como fuente de especies reactivas de oxígeno (ROS), y la disminución del nivel de ATP/ADP en los homogeneizados de corazón del grupo suplementado. Además, en condiciones in vitro mediante el uso de una línea de células cardíacas, imitando el envejecimiento inducido por D- galactosa, demostramos que el tratamiento con MAHOC podría prevenir la despolarización en el potencial de membrana de las mitocondrias y la producción de ROS de alto nivel. En general, nuestros datos presentaron mejoras miocárdicas significativas en alteraciones morfológicas asociadas con el envejecimiento fisiológico paralelas a la función y atenuaciones bioquímicas con la suplementación con MAHOC, como máximo, a través de recuperaciones en las mitocondrias.
Subject(s)
Animals , Male , Rats , Biphenyl Compounds/administration & dosage , Aging , Magnolia , Heart/drug effects , Antioxidants/administration & dosage , Plant Extracts , Reactive Oxygen Species , Rats, Wistar , Lignans/administration & dosage , Heart/physiologyABSTRACT
The compound of essential oils (EOs) is a key approach to achieving the superimposed efficacy of plant EOs. In this article, grey correlation analysis was applied for the first time to explore the compound ratios and contribution between constituents and the bioactivity of the compound EOs. There were 12 active constituents shared in rosemary and magnolia EOs prepared by negative pressure distillation. With different proportions, these two EOs were blended and analyzed for the antioxidant, bacteriostatic and antitumor effects. According to the results of the inhibition circle, minimum bactericidal and inhibitory concentration, the most obvious inhibition effect of the compound EOs on different strains of bacteria was shown in Staphylococcus aureus. The results of antioxidant test showed that single EO from rosemary had the best antioxidant effect, and its EO content was directly proportional to the antioxidant effect. The cytotoxicity results showed that, there was a significant difference in the lethality of the compound EOs between tumor cells Mcf-7 (human breast cancer cells) and SGC-7901 cells (human gastric cancer cells). Furthermore, single EO from magnolia had an obvious inhibitory effect on the growth of Mcf-7 cells and SGC-7901 cells, and the cell lethality rate was as high as 95.19 % and 97.96 %, respectively. As the results of grey correlation analysis, the constituents with the maximal correlation of inhibitory effects on bacteria were as follows: S. aureus - Terpinolene (0.893), E. coli - Eucalyptol (0.901), B. subtilis - α-Pinene (0.823), B. cereus - Terpinolene (0.913) and Salmonella - α-Phellandrene (0.855). For the ABTS and DPPH scavenging effects, the constituents with the maximal correlation were (-)-Camphor (0.860) and ß-Pinene (0.780), respectively. In terms of the effects of the active constituents of compound EOs on the inhibitory activities of tumor cells Mcf-7 and SGC-7901, the three active constituents of γ-Terpinene, (R)-(+)-ß-Citronellol and (-)-Camphor were in the top three, and their correlation were Mcf-7 (0.833, 0.820, 0.795) and SGC-7901 (0.797, 0.766, 0.740). Our study determined the contribution degree of active constituents in the antibacterial, antioxidant, and antitumor bioactivities of rosemary-magnolia compound EOs, and also provided new insights for the research of EOs combination formulations.
Subject(s)
Magnolia , Oils, Volatile , Rosmarinus , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Camphor/pharmacology , Staphylococcus aureus , Escherichia coli , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity TestsABSTRACT
The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H1 -, ß2 - and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases.
Subject(s)
Lignans , Magnolia , Respiratory Tract Diseases , Humans , Magnolia/chemistry , Medicine, Chinese Traditional , Plant Bark/chemistry , Lignans/pharmacology , Biphenyl Compounds , Plant Extracts/chemistryABSTRACT
Herbal remedies used in traditional medicine often contain several compounds combined in order to potentiate their own intrinsic properties. However, herbs can sometimes cause serious health troubles. In Belgium, patients who developed severe aristolochic acid nephropathy ingested slimming pills containing root extracts of an Aristolochia species, as well as the bark of Magnolia officinalis. The goal of the study was to evaluate, on a human renal cell line, Aristolochia and Magnolia extracts for their cytotoxicity by a resazurin cell viability assay, and their genotoxicity by immunodetection and quantification of the phosphorylated histone γ-H2AX. The present study also sought to assess the mutagenicity of these extracts, employing an OECD recognized test, the Ames test, using four Salmonella typhimurium strains with and without a microsomial fraction. Based on our results, it has been demonstrated that the Aristolochia-Magnolia combination (aqueous extracts) was more genotoxic to human kidney cells, and that this combination (aqueous and methanolic extracts) was more cytotoxic to human kidney cells after 24 and 48 h. Interestingly, it has also been shown that the Aristolochia-Magnolia combination (aqueous extracts) was mutagenic with a TA98 Salmonella typhimurium strain in the presence of a microsomial liver S9 fraction. This mutagenic effect appears to be dose-dependent.
Subject(s)
Antineoplastic Agents , Aristolochia , Magnolia , Humans , Mutagens , Aristolochia/toxicity , Kidney , DNA DamageABSTRACT
The study was designed to synthesize microporous activated carbons from the wastes of three medicinal herbs by NaOH as an activator followed by pyrolysis. The prepared microporous activated carbons R. Weed (Amaranthus retroflexus Redroot pigweed modified with NaOH), S. Bod Magnolia soulangeana Soul-Bod treated with NaOH) and S. TY (Tanacetum Vulgar L. (Tansy) treated with NaOH) were deployed for dangerous Cr(VI) ion remediation from the aquatic system. The synthesized modified biosorbents were described by FT-IR, SEM, EDAX, and BET. Furthermore, it was found that biosorbent made from R. Weed seems to have a surface area of 588.155 m2/g and micropore volume of 0.331Cm3/g whereas biosorbent made from S. Bod and S. TY does have a surface area of 489.613 and 445.615 m2/g respectively. The effects of several variables such as pH, temperature, and contact time were explored. The kinetic studies were accomplished and it was noticed that equilibrium was confirmed at 6 min for R. Weed while at 8 and 10 min for S. Bod and S. TY respectively. The pertinence of different adsorption isotherms like Langmuir, Freundlich, and Temkin was explored. The optimum adsorption capacity for each adsorbent material in respect of monolayer coverage (Qmax) was calculated. The Qmax of Redroot pigweed (R. Weed), Soul-Bod (S. Bod), and Tansy (S. TY) biosorbents were 326.62, 181.69, and 108.14 mg/g respectively. The adsorption kinetics was described using pseudo-first-order and pseudo-second-order equations. Furthermore, it was found that each adsorbent material followed the pseudo-second-order kinetics which affirmed the chemosorption nature of adsorption. The thermodynamic variables that include ΔG, ΔH, and ΔS were determined for each adsorbent material. Moreover, the manufactured R. Weed biosorbent seems to have high recyclability. It will remediate Cr(VI) ions with a maximum remediation efficiency of up to 81% during six cycles of regeneration.
Subject(s)
Amaranthus , Magnolia , Water Pollutants, Chemical , Charcoal , Sodium Hydroxide , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Thermodynamics , Chromium/analysisABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY: To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS: Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS: Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.
Subject(s)
Atractylodes , Drinking Water , Insulin Resistance , Magnolia , MicroRNAs , Podocytes , Animals , Carrier Proteins/metabolism , Chromatography, Liquid , Drinking Water/metabolism , Fructose/adverse effects , Humans , Insulin/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, Adiponectin/metabolism , Signal Transduction , Sirtuin 1/metabolism , Tandem Mass Spectrometry , Tumor Suppressor Protein p53/metabolismABSTRACT
The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.
Subject(s)
Zingiber officinale , Magnolia/chemistry , Drugs, Chinese Herbal/chemistry , Biphenyl Compounds/chemistry , Lignans/chemistryABSTRACT
Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of the leaf essential oil of M. champaca. The present study explored the variation in the yield and chemical composition of leaf essential oil isolated from 52 accessions of M. champaca. Through hydrodistillation, essential oil yield was obtained, varied in the range of 0.06 ± 0.003% and 0.31 ± 0.015% (v/w) on a fresh weight basis. GC-MS analysis identified a total of 65 phytoconstituents accounting for 90.23 to 98.90% of the total oil. Sesquiterpene hydrocarbons (52.83 to 65.63%) constituted the major fraction followed by sesquiterpene alcohols (14.71 to 22.45%). The essential oils were found to be rich in ß-elemene (6.64 to 38.80%), γ-muurolene (4.63 to 22.50%), and ß-caryophyllene (1.10 to 20.74%). Chemometrics analyses such as PCA, PLS-DA, sPLS-DA, and cluster analyses such as hierarchical clustering, i.e., dendrogram and partitional clustering, i.e., K-means classified the essential oils of M. champaca populations into three different chemotypes: chemotype I (ß-elemene), chemotype II (γ-muurolene) and chemotype III (ß-caryophyllene). The chemical polymorphism analyzed in the studied populations would facilitate the selection of chemotypes with specific compounds. The chemotypes identified in the M. champaca populations could be developed as promising bio-resources for conservation and pharmaceutical application and further improvement of the taxa.
Subject(s)
Magnolia , Oils, Volatile , Sesquiterpenes , Magnolia/chemistry , Gas Chromatography-Mass Spectrometry , Chemometrics , Sesquiterpenes/analysis , Oils, Volatile/chemistryABSTRACT
Several Magnolia species have exhibited potent biological activities such as anti-inflammatory, anti-angiogenesis, anticonvulsant, anti-obesity, and antiviral activities. However, the Magnolia candollii from Malaysia has not been investigated yet. Hence, this study aims to investigate the chemical composition and bioactivities of the essential oil of Magnolia candollii H.Keng from Malaysia. The hydrodistillation process was used to produce the essential oil, and gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to analyse it. In total, 44 chemical components were identified in the bark oil, accounting for 98.4%. The major components of the essential oil were α-pinene (29.7%), elemol (10.2%), ß-pinene (8.5%), ß-caryophyllene (7.2%), α-terpineol (7.0%), guaiol (5.4%), and bulnesol (4.9%). Acetylcholinesterase and anti-inflammatory activities were also evaluated using the Ellman method and lipoxygenase enzyme, respectively, in which the essential oil showed moderate inhibitory activity against acetylcholinesterase (I%: 70.2%) and lipoxygenase (I%: 72.5%). Thus, the findings may be helpful for identifying the medicinal and therapeutic uses of the essential oil from the Magnolia genus.
Subject(s)
Magnolia , Oils, Volatile , Oils, Volatile/chemistry , Magnolia/chemistry , Acetylcholinesterase , Gas Chromatography-Mass Spectrometry , Plant Oils/chemistry , Anti-Inflammatory Agents , LipoxygenasesABSTRACT
The stem bark of Magnolia officinalis is a traditional Chinese medicine for the treatment of abdominal distention and functional dyspepsia. The pharmacokinetics of three glycosides (magnoloside A, magnoloside B, and syringin) and two lignans (honokiol and magnolol) in both normal and functional dyspepsia rats were firstly investigated by ultra-performance liquid chromatography-triple quadrupole mass spectrometry method and the influences of the coexisting compounds on the pharmacokinetic parameters of honokiol and magnolol were also studied. It was found that all of the five target compounds were quickly absorbed and eliminated in both normal and functional dyspepsia rats, while, their residence time was significantly decreased in pathological states except magnoloside A. The coexisting compounds in the stem bark of M. officinalis significantly reduced absorption and increased elimination of honokiol in vivo. It's worth noticing that the volume of distribution of lignan was quite lower than that of a glycoside. Moreover, the metabolic profiling of magnoloside A, honokiol, and magnolol in vivo was analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method, from which three prototypes were identified and 35 metabolites were putatively characterized, and 18 unknown metabolites were reasonably characterized for the first time. The results indicated that sulfation and glucuronidation were the main metabolic pathways of honokiol and magnolol.
Subject(s)
Dyspepsia , Lignans , Magnolia , Rats , Animals , Magnolia/chemistry , Tandem Mass Spectrometry , Plant Bark/chemistry , Chromatography, High Pressure Liquid/methods , Biphenyl Compounds/chemistry , Lignans/analysis , Glycosides/analysis , Chromatography, LiquidABSTRACT
Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 µg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 µg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.
Subject(s)
Bass , Fish Diseases , Magnolia , Nocardia Infections , Nocardia , Plants, Medicinal , Allyl Compounds , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biphenyl Compounds , Fish Diseases/drug therapy , Nocardia Infections/drug therapy , Nocardia Infections/veterinary , Phenols , Plant Extracts/pharmacologyABSTRACT
Edible flowers have been gaining popularity among researchers, nutritionists and chefs all around the world. Nowadays, flowers are used to make food look and/or taste better; however, they are also a very good source of valuable nutrients (antioxidants, vitamins, proteins, fats, carbohydrates, macro and microelements). The aim of our study was to determine the content of dietary fibre and total protein in selected edible flowers; we also compared the nutritional content of petals, differentiating between the representatives of the Oleaceae and Asteraceae families, as well as herbaceous vs. woody plants. The study material consisted of petals of 12 edible flower species (Magnolia × soulangeana, Sambucus nigra L., Syringa vulgaris L. (white and violet flowers), Robinia pseudoacacia, Forsythia × intermedia, Cichorium intybus L., Bellis perennis, Tussilago farfara L., Taraxacum officinale F.H. Wiggers coll., Centaurea cyanus L., Calendula officinalis). Dietary fibre content was determined by the enzymatic-gravimetric method and ranged from 13.22 (Magnolia × soulangeana) to 62.33 (Calendula officinalis L.) g/100 g. For insoluble dietary fibre (IDF), the values ranged from 8.69 (Magnolia × soulangeana) to 57.54 (Calendula officinalis L.) g/100 g, and the content of soluble dietary fibre (SDF) was between 1.35 (Syringa vulgaris L.-white flowers) and 7.46 (Centaurea cyanus L) g/100 g. Flowers were also shown to be a good, though underappreciated, source of plant protein, with content ranging from 8.70 (Calendula officinalis L.) to 21.61 (Magnolia × soulangeana) g/100 g dry matter (Kjeldahl method). Considerable amounts of protein were found in the flowers of the olive family (Oleaceae) and woody plants, which can enrich the daily diet, especially vegan and vegetarian. Edible flowers of the Asteraceae family, especially the herbaceous representatives, contained high levels of both total dietary fibre and its insoluble fraction; therefore, they can be a rich source of these nutrients in the daily diet of athletes, which would perform a prebiotic function for gut bacteria.
Subject(s)
Asteraceae , Calendula , Magnolia , Athletes , Dietary Fiber/analysis , Dietary Supplements , Flowers/chemistry , HumansABSTRACT
In this study, we employed Q Exactive to determine the main differential metabolites of Magnoliae Officinalis Cortex du-ring the "sweating" process. Further, we quantified the color parameters and determined the activities of polyphenol oxidase(PPO), peroxidase(POD), and tyrosinase of Magnoliae Officinalis Cortex during the "sweating" process. Gray correlation analysis was performed for the color, chemical composition, and enzyme activity to reveal the effect of enzymatic reaction on the color of Magnoliae Officinalis Cortex during the "sweating" process. Magnoliae Officinalis Cortex sweating in different manners showed similar metabolite changes. The primary metabolites that changed significantly included amino acids, nucleotides, and sugars, and the secondary metabolites with significant changes were phenols and phenylpropanoids. Despite the different sweating methods, eleven compounds were commonly up-regulated, including L-glutamic acid, acetylarginine, hypoxanthine, and xanthine; six compounds were commonly down-re-gulated, including L-arginine, L-aspartic acid, and phenylalanine. The brightness value(L~*), red-green value(a~*), and yellow-blue value(b~*) of Magnoliae Officinalis Cortex kept decreasing during the "sweating" process. The changes in the activities of PPO and POD during sweating were consistent with those in the color parameter values. The gray correlation analysis demonstrated that the main differential metabolites such as amino acids and phenols were closely related to the color parameters L~*, a~* and b~*; POD was correlated with amino acids and phenols; PPO had strong correlation with phenols. The results indicated that the color change of Magnoliae Officinalis Cortex during "sweating" was closely related to the reactions of enzymes dominated by PPO and POD. The study analyzed the correlations among the main differential metabolites, color parameters, and enzyme activities of Magnoliae Officinalis Cortex in the "sweating" process. It reveals the common law of material changes and ascertains the relationship between color changes and enzymatic reactions of Magnoliae Officinalis Cortex during "sweating". Therefore, this study provides a reference for studying the "sweating" mechanism of Magnoliae Officinalis Cortex and is of great significance to guarantee the quality of Magnoliae Officinalis Cortex.
Subject(s)
Magnolia , Magnolia/chemistry , Quality Control , SweatingABSTRACT
INTRODUCTION: Magnoliae officinalis cortex (MOC), a traditional Chinese medicine, has been used in treating gastrointestinal diseases since ancient time. According to the Chinese Pharmacopoeia, it includes two kinds of decoction pieces, raw and ginger juice processed Magnoliae officinalis cortex (RMOC and GMOC). OBJECTIVE: The aim of this paper was to study the differences between non-volatile and volatile components in RMOC and GMOC. METHODS: The non-volatile components were detected by HPLC fingerprinting coupled with content determination (syringin, magnoflorine, honokiol and magnolol). Meanwhile, their odor information was obtained using a Heracles NEO ultra-fast gas phase electronic nose to conduct radar fingerprint analysis, principal component analysis and discriminant factor analysis, and the volatile components were analyzed qualitatively by the Kovats retention index and the AroChemBase database. RESULTS: The HPLC fingerprints were established and 20 common peaks were found in all chromatograms with similarity values of more than 0.900. The content determination results showed that the contents of syringin and magnoflorine decreased, while the contents of honokiol and magnolol increased in GMOC. By the gas phase electronic nose, the two decoction pieces could be distinguished obviously and 16 possible compounds were identified. Among them, the relative contents of (-)-α-pinene and ß-pinene increased, while ß-phellandrene and (+)-limonene levels decreased. CONCLUSION: The results suggested that honokiol, magnolol, (-)-α-pinene and ß-pinene might be the main substances which could enhance the harmonizing effect on the stomach. Moreover, this paper could lay a foundation for exploring the processing mechanism of MOC and provide a novel method for the research of other traditional Chinese medicine with strong aroma.
Subject(s)
Drugs, Chinese Herbal , Lignans , Magnolia , Zingiber officinale , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Electronic Nose , Lignans/analysisABSTRACT
OBJECTIVE: To evaluate the long-term effects of a combination of isoflavones, agnus castus and magnolia extracts (combined isoflavone compound [CIC]) on climacteric symptoms and cardiometabolic risk in symptomatic postmenopausal women. METHODS: This interventional, prospective study evaluated climacteric symptoms, mood and sleep disorders using the 21-item Greene Climacteric Scale (GCS) and 7-item Insomnia Severity Index (ISI) questionnaires; and cardiovascular, metabolic and thrombotic risk markers at baseline (T0) and after 12 months of CIC treatment (T1). RESULTS: In healthy postmenopausal women (N = 71), 12-month CIC treatment significantly reduced patient-reported vasomotor symptoms (100% vs. 17%), mood disorders (67% vs. 25%) and sleep disorders (89% vs. 19%%) (all p < .001) compared with baseline; and significantly improved GCS psychological, somatic, and vasomotor domain scores and ISI sleep disturbance scores (all p < .05). CIC significantly reduced systolic (p = .022) and diastolic blood pressure (p < .001), and heart rate (p < .001); glucose concentrations (p = .018), HOMA index (p = .013), and ALT (p = .035), homocysteine (p = .005) and NT-proBNP (p = .003) levels. CONCLUSIONS: Long-term CIC therapy improved vasomotor symptoms, mood disorders, sleep disorders, hemodynamic measurements and cardiometabolic risk markers in healthy postmenopausal women. CLINICALTRIALS.GOV IDENTIFIER: NCT03699150.