Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mol Genet Metab ; 109(1): 28-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23478190

ABSTRACT

The causes of Reye-like syndrome are not completely understood. Dihydrolipoamide dehydrogenase (DLD or E3) deficiency is a rare metabolic disorder causing neurological or liver impairment. Specific changes in the levels of urinary and plasma metabolites are the hallmark of the classical form of the disease. Here, we report a consanguineous family of Algerian origin with DLD deficiency presenting without suggestive clinical laboratory and anatomopathological findings. Two children died at birth from hepatic failure and three currently adult siblings had recurrent episodes of hepatic cytolysis associated with liver failure or Reye-like syndrome from infancy. Biochemical investigation (lactate, pyruvate, aminoacids in plasma, organic acids in urine) was normal. Histologic examination of liver and muscle showed mild lipid inclusions that were only visible by electron microscopy. The diagnosis of DLD deficiency was possible only after genome-wide linkage analysis, confirmed by a homozygous mutation (p.G229C) in the DLD gene, previously reported in patients with the same geographic origin. DLD and pyruvate dehydrogenase activities were respectively reduced to 25% and 70% in skin fibroblasts of patients and were unresponsive to riboflavin supplementation. In conclusion, this observation clearly supports the view that DLD deficiency should be considered in patients with Reye-like syndrome or liver failure even in the absence of suggestive biochemical findings, with the p.G229C mutation screening as a valuable test in the Arab patients because of its high frequency. It also highlights the usefulness of genome-wide linkage analysis for decisive diagnosis advance in inherited metabolic disorders.


Subject(s)
Acidosis, Lactic/pathology , Dihydrolipoamide Dehydrogenase , Liver Failure, Acute/genetics , Maple Syrup Urine Disease/pathology , Reye Syndrome/genetics , Acidosis, Lactic/blood , Acidosis, Lactic/genetics , Acidosis, Lactic/mortality , Acidosis, Lactic/urine , Adult , Algeria , Child , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/metabolism , Female , Humans , Infant , Liver/pathology , Liver Failure, Acute/blood , Liver Failure, Acute/mortality , Liver Failure, Acute/pathology , Liver Failure, Acute/urine , Male , Maple Syrup Urine Disease/blood , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/mortality , Maple Syrup Urine Disease/urine , Muscles/pathology , Mutation , Reye Syndrome/metabolism , Reye Syndrome/mortality , Reye Syndrome/physiopathology
2.
Mol Ther ; 17(7): 1266-73, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19436271

ABSTRACT

Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Hepatocytes/transplantation , Maple Syrup Urine Disease/mortality , Maple Syrup Urine Disease/therapy , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Animals , Body Weight , Disease Models, Animal , Liver/metabolism , Maple Syrup Urine Disease/pathology , Mice , Phenotype , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL